CCI+ PHASE 1 – NEW ECVS
PERMAFROST

D5.1 CLIMATE ASSESSMENT REPORT (CAR)

VERSION 3.1

19 JANUARY 2022

PREPARED BY
Document Status Sheet

<table>
<thead>
<tr>
<th>Issue</th>
<th>Date</th>
<th>Details</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>30.10.2019</td>
<td>first version, year 1</td>
<td>I.Nitze, G.Grosse, H.Matthes, H.Wieczorek, A.Bartsch, B.Heim</td>
</tr>
<tr>
<td>2.0</td>
<td>30.09.2020</td>
<td>second version: update of service case status and dissemination activities representing year 2</td>
<td>I.Nitze, G.Grosse, H.Matthes, H.Wieczorek, A.Bartsch, B.Heim</td>
</tr>
<tr>
<td>2.1</td>
<td>16.10.2020</td>
<td>Inclusion of IPA (represented through Isabelle Gärtner-Roer) evaluation</td>
<td>A. Bartsch</td>
</tr>
<tr>
<td>3.0</td>
<td>30.09.2021</td>
<td>update of service case status and dissemination activities representing year 3</td>
<td>I.Nitze, H.Matthes, H.Wieczorek, S. Lisovksi, B.Heim, A.Bartsch</td>
</tr>
<tr>
<td>3.1</td>
<td>19.01.2022</td>
<td>Update (name of cci dataset) in Table 1</td>
<td>A. Bartsch</td>
</tr>
</tbody>
</table>

Author team

Annett Bartsch, B.GEOS
Guido Grosse, AWI
Ingmar Nitze, AWI
Birgit Heim, AWI
Mareike Wieczorek, AWI
Tazio Strozzi, GAMMA
Heidrun Matthes, AWI
Simeon Lisovski, AWI

ESA Technical Officer: Frank Martin Seifert

EUROPEAN SPACE AGENCY CONTRACT REPORT
The work described in this report was done under ESA contract. Responsibility for the contents resides in the authors or organizations that prepared it.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive summary</td>
<td>4</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>5</td>
</tr>
<tr>
<td>1.1 Purpose of the document</td>
<td>5</td>
</tr>
<tr>
<td>1.2 Structure of the document</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Applicable documents</td>
<td>5</td>
</tr>
<tr>
<td>1.4 Reference Documents</td>
<td>5</td>
</tr>
<tr>
<td>1.5 Bibliography</td>
<td>6</td>
</tr>
<tr>
<td>1.6 Acronyms</td>
<td>6</td>
</tr>
<tr>
<td>1.7 Glossary</td>
<td>6</td>
</tr>
<tr>
<td>2 Products generated by Permafrost_cci</td>
<td>9</td>
</tr>
<tr>
<td>3 Assessment of products and other feedback</td>
<td>9</td>
</tr>
<tr>
<td>3.1 Introduction and Rationale</td>
<td>9</td>
</tr>
<tr>
<td>3.2 Use Case Study 1 - Climate modelling</td>
<td>10</td>
</tr>
<tr>
<td>3.3 Use Case Study 2 - ALT, PFR and ground temperature trends: comparison to landcover trends</td>
<td>12</td>
</tr>
<tr>
<td>3.4 Use Case Study 3 - Ground temperature trends: comparison to coastal erosion</td>
<td>18</td>
</tr>
<tr>
<td>3.5 Further documented use</td>
<td>19</td>
</tr>
<tr>
<td>3.6 Permafrost_cci utility based on evaluation results</td>
<td>20</td>
</tr>
<tr>
<td>4 Progress in regard to user requirements</td>
<td>24</td>
</tr>
<tr>
<td>4.1 Algorithm selection</td>
<td>24</td>
</tr>
<tr>
<td>4.2 Product specification</td>
<td>24</td>
</tr>
<tr>
<td>5 Publications</td>
<td>26</td>
</tr>
<tr>
<td>5.1 Publications list</td>
<td>26</td>
</tr>
<tr>
<td>5.2 News stories</td>
<td>28</td>
</tr>
<tr>
<td>5.3 First user workshop</td>
<td>29</td>
</tr>
<tr>
<td>5.4 Outreach activities</td>
<td>30</td>
</tr>
<tr>
<td>5.5 Presentations at scientific conferences</td>
<td>30</td>
</tr>
<tr>
<td>5.6 Specific tasks</td>
<td>33</td>
</tr>
<tr>
<td>5.7 Student teaching and courses</td>
<td>34</td>
</tr>
<tr>
<td>6 References</td>
<td>34</td>
</tr>
<tr>
<td>6.1 Bibliography</td>
<td>34</td>
</tr>
<tr>
<td>6.2 Acronyms</td>
<td>38</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY

Within the European Space Agency (ESA), the Climate Change Initiative (CCI) is a global monitoring program, which aims to provide long-term satellite-based products to serve the climate modelling and climate user community. Permafrost has been selected as one of the Essential Climate Variables (ECVs) which are elaborated during Phase 1 of CCI+ (2018-2021).

There is currently no consistent global Earth Observation-based mapping of the parameters permafrost temperature and active layer thickness as required by GCOS based on Earth Observation records. Permafrost_cci will for the first time provide such information for different epochs and meet the requirements for the production of a climate data record.

The Climate Assessment Report (CAR) summarizes current activities within Permafrost_cci with regard to user requirements defined by the climate modelling user community. User feedback through a workshop, three specific science use cases and a utility assessment are presented in this document.

Use case #1 summaries usage by a regional climate model (HIRHAM). The changing boundary parameters for land has significantly impacted soil temperatures in the model runs. Using all boundary parameters derived from Permafrost_cci and Landcover_cci improved not only the representation of soil temperature but also the representation of air temperature.

For use case #2, a comparison of Landsat derived trends separated between fore and non-fire affected areas has been added in this version. Particularly increasing variance within burned areas, with locally strong increase in ALT, may result in triggering further permafrost disturbances. However, more detailed analysis will be conducted to verify/falsify this hypothesis.

A third use case covers a joint study with H2020 Nunataryuk which has a focus on coastal erosion in the Arctic. Derived rates based on Landsat and PALSAR suggest an increase of erosion at study sites in recent years, but uncertainties are also high. However, CRDPv0 ground temperatures at 2 m depth have also been increasing at all these sites between 2003-2017.

Based in result of the PVIR, Permafrost_cci GTD and PFR products for the Northern hemisphere are considered to be most reliable in the permafrost temperature range with GTD < 1°C and in PFR >50% as well as PFR <14% is reliable as non-permafrost.

Recommendations from the 1st user workshop included an increased temporal as well as vertical resolution, specifically regarding climate modelling applications.
1 INTRODUCTION

1.1 Purpose of the document

This document provides the user requirements of climate science and climate services for ECV products of the Permafrost_cci project. The ultimate objective of Permafrost_cci is to develop and deliver permafrost maps as ECV products, primarily derived from satellite-based measurements.

