

Climate Change Initiative Extension (CCI+) Phase 1

New Essential Climate Variables (NEW ECVS)

High Resolution Land Cover ECV (HR_LandCover_cci)

System Verification Report

(SVR)

Prepared by:

Università degli Studi di Trento

Fondazione Bruno Kessler

Université Catholique de Louvain

Università degli Studi di Pavia

Università degli Studi di Genova

Politecnico di Milano

Université de Versailles Saint Quentin

CREAF

e-GEOS s.p.a.

Planetek Italia

GeoVille

Ref CCI_HRLC_Ph1-SVR

Issue Date Page

1.rev.0 17/04/2020 1

Changelog

Issue Changes Date

0.1 First version. 01/03/2020

1.0 Final version including all the test on the system 17/04/2020

Detailed Change Record

Issue RID Description of discrepancy Sections Change

N/A N/A N/A N/A N/A

Ref CCI_HRLC_Ph1-SVR

Issue Date Page

1.rev.0 17/04/2020 2

Contents

1 Introduction ... 3

1.1 Executive summary .. 3

1.2 Purpose and scope .. 3

1.3 Applicable documents ... 3

1.4 Reference documents.. 4

1.5 Acronyms and abbreviations ... 4

2 Challenges for System Verification ... 6

2.1 Main challenges from SSD ... 6

2.1.1 Challenge 1: Orchestration of resources and IaaS .. 6

2.1.2 Challenge 2: Flexibility in the pipeline development .. 6

2.1.3 Challenge 3: Delivery of results ... 6

2.2 Verification environment .. 6

3 System Verification .. 7

3.1 Design of the verification scenarios .. 7

3.2 Design of the verification tests .. 8

3.3 Verification tests .. 9

3.3.1 TEST-1.1: OpenEO Process Discovery API ... 9

3.3.2 TEST-1.2: OpenEO Process Creation API ... 9

3.3.3 TEST-1.3: Activation of multiple resources ... 11

3.3.4 TEST-1.4.1: Pipeline execution monitoring using Service API ... 12

3.3.5 TEST-1.4.2: Pipeline execution monitoring using Max-ICS logs .. 12

3.3.6 TEST-2.1: Pipeline Design .. 13

3.3.7 TEST-2.2: Pipeline Run ... 18

3.3.8 TEST-3-1 Metadata Display ... 19

3.3.9 TEST-3-2 Products Display ... 21

Ref CCI_HRLC_Ph1-SVR

Issue Date Page

1.rev.0 17/04/2020 3

1 Introduction

1.1 Executive summary

Within the European Space Agency (ESA), the Climate Change Initiative (CCI) is a global monitoring program

which aims to provide long-term satellite-based products to serve the climate modelling and climate user

community. Permafrost has been selected as one of the Essential Climate Variables (ECVs) which are elaborated

during Phase 1 of CCI+ (2018-2021).

Following the activities of user requirements updating according to Climate User Community and other users’

consultations, the Consortium has defined the related HRLC products requirements accounting for technical

constraints such as main data sources available, spatial and temporal coverage, software and tools for quality

control. This High Resolution Land Cover (HRLC) System Specification Document defines the system architecture

and the description of the first version of the system that will generate the CCI+ HRLC products over the areas of

interests.

This document outlines the system verification procedures and results for the system with respect to its

capabilities to meet the challenges described in paragraph 2.1.

A test scenario is defined for the system verification. Two key aspects of the processing system are tested: 1.

Capability to scale automatically 2. The capability to easily design pipelines. The verification procedure makes

use of known processing steps as the final processors (steps) for the generation of HRLC products are still in the

integration phase. The goal of the verification is to ensure that the system is capable to on-board generic

processing steps.

The scaling capability is then guaranteed also by the fact that the system is deployed on a Cloud and thus can

access to a nearly infinite resource pool.

1.2 Purpose and scope

The HRLC System Verification Report defines the criteria to meet the challenges defined in the SSD and verifies

the availability of them in the system.