1.2 Structure of the document

The first part of this document provides information on related documents and general permafrost related information. The second part includes information on the products under development.

1.3 Applicable documents

1.4 Reference Documents

1.5 Bibliography

A complete bibliographic list that supports arguments or statements made within the current document is provided in Section 6.1.

1.6 Acronyms

A list of acronyms is provided in section 6.2.

1.7 Glossary

The list below provides a selection of terms relevant for the parameters addressed in Permafrost_cci [RD-1]. A comprehensive glossary is available as part of the Product Specifications Document [RD-2].

active-layer thickness

The thickness of the layer of the ground that is subject to annual thawing and freezing in areas underlain by permafrost.

The thickness of the active layer depends on such factors as the ambient air temperature, vegetation, drainage, soil or rock type and total water content, snowcover, and degree and orientation of slope.

As a rule, the active layer is thin in the High Arctic (it can be less than 15 cm) and becomes thicker farther south (1 m or more).

The thickness of the active layer can vary from year to year, primarily due to variations in the mean annual air temperature, distribution of soil moisture, and snowcover.

The thickness of the active layer includes the uppermost part of the permafrost wherever either the salinity or clay content of the permafrost allows it to thaw and refreeze annually, even though the material remains cryotic (T < 0°C).

Use of the term "depth to permafrost" as a synonym for the thickness of the active layer is misleading, especially in areas where the active layer is separated from the permafrost by a residual thaw layer, that is, by a thawed or noncryotic (T > 0°C) layer of ground.

REFERENCES: Muller, 1943; Williams, 1965; van Everdingen, 1985

continuous permafrost

Permafrost occurring everywhere beneath the exposed land surface throughout a geographic region with the exception of widely scattered sites, such as newly deposited unconsolidated sediments, where the climate has just begun to impose its influence on the thermal regime of the ground, causing the development of continuous permafrost.

For practical purposes, the existence of small taliks within continuous permafrost has to be recognized. The term, therefore, generally refers to areas where more than 90 percent of the ground surface is underlain by permafrost.
discontinuous permafrost

Permafrost occurring in some areas beneath the exposed land surface throughout a geographic region where other areas are free of permafrost. Discontinuous permafrost occurs between the continuous permafrost zone and the southern latitudinal limit of permafrost in lowlands. Depending on the scale of mapping, several subzones can often be distinguished, based on the percentage (or fraction) of the land surface underlain by permafrost, as shown in the following table.

<table>
<thead>
<tr>
<th>Permafrost</th>
<th>English usage</th>
<th>Russian Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extensive</td>
<td>65-90%</td>
<td>Massive Island</td>
</tr>
<tr>
<td>Intermediate</td>
<td>35-65%</td>
<td>Island</td>
</tr>
<tr>
<td>Sporadic</td>
<td>10-35%</td>
<td>Sporadic</td>
</tr>
<tr>
<td>Isolated Patches</td>
<td>0-10%</td>
<td>-</td>
</tr>
</tbody>
</table>

SYNONYMS: (not recommended) insular permafrost; island permafrost; scattered permafrost.

mean annual ground temperature (MAGT)

Mean annual temperature of the ground at a particular depth. The mean annual temperature of the ground usually increases with depth below the surface. In some northern areas, however, it is not uncommon to find that the mean annual ground temperature decreases in the upper 50 to 100 metres below the ground surface as a result of past changes in surface and climate conditions. Below that depth, it will increase as a result of the geothermal heat flux from the interior of the earth. The mean annual ground temperature at the depth of zero annual amplitude is often used to assess the thermal regime of the ground at various locations. [RD-1]

permafrost

Ground (soil or rock and included ice and organic material) that remains at or below 0°C for at least two consecutive years.

Permafrost is synonymous with perennially cryotic ground: it is defined on the basis of temperature. It is not necessarily frozen, because the freezing point of the included water may be depressed several degrees below 0°C; moisture in the form of water or ice may or may not be present. In other words, whereas all perennially frozen ground is permafrost, not all permafrost is perennially frozen. Permafrost should not be regarded as permanent, because natural or man-made changes in the climate or terrain may cause the temperature of the ground to rise above 0°C. Permafrost includes perennial ground ice, but not glacier ice or icings, or bodies of surface water with temperatures perennially below 0°C; it does include man-made perennially frozen ground around or below chilled pipe-lines, hockey arenas, etc.

Russian usage requires the continuous existence of temperatures below 0°C for at least three years, and also the presence of at least some ice.
SYNONYMS: perennially frozen ground, perennially cryotic ground and (not recommended) biennially frozen ground, climafoalst, cryic layer, permanently frozen ground.

2 PRODUCTS GENERATED BY PERMAFROST_CCI

Permafrost_cci is establishing Earth Observation (EO) based products for the permafrost ECV spanning the period from 1997 to 2019. Since ground temperature and seasonal thaw depth cannot be directly observed with space-borne sensors, a variety of satellite and reanalysis data are combined in a ground thermal model to infer these subsurface parameters. The algorithm uses remotely sensed data sets of Land Surface Temperature (MODIS LST/ESA LST CCI) and landcover (ESA Landcover CCI) to drive the transient permafrost model CryoGrid-3 (CryoGrid-2 in Obu et al., 2019), which yields thaw depth and ground temperature at various depths, while ground temperature then forms the basis for deriving permafrost fraction for a specified location and time.

The version Permafrost Climate Research Data Package (CRDP v2) Version 3.0 of the Climate Research Data Package [RD-3] consists of time series covering the years from 1997 and 2019 for
1. mean annual ground temperature in different depths,
2. active layer thickness (maximum annual active layer depth), and
3. permafrost fraction derived from ground temperature.

3 ASSESSMENT OF PRODUCTS AND OTHER FEEDBACK

3.1 Introduction and Rationale

Warming of the Cryosphere is already exceeding the global average temperature increase and models project further strong warming for these regions (IPCC 2021, IPCC, 2019; IPCC, 2013). Permafrost is an important component of the Cryosphere and defined as ground that remains frozen for at least two consecutive years (Van Everdingen, 1998). Ongoing permafrost warming (Romanovsky et al., 2010; Biskaborn et al., 2019) and near-surface thawing in permafrost regions, associated with rising air temperatures, are considered to reinforce warming of the atmosphere through the partial conversion of the large permafrost soil organic carbon pool into greenhouse gases, a process termed “permafrost carbon feedback” (Schuur et al., 2015). A further challenge for monitoring the impacts of permafrost thaw dynamics is represented by rapid thaw processes that may mobilize a significant amount of carbon over short time spans of years to decades (Turetsky et al., 2019). Worldwide monitoring of permafrost is therefore essential to understand and assess the feedbacks between climate change and permafrost thaw and their impact on the Earth’s climate system.

The recently published thorough analysis of global permafrost temperatures by the Global Terrestrial Network for Permafrost (GTN-P) and the International Permafrost Association (IPA) demonstrated that permafrost is warming at a global scale (Biskaborn et al., 2019). This study showed that during the reference decade (2007 to 2016) ground temperature near the depth of zero annual amplitude in the continuous permafrost zone increased by 0.39 ± 0.15 °C. Over the same period, discontinuous permafrost warmed by 0.20 ± 0.10 °C. Permafrost in mountains warmed by 0.19 ± 0.05 °C and in Antarctica by 0.37 ± 0.10 °C. Globally, permafrost temperature increased by 0.29 ± 0.12 °C.

However, despite the great efforts by the GTN-P/IPA in managing qualified long-term permafrost observations at a global scale, the observation points are very scarce and clustered. For example, Biskaborn et al. (2015) pointed out that GTN-P permafrost boreholes and active layer measurement sites are clustered along transportation corridors in areas with developed infrastructure. They further
demonstrated that the distribution of GTN-P sites is concentrated within zones where projected temperature rise is smaller while a much lower number of sites are located within Arctic areas where climate models project very large temperature increases. There is currently no globally consistent and spatially continuous mapping of the ECV parameters permafrost temperature and active layer thickness. IPA has therefore recently established a permafrost mapping group (action group ‘Overseeing the production of the next generation of IPA global permafrost mapping product and service’), which seeks to assess different permafrost mapping initiatives for the compilation of a new global database for permafrost properties. Permafrost_cci contributes to this IPA activity by providing satellite-driven permafrost datasets. The Permafrost_cci products are further expected to aid understanding of permafrost dynamics by satellite-observed land surface changes across large regions, in particular disturbances along latitudinal gradients as well as degradation associated with permafrost coastal processes. The following sections provide a first assessment of the CRDPv0, v1 or v2 by the climate research group with respect to the so far identified applications. Three user case studies are currently in process to cover a broad range of applications demonstrating the value and impact of CCI+ Permafrost products for different aspects of climate research. A utility assessment based on the PVIR is provided in addition.

3.2 Use Case Study 1 - Climate modelling

Models used for future projections of our climate have increased in complexity during the last years, going from General Circulation Models that mainly represented the atmosphere to fully coupled Earth System Models that try to represent all parts of the climate system, including biosphere, ocean, sea ice and the cryosphere. The focus of further developing those models is on a better representation of the processes relevant for the climate system, to allow better projections of possible futures. The focus of our climate studies is on the Arctic, since it is one of the key areas of global warming. Here, we apply the Team Climate Model HIRHAM, which is a state-of-the-art atmospheric regional climate model (Christensen et al., 2007), for the circum-Arctic domain. The original land-surface-soil scheme of the model has been replaced by the advanced land model CLM4 (Community Land Model version 4) (Matthes et al., 2017) to improve descriptions of vegetation and soil processes, and especially to improve the representation of permafrost-related processes. With this improved process understanding and representation in the model, we faced a new challenge of supplying the model with accurate boundary parameters, such as adequate soil stratigraphy information, distribution of organic matter and a good description of the vegetation. We used the CCI+ Landcover product to create vegetation maps as they are used by the model, converting the land cover classes into plant functional types (pfts), which can be interpreted as classes of plants with similar phenology. Those maps were used to replace existing maps which were based on MODIS data. In addition, the CCI+ Permafrost stratigraphy product was used to replace the existing mineral and organic soil maps based on the FAO soil map of the world.

In order to assess the impact of the boundary parameters for vegetation and soil in the coupled model HIRHAM-CLM on representation of the cryosphere and atmosphere, we conducted nine different model runs and evaluated them against in situ measurements and remote sensing based data products from
CCI+ Permafrost. The model was run from 1979-2019 with lower and lateral boundary forcing from the ERA5 reanalysis. A description of the differences in the model runs can be found in Table 1.

Table 1: Overview of the different experiment designs and naming convention for the model runs

<table>
<thead>
<tr>
<th></th>
<th>ctrl (pM_sFF)</th>
<th>ini2018</th>
<th>pE_sFF</th>
<th>pM_sFO</th>
<th>pM_sOF</th>
<th>pM_SOO</th>
<th>pE_sFO</th>
<th>pE_sOF</th>
<th>pE_sOO</th>
</tr>
</thead>
<tbody>
<tr>
<td>vegetation</td>
<td>MODIS</td>
<td>MODIS</td>
<td>Landcover_cci</td>
<td>MODIS</td>
<td>MODIS</td>
<td>MODIS</td>
<td>Landcover_cci</td>
<td>Landcover_cci</td>
<td>Landcover_cci</td>
</tr>
<tr>
<td>mineral soil</td>
<td>FAO</td>
<td>FAO</td>
<td>FAO</td>
<td>Obu et al</td>
<td>Obu et al</td>
<td>FAO</td>
<td>Obu et al</td>
<td>Obu et al</td>
<td>Obu et al</td>
</tr>
<tr>
<td>organic soil</td>
<td>FAO</td>
<td>FAO</td>
<td>Obu et al</td>
<td>FAO</td>
<td>Obu et al</td>
<td>FAO</td>
<td>Obu et al</td>
<td>FAO</td>
<td>Obu et al</td>
</tr>
</tbody>
</table>

In a first step, we made an assessment of cryosphere variables. CCI+ Permafrost provides mean annual ground temperature (MAGT) at 1m depth, which was average over the available time period (2003-2019) and compared to model output (see Figure 1). Comparison of the control run pM_sFF with the CCI+ Permafrost result shows overestimation of MAGT in high mountain and coastal areas of up to 6K, and an underestimation in western Eurasia and lowland regions of Siberia of up to -6K. Changing the initial state of the model (ini2018), the pft distribution (pE_sFF) and the mineral soil parameters (pM_sOF, pE_sOF) has only small impacts on the bias, the general structure remains the same. Changing the organic soil parameters however has a general warming impact on modelled MAGT. Existing warm biases are intensified, the cold biases over the Eurasian Arctic disappear, the cold strong cold biases over Siberia become small warm biases.

In a second step, we examined atmosphere conditions. For evaluation with air temperature data from more than 300 WMO stations around the Arctic are used. We looked into monthly mean temperature averaged over 1979-2019. Biases and root mean square errors are shown in Table 1. All model runs with no changes of organic matter have similar root mean square errors averaged over the year as the reference run. On the contrary, runs with changed organic matter have improved root mean square errors in the annual average, particularly the summer and autumn months are improved.

In summary, changing boundary parameters for land has significantly impacted soil temperatures in our model runs. Using all boundary parameters derived from CCI Landcover and CCI Permafrost improved not only the representation of soil temperature but also the representation of air temperature.