Input to this document are the Tender Specification [AD2] and the other Applicable Document and, in particular,

to meet the challenges defined in System Specification Document (SSD)

The document is organized with the following contents:

 The description of the challenges of the system (2.1) and of the test environment (2.2)

 The description of a verification scenario (3.1)

 The design of the test for the verification (3.2)

 The description and execution of the test cases (3.3)

1.3 Applicable documents

Ref. Title, Issue/Rev, Date, ID

[AD1] CCI HR Technical Proposal, v1.1, 16/03/2018

[AD2] CCI Extension (CCI+) Phase 1 – New ECVs – Statement of Work, v1.3, 22/08/2017, ESA-CCI-PRGM-EOPS-

SW-17-0032

[AD3] Data Standards Requirements for CCI Data Producers, v2.1, 02/08/2019, CCI-PRGM-EOPS-TN-13-0009

[AD4] User Requirements Document, v1.1, 12/04/2019, CCI_HRLC_Ph1-D1.1_URD

[AD5] Product Specification Document, v1.0, CCI_HRLC_Ph1-PSD

[AD6] Data Access Requirement Documentm v1.0, CCI_HRLC_Ph1-DARD

[AD7] System Requirement Document v2.0, CCI_HRLC_Ph1-SRD

Ref CCI_HRLC_Ph1-SVR

Issue Date Page

1.rev.0 17/04/2020 4

[AD8] System Specification Document v1.0, CCI_HRLC-Ph1-SSD

1.4 Reference documents

Ref. Title, Issue/Rev, Date, ID

[RD1] The Global Climate Observing System: Implementation Needs, 01/10/2016, GCOS-200

1.5 Acronyms and abbreviations

API Application Programming Interface

AOI Area Of Interest

ARD Analysis Ready Data

AWS Amazon Web Services

CCI Climate Change Initiative

CRC Climate Research Community

CMUG Climate Modelling User Group

DIAS Data and Information Access Services

ECV Essential Climate Variables

ESM Earth System Models

EVI Enhanced Vegetation Index

FTP File Transfer Protocol

GCOS Global Climate Observing System

GDPR General Data Protection Regulation

GIS Geographical Information System

HR High Resolution

IaaS Infrastructure as a Service

L1C Level-1C

L2A Level-2A

LAI Leaf Area Index

LaSRC Landsat Surface Reflectance Code

LC Land Cover

LCC Land Cover Change

LCCS Land Cover Coverage Classification System

LCML Land Cover Meta Language

LCZ Local Climate Zone

LEDAPS Landsat Ecosystem Disturbance Adaptive Processing System

LSCE Laboratoire des Sciences du Climat et de l’Environnement

MR Medium Resolution

NDVI Normalized Difference Vegetation Index

OGC Open Geospatial Consortium

OWS OGC Web Services

PFT Plant Functional Type

Ref CCI_HRLC_Ph1-SVR

Issue Date Page

1.rev.0 17/04/2020 5

RS Remote Sensing

SAR Synthetic Aperture Radar

SFT Surface Functional Type

SRD Software Requirements Document

SSD Software Specification Document

SVR Software Verification Report

TOA Top Of Atmosphere

URD User Requirements Document

VM Virtual meeting

WCS Web Coverage Service

WFS Web Feature Service

WMS Web Map Service

WP Work Package

Ref CCI_HRLC_Ph1-SVR

Issue Date Page

1.rev.0 17/04/2020 6

2 Challenges for System Verification

2.1 Main challenges from SSD

The platform prototype scope is to bring the results of the research activities to a pre-operational level by scaling

up the processing capacity in order to allow the production of massive land cover mosaics following GCOS

requirements. In practice, having to deal with several TB of data (hundreds) means that the concept of pre-

operational is not applicable and that the system must provide a huge capability to scale the processing. For this

reason, some constrains and requirements coming from the SRD are dealing with the capability of the IaaS

platform chosen for the execution of the production.

2.1.1 Challenge 1: Orchestration of resources and IaaS

The orchestration platform, described in the following paragraphs, is based on the concept of big-data processing

and reactive pipeline execution (Reactive Manifesto, https://www.reactivemanifesto.org/en) and is based on

Max-ICS technology (Max-ICS by Earthlab Louxembourg, http://www-max-ics.earthlab.lu/) which is part of e-

GEOS CLEOS platform (currently used internally but soon to be released as a service).

The challenge is to perform a test of scalable processing under known conditions this means that a known

processor will be used to do some basic data processing to verify the scalability. The verification is done by

 Verifying the activation of multiple resources as requested by the designed test on a single node

execution

2.1.2 Challenge 2: Flexibility in the pipeline development

Another important point is the capability of the platform to manage easily changes in the pipeline with minimal

manual intervention. In particular, the prototype platform will put the basis for future enhancement by allowing

easy link between the research activity and the production activity.

The overall process starts from the research activity, using Conda environment (https://conda.io/). This activity

provides as output the code (and its updates) on the internal GitLab. Then, each processor generates a processor

as described in SRD that is managed by the orchestrator to run a pipeline.