Table 2: Comparison of climatological monthly mean 2m air temperature from model runs and WMO meteorological station data.
3.3 Use Case Study 2 - ALT, PFR and ground temperature trends: comparison to landcover trends

The Science use case 2 in Permafrost_cci focuses on the cross-analysis of the existing ESA GlobPermafrost Hot Spot Regions of Permafrost Change (HRPC) product with output from the Permafrost_cci transient permafrost model. The HRPC contains information on Landsat-based trends of landscape disturbances, which may trigger changes in the ground thermal regime or become enhanced by regional to local changes in ground thermal regime.

We hypothesize that climatic fluctuations directly impact permafrost properties and ground thermal regime as measured by active layer thickness (ALT) or permafrost/ground temperature. This in turn will likely impact the initiation and enhancement of permafrost region disturbances (PRD).

Based on this hypothesis we spatially compared the HRPC data products (Nitze et al., 2018 a,b) with the dynamic annual (1997-2018) ALT and PFR (permafrost probability) as well as static permafrost temperature Permafrost CCI+ data products (Obu et al, 2018) for all four core transects of the HRPC data analysis in western Siberia (T1), eastern Siberia (T2), Alaska (T3), and eastern Canada (T4).

Lake drainage - ground temperature relationship
A first cross-analysis between current Permafrost_cci products and GlobPermafrost HRPC disturbance trends focused on the analysis of the spatial relationship between lake drainage and mean annual ground temperature. Lake changes were quantified using trends of multispectral indices of Landsat-time series data from 1999 through 2014 (Nitze et al., 2017, 2018). This includes net lake changes of each individual lake (<1ha) within the transects, as well as the gross increase and decrease (individual fractions of lake area gain and loss). Furthermore, we calculated lake shore change rates in cm per year for each individual lake (n > 600,000).

Lakes in permafrost often exhibit a dynamic behaviour, where lakes often expand over time and ultimately drain once they reach a drainage gradient or permafrost destabilizes. Lake drainage can occur in different magnitudes, where lakes can drain completely or only partially.

Figure 2 shows the relation between net lake area loss of shrinking lakes (negative net lake change) from the HRPC lake change datasets (Nitze et al., 2018b) for all 4 analyzed continental scale permafrost transects. It reveals distinct clusters of lake area loss intensity and mean annual ground-temperature MAGT distributions. All sites show a bimodal distribution of lake area loss, but with different magnitude. The first cluster is typically located at <20 % lake area loss (net change), which is caused by subtle lake fluctuations, data uncertainty, partial lake drainage or a combination of these factors. Lakes with a lake area increase were kept from the analysis. This cluster is the most dominant in T4 (Eastern Canada), which is characterized by mostly stable lake areas across the transect region and thus the permafrost temperature gradient. The second cluster is typically close to 100%, which translates to complete lake drainage. This second cluster is more common in Transects T1-T3, which are more dominated by frozen ice-rich sediments rather than glacially-carved bedrock like T4. The relation of these drainage clusters to MAGT is diverse among the different transects. While T2 is characterized by cold MAGT of predominantly <-4 °C, complete lake drainage events clustered at around -6 °C. In T1 and T3, which have very strong lake dynamics (Nitze et al., 2018a), the complete drainage cluster is close to 0 °C, which may indicate the influence of landscape-scale permafrost degradation and widespread surface permafrost loss in the affected regions. However, regional conditions and differences should be considered and more detailed local to regional-scale analysis will reveal further links between ground temperature, other environmental factors, and the dynamics of permafrost region disturbances such as lake drainages.
Figure 2: 2D density plots of lake area loss % (per lake) vs. MAGT. Darker colors represent a higher density and thus more lake drainage events. Upper left: T1 Western Siberia; upper right: T2 Eastern Siberia; lower left: T3 Alaska; lower right: T4 Eastern Canada.
Active layer thickness dynamics
The active layer trends show clear differences between the different transect regions (Figure 3). Transects T1 and T3 show the largest increase in mean ALT, which correlates with the observed lake drainage dynamics. Larger regions within both transects were particularly affected by lake drainage within the past two decades (Nitze et al., 2017, 2018, 2020). Transect T2 was much less affected by ALT deepening, while Transect T4 has a flat trend, although with strong annual fluctuation.

Figure 4: Spatial comparison of (left) Lake area change (1999-2014) from HRPC Datasets and (right) increase in Active Layer Thickness (ALT) trends in % from annual CCI ALT dataset in T3 Alaska.
Wildfire - ALT interactions

Wildfires are a widespread disturbance in the boreal, mostly semi-arid continental permafrost regions such as Central Yakutia, interior Alaska or NW Canada. Two of these regions are located within the HRPC transects T2 and T3. We analyzed the ALT trajectories from 1999 until 2018 within burned areas, non-burned areas and individual fire scars. For this purpose we calculated the mean and standard deviations of annual ALT within the burn scars. Furthermore we applied a linear model to compare the change (slope) in mean ALT and its standard deviation for each region and burn status.

Table 3: Change in mean and standard deviation of Active Layer Thickness in burned and non-burned areas across all 4 transects.

<table>
<thead>
<tr>
<th>Region</th>
<th>Fire</th>
<th></th>
<th>No Fire</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std</td>
<td>Mean</td>
<td>Std</td>
</tr>
<tr>
<td>T1</td>
<td>+40.10</td>
<td>+102.23</td>
<td>+49.11</td>
<td>+47.44</td>
</tr>
<tr>
<td>T2</td>
<td>+15.45</td>
<td>+21.66</td>
<td>+13.59</td>
<td>+10.11</td>
</tr>
<tr>
<td>T3</td>
<td>+30.05</td>
<td>+95.73</td>
<td>+29.74</td>
<td>+59.37</td>
</tr>
<tr>
<td>T4</td>
<td>+30.95</td>
<td>+56.63</td>
<td>+0.86</td>
<td>+34.33</td>
</tr>
</tbody>
</table>

Individual Fires

On an individual burn scar level we can directly identify the impact of wildfires. Figure 5 shows the mean (line) and standard deviation (shading) of ALT for the Anaktuvuk River fire scar area from 1999 through 2018. The Anaktuvuk tundra fire in northern Alaska (Jones et al, 2009) burned around 1000 km² (100,000 ha) tundra, partially underlain by ice-rich permafrost, in late summer 2007. Before the large fire in 2007, the mean ALT fluctuated rather strongly (mean ALT 0.53-0.75), depending on annual weather conditions. However, The variance within the analysed site was very low which indicates a rather homogeneous ALT. After the intense tundra fire mean ALT increased to deeper depths (0.7-0.8 m). At the same time the variance of ALT increased markedly within the burned region.

Figure 5: Mean (line), standard deviation (shading) and trend of mean (orange dashed line) of modelled active layer thickness (ALT) within the Anaktuvuk fire scar in northern Alaska. Burn date (2007) indicated with a red line.
In all sites, ALT was larger for burned sites than for non-burned sites, which can be expected as wildfires predominantly occur in warmer, forested boreal sites. However, the trajectories of ALT exhibit a different behaviour. In all transects T1-T4, mean ALT increased within burned areas (+15-40%), but also in non-burned areas (+14-49%), except T4 (+1%), with similar magnitudes between burned and non-burned areas (Table 3). In comparison, variance of ALT increased in burned sites within all transects increased much stronger than in non-burned areas, even (almost) doubling in standard deviation.

Although the impact of wildfire on ALT seems to be much stronger in T4, the impact on ground stability may be much weaker than in the other regions, due to primarily underlying bedrock. We hypothesize a much stronger effect of increasing ALT in e.g. ice-rich permafrost in Alaska (T3) or eastern Siberia (T2). Particularly increasing variance within burned areas, with locally strong increase in ALT, may result in triggering further permafrost disturbances. However, more detailed analysis will be conducted to verify/falsify this hypothesis.

Figure 6: Mean (line), standard deviation (shading) and trend of mean (orange dashed line) of modelled active layer thickness (ALT) in burned and unburned regions in Transect T1 Western Siberia.

Figure 7: Mean (line), standard deviation (shading) and trend of mean (orange dashed line) of modelled active layer thickness (ALT) in burned and unburned regions in Transect T2 Eastern Siberia.
3.4 Use Case Study 3 - Ground temperature trends: comparison to coastal erosion

The overall strategy of the HORIZON2020 Nunataryuk project (2017-2022) is to bring together high-ranking European and international specialists of the Arctic coast, including natural scientists and the key European socio-economic science groups, to address challenges in a transdisciplinary way. The project is user-driven, directly addressing the concerns of local and global stakeholders with regards to permafrost thaw in coastal areas of the Arctic. Permafrost thaw is the core focus of Nunataryuk and is also used as the common thread for consultations with community representatives and other stakeholders at the local and global level. Time series as developed by Permafrost_cci are therefore of high value to the project. They are utilized as part of scenario building workshops, stakeholder communication as well as to interpret natural science results of the project. The latter overlaps with case study 3. CRDPv0 (2002-2017 records) already provided valuable information (Bartsch et al. 2020). In order to assess SAR applicability for coastal erosion quantification, data acquired at three different wavelengths (X-, C-, L-band; TerraSAR-X, Sentinel-1, ALOS PALSAR 1/2) have been investigated. Four regions which feature high erosion rates have been selected. All three wavelengths have been investigated for Kay Point (Canadian Beaufort Sea Coast). C- and L-band have been studied at all sites, including Herschel Island (Canadian Beaufort Sea Coast), Varandai (Barents Sea Coast, Russia), and Bykovsky Peninsula (Laptev Sea coast, Russia). Erosion rates have been derived for a one-year period (2017-2018) and in the case
of L-band also over 11 years (2007-2018). The Landsat trend product (see case study 2) has been in addition assessed for long-term trend retrieval. Derived retreat rates agree among the datasources /SAR and Landsat trends) and with rates available from other data sources. The derived rates suggest an increase of erosion at all four sites in recent years (Figure 10), but uncertainties are also high. However, CRDPv0 ground temperatures at 2 m depth have also been increasing at all these sites between 2003-2017.

![Figure 10: Erosion rate retrieval summary from Bartsch et al. (2020). Most sites show increased recent rates (left) as well as increasing ground temperatures (right, source CRDPv0).](image)

3.5 Further documented use

Permafrost_cci active layer thickness

GlobPermafrost Permafrost extent use examples

Horizon2020 project Nunataryuk (GRID Arendal): Foldable map of permafrost around the world https://www.grida.no/news/13

Climate modelling:

3.6 Permafrost_cci utility based on evaluation results

This science case study is the utility assessment of the Permafrost_cci ECV products. The independent validation is carried out with strong support of the user community, with in situ measurements characterised by community-wide management best practises with open data access and a collaborative user environment within an international framework: WMO and GCOS delegated the global monitoring of the ECV Permafrost to the Global Terrestrial Network for Permafrost (GTN-P) that is managed by the International Permafrost Association (IPA). GTN-P/IPA established the Thermal State of Permafrost Monitoring (TSP) for permafrost temperature and the Circumpolar Active Layer Monitoring program (CALM) for active layer thickness monitoring. The national-wide Russian meteorological monitoring network ROSHYDROMET additionally provides long-term ground temperature records close to meteorological stations. GTN-P and ROSHYDROMET time series and data collections from additional networks provide reference data sets, however no easy-to-use or readily available time-series depth data that are data-fit for validation. We assembled standardised reference data from 1997 to 2019 spanning permafrost regions from Scandinavia to higher latitude permafrost and all altitude ranges from lowland to mountain permafrost across a wide range of latitudes, altitudes, climate zones, land cover, and lithologies.

Permafrost_cci CRDPv2 provides 1 km pixel resolution ECV products on mean annual ground temperature (MAGT) at discrete ground depths (product name GTD), Active Layer Thickness (product name ALT) and Permafrost Fraction (product name PFR). Permafrost_cci GTD, ALT and PFR time series from 1997 to 2019 come with an annual resolution. The match-ups were executed using a pixel-based approach. Permafrost_cci GTD is provided in 0,1,2,5, and 10 m depth and depth-interpolated to fit the depths of the extensive in situ data set. The match-up data is standardized but still contains a large variability of match-up pairs in time, region, and reference depths.

Permafrost_cci GTD match-up evaluation between simulated Permafrost_cci and in situ measurements showed the following performance characteristics: Overall, the simulation dataset with n = 14,107 match-up pairs in time and depth from 354 sites had a median MAGT bias of -1.12 °C. 4,672 Match-up
pairs from 234 in situ measurements sites confined to MAGT < 1°C and thus from reliable permafrost sites showed a much better performance with a median bias of 0.2°C compared to the full dataset including in situ MAGT >= 1°C along the southern boundary of the discontinuous and sporadic permafrost zone. A relatively large proportion of residuals >95% quantile were located across Alaska, specifically in the boreal regions.

As a consequence of the cold bias in the warm temperature range, the binary match-up of ‘permafrost’ versus ‘no permafrost’ for Permafrost_cci PFR versus in situ MAGT ranges shows that PFR in the grid cell is overestimated compared to in situ-derived ‘no permafrost’ and MAGT ≤0.5 °C. Permafrost_cci PFR in the grid cell >0% occurs together with a wide range of ‘warm’ in situ MAGT >0 °C. Overall, the majority of match-up pairs (69.9%) were in agreement between the in-situ proxy and the Permafrost_cci simulation. Notably, the 100% and the 0% PFR had high percentage of agreement, with 97.04% and 91.03% match respectively. Geographically, most mismatches were located in the Eurasian southern boundary of the permafrost extent. The high agreement in the 100% and 0% Permafrost_cci PFR groups was stable across years. In general, the agreement in the <100% and >0% groups increased towards the end of the time series (2019).