The challenge is to design and implement a pipeline under known conditions linking processing nodes. The

verification is done by:

 Verifying the capability to design a pipeline of nodes

 Verifying the capability to run the pipeline and obtain the final results

2.1.3 Challenge 3: Delivery of results

In addition, a general OGC server is added to the processing platform that is used for the access to the large

amount of data. The server allows to search for data collections using OGC CSW interface and to

visualize/download data (e.g. HRLC products) using OGC WMS/WCS services.

The challenge is to implement a software component able to present different type of geospatial data and in

particular of the type raster and vector, the verification is done by:

 Verifying the capability to show Metadata type of data (Vector encoding) as OGC Service and through a

Web Interface

 Verifying the capability to show raster data of different type, specifically Sentinel 2 data (True Color

Image) and a final product classification

2.2 Verification environment

The environment is fully configured on a Cloud and is designed to exploit the capability to be elastic of a cloud.

In the following table we give some technical details of the software and configuration info where applicable.

https://www.reactivemanifesto.org/en
http://www-max-ics.earthlab.lu/
https://conda.io/

Ref CCI_HRLC_Ph1-SVR

Issue Date Page

1.rev.0 17/04/2020 7

The configuration is made in region eu-central-1 (frankfurt) as Sentinel data are only hosted on this region. The

test environment is equivalent to the final environment for what concerns the Orchestrator scope as it can scale

using all resources of the cloud. For the delivery system it is downgraded (to avoid wasting of resources) even if

is made of on-demand resources that can be scaled anytime. The reference for the instances is given at

https://aws.amazon.com/ec2/instance-types/?nc1=h_ls.

Component Software Configuration

Orchestrator

Max-ICS, http://www-max-ics.earthlab.lu/ Orchestrator: 3 t3.2xlarge (8 vCPU 32.0

GB) instances on AWS

Worker: r4.2xlarge

IaaS

AWS S3,

https://aws.amazon.com/s3/?nc1=h_ls

Bucket: S3://ccihrlc

AWS EC2,

https://aws.amazon.com/ec2/?nc1=h_ls

Region: eu-central-1

Code

Repository

GITLAB, https://about.gitlab.com/ Not Applicable

OGC Server
Gesoerver, http://geoserver.org/ Geoserver and Postgres Database:

t3a.2xlarge 8 vCPU 32.0 GB

Table 1: Environment configuration

3 System Verification

The objective of this paragraph is to describe a known scenario in terms of processors (with well-known and

tested input and output) and to use the scenario to design test cases for the system according to the verification

scenario.

3.1 Design of the verification scenarios

In version 1 of this SVR we present the verification test as applicable to the system described in the SSD. Detailed

verification tests and results including the processor integration will be included in the following versions of the

document.

The scenario for the verification of the system is described in the following points:

 Creation of the pipeline and execution of a processing of Sentinel 1 SLC data to generate Amplitude

products.

 The process is discovered using OpenEO Discovery API

 The execution is triggered using OpenEO Execution API.

 Products to be delivered demonstrating the capability to deliver different products both raster and

vector:

o Sentinel 2 catalogue

o Sentinel 2 L2A True Color Image

o Raster Classification

https://aws.amazon.com/ec2/instance-types/?nc1=h_ls
http://www-max-ics.earthlab.lu/
https://aws.amazon.com/s3/?nc1=h_ls
https://aws.amazon.com/ec2/?nc1=h_ls
https://about.gitlab.com/
http://geoserver.org/

Ref CCI_HRLC_Ph1-SVR

Issue Date Page

1.rev.0 17/04/2020 8

3.2 Design of the verification tests

Scenarios for the verification are taken from the SSD and in particular from the Enterprise Viewpoint as the

interest is to demonstrate the capability of the system to meet user needs and the technical challenges. The

following user are then introduced:

1. User of final products role - it is the user that access the delivery services to visualise the products and

access to them with available interfaces, the use cases are

2. User of processing service role - it is the user that access the available interfaces (API/CLI) to execute a

processing service, the use case is

3. Expert user role - it is the user that access to the available interfaces (API/UI) to deploy a new processing

service and create a pipeline using those available

The following table links the challenges with the users and define the verification test. The numbering of the

tests is explained as follow:

 The first number TEST-1-1 identifies the challenge number as defined in paragraph 2.1 so TEST-1-1 is

related to the Challenge 1

 The second number TEST-1-1 identifies the incremental number of test on the challenge so TEST-1-1 is

the first test of the challenge

Code User Test Name Verification Objective

TEST-1-1

User of

processing

service

OpenEO Process

Discovery API
Verify the availability of OpenEO API for Process

Discovery

TEST-1-2

User of

processing

service

OpenEO Process

Execution API
Verify the availability of OpenEO API for Process

Execution

TEST-1-3

User of

processing

service

Activation of

multiple resources
Verify the activation of multiple resources as requested

by the designed test on a single node execution

TEST-1-4

User of

processing

service

Pipeline execution

monitoring
Verify the monitoring of execution of a pipeline from

the interface

TEST-2-1

Expert user role Pipeline Design
Verifying the capability to design a pipeline of nodes