Figure 13 Location of residuals > 95% quantile (left) and < 5% quantile (right). Color of circles represents the temperature subset and size of the circle represents the number of samples at the particular location.
PERMOS investigations in the Swiss Alps showed in contrast a warm model bias of Permafrost cci MAGT. Therefore, the extent of permafrost simulated by Permafrost cci PFR was too restrictive. In the Swiss Alps, the lower limit of permafrost is usually found around 2600 m a.s.l. ±200 m whereas for Permafrost cci PFR the lower limit is found around 3000 m a.s.l.. Furthermore, the vast majority of inventoried ESA GlobPermafrost slope movement products are located outside of the simulated Permafrost cci permafrost extent area and only six amongst the 12 PERMOS permafrost borehole sites were located within the simulated Permafrost cci PFR permafrost extent area. Positively, although the absolute values are significantly different, both, the measured and the simulated MAGT, show the warming trend over the period 1997-2019.

For the Permafrost cci ALT match-up analyses, we were restrictive with focus on high-latitude to mid-latitude permafrost regions related to the Permafrost cci model parameterization, thereby excluding all sites in Mongolia, Central Asia, on the Tibetan Plateau (China) due to their different snow and subground regimes. Permafrost cci ALT performance for in situ ALT with match-up pairs from China and Mongolia excluded is characterised by a median bias of 3 cm (95% CI: -11 to 123 cm). Differences in trends over time between Permafrost cci and in-situ measurements are larger compared to the MAGT product: only the majority of 58% of Permafrost cci ALT trends over time match the in-situ trends, however, the ALT match-up sample size is also considerably smaller. Large residuals >1 m are obvious in the warmer permafrost zones in forested regions of Alaska, Canada and Central Siberia (Permafrost cci negative bias with simulated shallow ALT versus deep in-situ ALT). Also, residuals >1.5 m cluster in Svalbard (Permafrost cci positive bias with simulated deep ALT versus shallow in-situ ALT).
Figure 15. Spatial distribution of maximum residual per site from Permafrost_cci ALT and in situ ALT match-up over active layer thickness depths in cm.

In summary, the Permafrost_cci permafrost temperature type (that we defined as GTD < 1°C) showed good performance across the Northern hemisphere, with a median bias of 0.2°C for all depths. Users of Permafrost_cci GTD products should however consider, that Permafrost_cci GTD> 1°C of the discontinuous, sporadic and non-permafrost zones is characterized by a cold median MAGT bias of -1.47 °C. This leads in turn to too shallow simulated Permafrost_cci active layer thickness in the permafrost continuous zones around the lower 60° Latitudes and an overestimation of the areal extent of permafrost (for Permafrost_cci Permafrost FRaction PFR < 50 %) at the southern boundaries of Permafrost in discontinuous, and sporadic permafrost regions along the southern boundary of permafrost in Eurasia. PERMOS investigations in the Swiss Alps showed in contrast a warm model bias of Permafrost_cci MAGT ranging from +1.22°C at the surface to +1.81°C at 10 m depth with the vast majority of inventoried ESA GlobPermafrost slope movement products located outside of the simulated Permafrost_cci permafrost extent area (Permafrost_cci PFR).

We thus consider Permafrost_cci GTD and PFR products for the Northern hemisphere to be most reliable in the permafrost temperature range with GTD < 1°C and in PFR >50% as well as PFR <14% is reliable as non-permafrost. Further integrating data on stratigraphy, ground ice, vegetation and more will in turn lead to process understanding of linkages of vegetation, hydrology, lithology, topography, climate and permafrost properties. Vincent et al., (2017) formulated the ‘3-layer Permafrost Earth System approach’: The two geo/cryosphere layers are the active layer and permafrost. The 3rd layer, the buffer layer, consists of the biosphere (vegetation from polar desert to tundra to boreal) and hydrology (e.g., snow) also including infrastructure. We plan to complement the temperature and active layer reference data with contextual data on the two geo/cryosphere layers (active layer and permafrost): ground stratigraphy and lithology, ground ice content, and ground texture. Contextual data are also provided for the 3rd layer, the buffer layer, in the form of information on vegetation, surface habitus, and infrastructure.
4 PROGRESS IN REGARD TO USER REQUIREMENTS

4.1 Algorithm selection

The process of the algorithm selection as detailed in the User Requirements Document (URD) [RD-4] has been driven by the requirements of the climate research community. The user community deemed the selected algorithm as appropriate for their applications.

4.2 Product specification

In Table 1, we specify user requirements from the URD [RD-4] and added for each year a column to mark the respective status of achievement. We aimed to complete as many requirements as possible, which are marked in green.

Table 4: Summary of user requirements. Background (BG) means that this is a continuous activity, production (P), and dissemination (D) means that the related requirement has to be considered during production, and dissemination, respectively. Parameters are Permafrost Extent (PE), Ground Temperature (GT) and Active Layer Thickness (ALT). The last column indicates the achievement status for the third project year (Y3: year 3; red: not started, yellow: ongoing, green: completed).

<table>
<thead>
<tr>
<th>ID</th>
<th>Parameter</th>
<th>Requirements</th>
<th>Source</th>
<th>Type</th>
<th>Y3</th>
</tr>
</thead>
<tbody>
<tr>
<td>URQ_01</td>
<td>PE/GT/ALT</td>
<td>higher spatial resolution than a map scale of 1:10,000,000</td>
<td>IPA Mapping group report</td>
<td>BG</td>
<td></td>
</tr>
<tr>
<td>URQ_02</td>
<td>PE/GT/ALT</td>
<td>data need to be related to a time stamp</td>
<td>IPA Mapping group report</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>URQ_03</td>
<td>PE/GT/ALT</td>
<td>form of delivery for maps and data need to be flexible</td>
<td>IPA Mapping group report</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>URQ_04</td>
<td>PE/GT/ALT</td>
<td>high data quality</td>
<td>IPA Mapping group report</td>
<td>BG</td>
<td></td>
</tr>
<tr>
<td>URQ_05</td>
<td>PE/GT/ALT</td>
<td>benchmark dataset needs to be developed</td>
<td>IPA Mapping group report, GlobPermafrost/IPA mapping group workshop</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>URQ_06</td>
<td>PE/GT/ALT</td>
<td>evaluation through community</td>
<td>GlobPermafrost/IPA mapping group workshop</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>URQ_07</td>
<td>PE/GT/ALT</td>
<td>terminology for modelling output 'potential'</td>
<td>GlobPermafrost/IPA mapping group workshop</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>URQ_08</td>
<td>GT/ALT</td>
<td>depth of active layer, permafrost temperature in K and seasonal soil freeze/thaw needs to be addressed</td>
<td>GCOS</td>
<td>BG</td>
<td></td>
</tr>
<tr>
<td>URQ_09</td>
<td>PE</td>
<td>Threshold: uncertainty 10-25%, hor. res. 10-100 km, temp. res. 3-5 days, timeliness 5-6 days;</td>
<td>OSCAR</td>
<td>BG</td>
<td></td>
</tr>
<tr>
<td>URQ_10</td>
<td>PE/GT/LT</td>
<td>Distribution as NetCDF</td>
<td>CMUG</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>----------</td>
<td>------------------------</td>
<td>------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>URQ_11</td>
<td>PE/GT/LT</td>
<td>Development of a new ground stratigraphy product for the permafrost domain</td>
<td>GlobPermafrost survey</td>
<td>P/D</td>
<td></td>
</tr>
<tr>
<td>URQ_12</td>
<td>GT</td>
<td>Threshold: pan-arctic, yearly, last decade, 10km, RMSE<2.5°C, Target, global, monthly, 1979-present, 1km, subgrid variability, RMSE < 0.5°C</td>
<td>Permafrost_cci survey</td>
<td>BG</td>
<td></td>
</tr>
<tr>
<td>URQ_13</td>
<td>ALT</td>
<td>Threshold: pan-arctic, yearly, last decade, 10km, RMSE<25cm, Target, global, monthly, 1979-present, 1km, subgrid variability, RMSE<10cm</td>
<td>Permafrost_cci survey</td>
<td>BG</td>
<td></td>
</tr>
</tbody>
</table>
5 PUBLICATIONS

5.1 Publications list

Published

Submitted/In review/In revision

5.2 News stories

IPA: Frozen Ground 43, the News Bulletin of the IPA, 2020
https://ipa.arcticportal.org/publications/frozen-ground
5.3 First user workshop

The first Permafrost_cci user workshop took place on September 27th 2021. It was held online with 66 participants. The project status was presented first. The first block of user presentations comprised climate modelling topics. The project use case #1 (HIRHAM) was presented by Heidrun Matthes (section 3.2). Kazuyuki Saito (YAMSTEC) discussed issues regarding soil organic carbon and ground ice dynamics in climate models. Eleanor Burke (Metoffice) showed a detailed assessment of permafrost_cci records with respect to CMIP6 activities. Ground temperature trends are similar to past records. This block was followed by planned and ongoing activities which combine or compare to other satellite products. This included an ESA fellowship presentation (A. Runge, AWI), use case #2 (Ingmar Nitze, AWI; section 3.3) and status of RECCAP-2 (Gustaf Hugelius, University Stockholm). The last user presentation block referred to applications of the permafrost extent product of DUE GlobPermafrost. Eventually, challenges in production and validation have been presented by Permafrost_cci team members. This covered lowland and mountain permafrost. The importance of validation in mountain areas and associated issues have been discussed. The need for documentation of
how to work with the Polar Stereographic projection in GIS environment has been pointed out. In general there was positive feedback regarding the availability as NetCDF. The final discussion specifically addressed climate modelling applications. The following requirements have been stated:

- Monthly timesteps
- High vertical resolution (also 20 and 50 cm)
- Recommendations for aggregation/resampling to modelling grids

5.4 Outreach activities

- The Climate from Space application has been reviewed regarding the Permafrost component and feedback provided.
- For the WGClimate ECV Inventory, verification of Permafrost datasets (for publication in v3.0) has been provided to ECMWF.
- Permafrost_cci has been mentioned in an interview in BIORAMA #68 with A. Bartsch (in German).
- An ERL (Environmental Research Letters) special issue with focus on “Arctic Change: Transdisciplinary Research and Communication” has just been released (co-guest editor A. Bartsch). Topics include use of satellite observations in trans-disciplinary research and science communication.
- A summary of the project status has been published in the IPA bulletin #44.
- A news article from the CCI office regarding the release of the new permafrost_cci dataset with the title “Long-term permafrost record details Arctic thaw” was published by ESA on 16/12/2020, see https://www.esa.int/Applications/Observing_the_Earth/Space_for_our_climate/Long-term_permafrost_record_details_Arctic_thaw.
- A recording of a project presentation has been submitted for the CCI Knowledge exchange MOOC activity.
- The regional rock glacier inventories produced during the project are available online at https://www.unifr.ch/geo/geomorphology/en/research/cci-permafrost.html.

5.5 Presentations at scientific conferences

AGU 2020

- M. Wieczorek, B. Heim, S. Westermann, J. Obu, U. Herzschuh, F.M. Seifert, T. Strozzi, and A. Bartsch, Comparison of in situ ground temperatures and active layer depths with the ESA CCI+ Permafrost Mean Annual Temperature and Active Layer Thickness products (poster);
- A. Bartsch, G. Pointner, T. Ingeman-Nielsen and W. Lu, Progress in monitoring landcover and human presence in the Arctic based on satellite data (oral);
- I. Nitze, B. Jones, A. Veremeeva, S. Westermann, A. Bartsch, V. Romanovsky and G. Grosse, Permafrost region disturbances in space and time: a pan-arctic perspective (oral);

Arctic Change 2020
• A. Bartsch & ESA DUE Globpermafrost & CCI+ Permafrost Team, Arctic change revealed by satellite - Data collections of ESA DUE GlobPermafrost and ESA CCI+ Permafrost (eposter);
• A. Bartsch, G. Pointner, T. Ingeman-Nielsen and W. Lu, Progress in detection and monitoring of transportation infrastructure in the Arctic based on satellite data (oral).

ASSW 2021
• Bartsch et al. Monitoring of infrastructure across the Arctic with Sentinel-1 and -2. RATIC workshop: RATIC meets T-MOSAiC: Sharing Best Practices in Research on Infrastructures in the Arctic. ASSW 2021, 21.03.2021 (presentation, use case)

EGU 2021

EO Polar Science Week
• e-poster about validation of permafrost_cci datasets by Birgit Heim
• Presentation by A. Bartsch in the NASA/ESA evening permafrost and methane session: 'Monitoring wet versus dry across the Arctic'
• Presentation by A. Bartsch in land session (also chair): 'Introduction : advances in recent projects and initiatives'
• Session chair A. Bartsch for 2nd session of the the NASA/ESA evening permafrost and methane initiative
• Presentation by A. Bartsch in Freshwater flux session: 'EO challenges for monitoring ice and water in the ground across the Arctic'
• e-poster about the current project status by Tazio Strozzi
Several related tweets were sent out by the climate office

FRINGE 2021
- Line Rouyet, Lin Liu, Tom Rune Lauknes, Hanne Christiansen, Hanne Hvidtfeldt, Sarah Strand and Yngvar Larsen, Mapping the timing of seasonal thaw subsidence maxima in central Western Spitsbergen, 11th International Workshop on “Advances in the Science and Applications of SAR Interferometry and Sentinel-1 InSAR” (Fringe 2021), 31 May - 4 June 2021.