TEST-2-2
Expert user role Pipeline Run Verifying the capability to run the pipeline and obtain

the final results

TEST-3-1 User of final

product

Metadata Display Verifying the capability to show Metadata type of data

(Vector encoding) as OGC Service and through a Web

Interface

TEST-3-2 User of final

product

Products Display Verifying the capability to show raster data of different

type, specifically Sentinel 2 data (True Color Image) and

a final product classification

Table 2: Organisation of test with respect to users and challenges

Ref CCI_HRLC_Ph1-SVR

Issue Date Page

1.rev.0 17/04/2020 9

3.3 Verification tests

3.3.1 TEST-1.1: OpenEO Process Discovery API

TEST-1.1: OpenEO Process Discovery API

Initial conditions:

1. The OpenEO API is up and running
2. A Process is registered in the system

Test execution procedure:

1. The operator send the OpenEO request according to the specification defined for
discovery of jobs using GET with no: Error! Hyperlink reference not valid. where the url is
masked internally

2. The server responds with a JSON document

Test result:

The requests is executed correctly as shown in the following JSON Snippet

{

 "processes": [{

 "id": "apply",

 "summary": "Perform SAR geocoding on images",

 "description": "”,

 "categories": [

 "Sentinel 1"

],

 "parameters": [{

 "name": "data",

 "description": "image",

 "schema": {

 "type": "object",

 "subtype": "image"

 }

 },

…

3.3.2 TEST-1.2: OpenEO Process Creation API

TEST-1.1: OpenEO Process Creation API

Initial conditions:

1. The OpenEO API is up and running
2. A Process is registered in the system

Ref CCI_HRLC_Ph1-SVR

Issue Date Page

1.rev.0 17/04/2020 10

Test execution procedure:

1. The operator send the OpenEO request according to the specification defined for creation
of batch job: https://localhost/api/0.4/jobs Error! Hyperlink reference not valid. where the
url is masked internally

{

 "title": "NDVI based on Sentinel 2",

 "description": "Perform SAR geocoding on images ",

 "process_graph": {

 "dc": {

 "process_id": "load_collection",

 "arguments": {

 "id": "Sentinel-1",

 "spatial_extent": {

 "west": 16.1,

 "east": 16.6,

 "north": 48.6,

 "south": 47.2

 },

 "temporal_extent": [

 "2018-01-01",

 "2018-02-01"

]

 }

 },

 "sargeocoding": {

 "process_id": "sargeocoding",

 "description": "",

 "arguments": {

 "data": {

 "from_node": "dc"

 },

 "polarization": [

 "All"

]

 }

 },

 "result": true

https://localhost/api/0.4/jobs

Ref CCI_HRLC_Ph1-SVR

Issue Date Page

1.rev.0 17/04/2020 11

 }

}

2. The server responds with a 200 status code sending back a 201 status code with the

following information:

 Location URL of the created resource: ex. https://openeo.org/api/v0.4/jobs/123

 OpenEO-Identifier: ex. 123

Test result:

The request is executed correctly. The process then can be executed sending a POST request to

the created resource: https://openeo.org/api/v0.4/jobs/123/results

3.3.3 TEST-1.3: Activation of multiple resources

TEST-1.3: Activation of multiple resources

Initial conditions:

1. The OpenEO API is up and running

2. AWS API is up and running

Test execution procedure:

1. The user sends a POST request to the API to activate multiple resources

2. The user checks that the response status is “200 OK” and the response body contains the IDs of

activated resources

Test result:

The request is executed correctly as shown in the following screenshot in AWS Console:

https://openeo.org/api/v0.4/jobs/123
https://openeo.org/api/v0.4/jobs/123/results

Ref CCI_HRLC_Ph1-SVR

Issue Date Page

1.rev.0 17/04/2020 12

3.3.4 TEST-1.4.1: Pipeline execution monitoring using Service API

TEST-1.4.1: Pipeline execution monitoring using Service API

Initial conditions:

1. The OpenEO API is up and running

2. The pipeline is executing at least one job

Test execution procedure:

1. The user sends a GET request to the API endpoint /jobs with the running job ID

2. The user checks the “status” field in the JSON response

Test result:

The requests is executed correctly as shown in the following JSON

3.3.5 TEST-1.4.2: Pipeline execution monitoring using Max-ICS logs

TEST-1.4.2: Pipeline execution monitoring using Max-ICS logs

Initial conditions:

1. The Service API is up and running

2. The pipeline is executing at least one job

3. The user is logged in Max-ICS and he is a contributor of the pipeline

Test execution procedure:

1. The user access to the pipeline panel

2. The user clicks access to the pipeline monitoring panel

3. The user clicks on “Logs” tab

4. The user waits that all the nodes of the pipeline log their behavior for the running job ID

Ref CCI_HRLC_Ph1-SVR

Issue Date Page

1.rev.0 17/04/2020 13

Test result:

The request is executed correctly as shown in the following screenshot:

3.3.6 TEST-2.1: Pipeline Design

TEST-2.1: Pipeline Design

Initial conditions:

1. User logged in to Max-ICS
2. User created an empty workspace to design the pipeline on Max-ICS UI

Test execution procedure:

1. The user creates a node of type API by clicking “Add node”

2. The user selects API as the type of the node

Ref CCI_HRLC_Ph1-SVR

Issue Date Page

1.rev.0 17/04/2020 14

3. The user sets the node parameters (CPU, Memory, Autoscaling)

Ref CCI_HRLC_Ph1-SVR

Issue Date Page

1.rev.0 17/04/2020 15

4. The user saves the node by clicking the save button

5. The user creates a node of type Classical Treatment

Ref CCI_HRLC_Ph1-SVR

Issue Date Page

1.rev.0 17/04/2020 16

6. The user sets the node parameters (CPU, Memory, Autoscaling)

7. The user saves the node by clicking the save button

8. The user creates a “flow” object by clicking “Add flow”

9. The user links the nodes together by using a “flow” object

Ref CCI_HRLC_Ph1-SVR

Issue Date Page

1.rev.0 17/04/2020 17

Test result:

1. A git repository is automatically created for “New node”

2. A git repository is automatically created for “New node -2”

3. The “New node” is registered into a Service Registry alongside with its output queue

4. The “New node -2” is registered into a Service Registry alongside with its input queue

5. A “New node” empty instance is deployed on the infrastructure

6. A “New node-2” empty instance is deployed on the infrastructure

Ref CCI_HRLC_Ph1-SVR

Issue Date Page

1.rev.0 17/04/2020 18

3.3.7 TEST-2.2: Pipeline Run

TEST-2.2: Pipeline Run

Initial conditions:

1. The user has created a pipeline on the Max-ICS PaaS
2. The user has pushed the code to each node of the pipeline to handle requests
3. The nodes code includes logs of the process status to the stdout
4. The pipeline with its nodes is up and running and reachable through internet

Test execution procedure:

1. The user sends a request to the pipeline API node with one of the following utility:
1. Curl
2. Postman
3. Python requests
4. Swagger Test UI

Ref CCI_HRLC_Ph1-SVR

Issue Date Page

1.rev.0 17/04/2020 19

2. The user access the Max-ICS logs panel

Test result:

The logs show that the request has been handled

3.3.8 TEST-3-1 Metadata Display

TEST-3.1: Metadata Display

Initial conditions:

1. The user has entered in the Web Interface with a user/password

Test execution procedure:

1. The user selects the map or create a new map

Ref CCI_HRLC_Ph1-SVR

Issue Date Page

1.rev.0 17/04/2020 20

2. The user uses the top right tool to add a WMS Land Cover layer from the catalogue by
selecting the WMS “Sentinel 2 DataCube”

3. The user load on the map a WMS of a sentinel scene (True Color Image) of choice and a
second image for the same Tile

4. The user can visualize the images on the map

Test execution procedure:

1. The user uses the Catalog function to query the Sentinel 2 catalogue

2. The user can select multiple dates from a Sentinel 2 tile and add them to the map to check
for original data. In this case, in the following screenshot, an example of True Color images
is shown

3.

Ref CCI_HRLC_Ph1-SVR

Issue Date Page

1.rev.0 17/04/2020 21

3.3.9 TEST-3-2 Products Display

TEST-3.2: Product Display

Initial conditions:

2. The user has entered in the Web Interface with a user/password

Test execution procedure:

1. The user selects the map or create a new map
2. The user uses the top right tool to add a WMS Land Cover layer from the catalogue by

selecting the WMS “CCI HRLC Test”
3. The user load on the map a WMS Land Cover layer
4. The user load on the map a WMS Change Map layer

Test result:

1. The following screenshot show an example of land-cover classification using LCCS based

legend

Ref CCI_HRLC_Ph1-SVR

Issue Date Page

1.rev.0 17/04/2020 22

2. The following screenshot show an example of transition map used to visualise different

transition of interest