Other
- Project presentation at the May CMUG meeting on 07.05.2021 (A. Bartsch).
- Presentation of Permafrost_cci requirements at the Snow_cci user workshop on 25.05.2021 (S. Westermann).
- Line Rouyet, Integration of geomorphological mapping and InSAR kinematics for a comprehensive inventory of rock glaciers in Nordenskiöld Land, SIOS Online Conference on "Earth Observation (EO) and Remote Sensing (RS) applications in Svalbard", 08-10 June 2021.
- Grosse, G. (2021): Arctic Change and Permafrost. Presentation during the digital event series “Climate Change and Security in the Arctic” organized by the Konrad Adenauer Foundation (KAS) to strengthen the cooperation between the Nordic countries and Germany on Arctic issues and to promote a common understanding for the development of a common European Arctic policy. 07 September, 2021.
- Matthes et al., ESA CCI+ Permafrost, Data sets and application. Polar CORDEX meeting, October 5-7 2020, online

Upcoming Events

Regional Conference on Permafrost, 24-29 October 2021, online.
- Matthes et al., Uncertainties from land surface boundary conditions: atmosphere and cryosphere present day representation in a Regional Arctic Climate Model, USA, 2021 Regional Conference on Permafrost (RCOP 2021).
- Nitze et al, Evaluating a deep-learning approach for mapping retrogressive thaw slumps across the Arctic.
- Lambiel et al., Distribution and kinematics of rock glaciers in the Southern Alps of New Zealand.
- Bartsch et al., Infrastructure monitoring and combination with permafrost_cci records
- Grosse et al., Airborne Surveys of Rapidly Changing Permafrost Landscapes in Western Alaska
- Runge et al., Permafrost Vulnerability Framework from multiple Essential Climate Variables
- Bartsch et al., The potential of satellite data to identify and quantify permafrost presence and change
- Pellet et al., Permafrost warming in the Swiss Alps: current state and long-term trends
- Pellet et al., Operational monitoring of rock glacier kinematics: insights from the PERMOS network
- Strozzi et al., Systematic monitoring of rock glacier kinematics from satellite SAR interferometry: insights from case studies in the European Alps and Disko Island
- Bartsch et al, A spatially consistent account of infrastructure across the entire Arctic

AGU Fall Meeting 2021

- Nitze et al., Evaluating a deep-learning approach for mapping retrogressive thaw slumps across the Arctic
- Nitze et al., How to discover an unknown mega-landslide in the Siberian far-east

Further Conferences/Meetings

Grosse, G. et al.: Permafrost Change in a Rapidly Warming Arctic. 8th transdisciplinary Workshop "Gateway to the Arctic". 4 October 2021, Potsdam, Germany.

5.6 Specific tasks

Session chairing:

ASSW 2021

A. Bartsch and I. Nitze co-chaired the Remote Sensing Session at ASSW 2021

M. Wieczoreck co-chaired the Session Progress Towards Realizing Data Sharing for the Arctic Region and Beyond at ASSW 2021

RCOP 2021

I. Nitze will co-chair the Permafrost Discovery Gateway session/workshop

Conference organization:

G. Grosse is member of the International Scientific Committee of the 16th International Circumpolar Remote Sensing Symposium (ICRSS) (Postponed to May 2022, Fairbanks, Alaska)
5.7 Student teaching and courses

6 REFERENCES

6.1 Bibliography

Kudryavtsev V.A., (Editor) 1978: Obshcheye merzlotovedeniya (Geokriologiya) (General permafrost science) In Russian. Izd. 2, (Edu 2) Moskva (Moscow), Izdatel'stvo Moskovskogo Universiteta, (Moscow University Editions), 404 p

Matthes, H., Rinke, A. and Dethloff, 2015: K., Recent changes in Arctic temperature extremes: warm and cold spells during winter and summer, Environmental Research Letters, 10(11).

Slater, A.G. and D.M. Lawrence, 2013: Diagnosing Present and Future Permafrost from Climate Models. J. Climate, 26, 5608–5623, https://doi.org/10.1175/JCLI-D-12-00341.1

6.2 Acronyms

ACOP Asian Conference on Permafrost
ALT Active Layer Thickness
Arctic CORDEX Coordinated Regional Climate Downscaling Experiment
ASSW Arctic Science Summit Week
AWI Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research
B.GEOS b.geos GmbH
CALM Circumpolar Active Layer Monitoring
CiC Climate and Cryosphere project
CLM4 Land Community Model Version 4
CLM5 Land Community Model Version 5
CCI Climate Change Initiative
CMIP-6 The Coupled Model Intercomparison Project
CMUG Climate Modelling User Group
CRESCENDO Coordinated Research in Earth Systems and Climate: Experiments, Knowledge, Dissemination and Outreach
CRG Climate Research Group
ECV Essential Climate Variable
EO Earth Observation
ESA European Space Agency
ESA DUE ESA Data User Element
FT2T Freeze-Thaw to Temperature
GAMMA Gamma Remote Sensing AG
GCOS Global Climate Observing System
GCW Global Cryosphere Watch
GTD Ground Temperature at certain depth
GT Ground Temperature
GTN-P Global Terrestrial Network for Permafrost
GTOS Global Terrestrial Observing System
GUIO Department of Geosciences University of Oslo
HIRHAM High Resolution Limited Area Model
HRPC Hot Spot Regions of Permafrost Change
IASC International Arctic Science Committee
ILAMB International Land Model Benchmarking
IPA International Permafrost Association
IPCC Intergovernmental Panel on Climate Change
LS3MIP Land Surface, Snow and Soil Moisture
MAGT Mean Annual Ground Temperature
NetCDF Network Common Data Format
NSIDC National Snow and Ice Data Center
PCN Permafrost Carbon Network
PE Permafrost Extent
PERMOS Swiss Permafrost Monitoring Network
PF Permafrost
PFR Permafrost Fraction
PSTG Polar Space Task Group
PUG Product User Guide
PVIR Product Validation and Intercomparison Report
RASM Regional Arctic System Model
RCOP Regional Conference on Permafrost
RD Reference Document
RMSE Root Mean Square Error
RS Remote Sensing
SAR Synthetic Aperture Radar
SCAR Scientific Committee on Antarctic Research
SU Department of Physical Geography Stockholm University
TSP Thermal State of Permafrost
UNIFR Department of Geosciences University of Fribourg
URD Users Requirement Document
WCRP World Climate Research Program
WMO World Meteorological Organisation
WMO OSCAR Observing Systems Capability Analysis and Review Tool
WUT West University of Timisoara