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1. Purpose and scope of this report 
 

This document is a continuation from the 2016 version 2 which reported on CMUG CCI 
evaluations during Year 2 of Phase 2. Its purpose is to assess the quality of the latest (final or 
near final depending on availability) versions of CCI products and update feedback to ESA and 
the CCI teams. This assessment is being conducted by the climate modelling and reanalysis 
centres in the CMUG consortium using CCI Phase 2 data and includes a wide range of data and 
model interactions (assimilation, boundary conditions, optimisation, reanalysis, sensitivity 
studies etc.). This second phase of evaluation continues to examine the following top level 
questions: 

• Are the CCI data products of ‘climate quality’ i.e. is their quality adequate for use in 
climate modelling, reanalysis and for wider research applications? 

• Are the error characteristics provided by CCI products adequate? 
• Do the products meet the Global Climate Observing System (GCOS) quality 

requirements for satellite for Essential Climate Variables (ECV)? 
• Is the quality of the products sufficient for climate service applications? 

 

2. CMUG methodology and approach for assessing quality 

in CCI products 
 

This report describes the results in the last year of CMUG Phase 2 from CMUG Task 3 
“Assessing consistency and quality of CCI products”. The work is spread across fifteen Work 
Packages1 (WP) listed in Table 1, which includes the CCI product being assessed, the CMUG 
model being used to make the assessment, and the type of climate modeling experiment. 
 
The CMUG results presented here provide information on the accuracy, consistency and 
usefulness of the latest CCI data sets. The analysis assesses the suitability of the CCI datasets 
for coupled climate model and reanalysis applications and evaluates the impact of the data 
products on model based studies, including quantification of the uncertainties associated with 
both the models and the observations (see Table 1). This information is aimed at the CCI teams 
producing the data but is also of use to other modelling centres which will use CCI data in the 
future. 
 
The modeling experiments are described in the following sections of this report, and cover the 
following topics: assimilation of CCI data into climate models; cross assessments of CCI data 
(those which have physical links/interactions); applications for reanalysis; integrated 
assessment of CCI data in climate models; boundary condition forcing experiments; regional 

                                                 
1 Three new WPs have been included in the CMUG work plan since version 1 of this report in June 2015. 
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modeling; earth system process studies. The CMUG work reported here was conducted with 
the CCI data available at the time, which in most cases were from the final Phase 2 Climate 
Record Data Packages produced by the CCI projects. Where the results are not yet available, 
the section is marked “To be completed”. A planned update of this report in the Autumn of 
2017 will include assessments missing from this version. 
 
Appendix 1 summarises the status of the research results for each of the WPs contributing to this report. 
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Table 1: Summary of the CMUG Work Packages, CMUG models, CCI products, and CMUG experiments for assessing quality of the CCI products, as given 
in this report. Includes the three new WPs added during the last two years of the programme.  
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WP CMUG Model Experiment Type

3.1 FOAM X X X X Assimilation

O3.1 NEMOVAR, ORA X X X X Assimilation and Detection

3.2 ERA-Clim X Assimilation

3.3 MACC-II X X X Assimilation 

3.4 JSBACH, TM3 X X X X Assimilation

O3.4 EC-Earth/CMIP5 X X X X X X Assessment, evaluation

3.5 LMDz, ORCHIDEE X X X X Boundary Condition

3.6 MPI-OM, MPI-ESM X X X X Assimilation (Polar Regions)

3.7 EMAC-MADE X X Comparison

3.8 RCA HARMONIE X X X Comparison/Eval (CORDEX Africa)

3.9 Arctic HYPE X X X Assessment

3.10 CNRM-RCM X X X X X Comparison (Med CORDEX)

O3.11 EC-Earth3 X X X X Cross-assessment

3.12 BISICLES / FETISH X X Assessment, evaluation

3.13 GISM-VUB X Assessment, evaluation

3.14 EC-Earth/CMIP5 X X X Benchmarking, process study

CCI products

Land   AtmosphereOcean

CMUG Task 3:  Assessing consistency and quality of CCI products
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3 Summary of CMUG Assessment of Quality by WP 
 

3.1 Assessment of Marine ECVs in FOAM Ocean Model [WP 3.1] 

Aim 
The aim of this research is to make an integrated assessment of marine ECVs to assess their 
consistency within a global and shelf seas regional data assimilation environment, and to 
provide an assessment of the uncertainty. It will address the following scientific questions: 

• Are the individual marine CCI CDRs good enough for assimilation purposes? 

• What are the changes made to the analyses by assimilating the CCI data? 
• Are the uncertainties provided useful to assign observation errors to the measurements? 
• Are the four marine ECVs mutually consistent from an ocean assimilation point of 

view? 
 

Key Outcomes of CMUG Research 
• OC-CCI V1 products are of at least equal quality to predecessor products, with some 

improvements due to increased spatial coverage and stability. 
• Improvements are seen from OC-CCI V1 to V2 to V3. 

• Assimilating OC-CCI data improves surface and sub-surface model chlorophyll, with 
some evidence of improvement in nutrients and carbon variables. 

• OC-CCI uncertainty estimates are beneficial for data assimilation. 

• Spatial and temporal features in the four marine ECVs appear consistent, with this 
consistency also evident in resulting reanalyses. 

• Information gained by assimilating CCI products can be beneficial for model and 
assimilation development. 

• Reanalyses assimilating CCI products produce realistic variability in response to 
climatic events, allowing their use as a tool for climate studies. 

Summary of Results 
Initial work focused on assessment of the ocean colour CCI (OC-CCI) data for assimilation 
purposes. This has now been extended to an integrated assessment of all four marine ECVs. 
The pieces of work are summarised in turn below. 
 

i) Comparison of OC-CCI V1 and GlobColour 
At the end of Phase 1, a global ocean reanalysis was produced by assimilating OC-CCI V1 
chlorophyll products into the FOAM-HadOCC coupled physical-biogeochemical ocean model 
(Storkey et al., 2010; Palmer and Totterdell, 2001; Hemmings et al., 2008; Ford et al., 2012), 
covering the period from September 1997 to July 2012. For comparison, a reanalysis was also 
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produced assimilating the predecessor GlobColour products, as well as a control run with no 
data assimilation. A thorough assessment of the results has been performed during Phase 2, and 
a paper on the work has been accepted for publication in the forthcoming CCI special issue of 
Remote Sensing of Environment (Ford and Barciela, 2017). 
 
The OC-CCI V1 products were found to be of sufficient quality for data assimilation purposes, 
and of at least equal quality to the GlobColour products (more detail on the comparison with 
GlobColour is included in the “Quality relevant outcomes” sub-section below). Assimilating 
OC-CCI chlorophyll data improved the model’s representation of sea surface chlorophyll 
compared with both satellite data sets, and also a range of independent in situ observations. An 
example of this is shown in Figure 1, which plots a time series of sea surface chlorophyll from 
all three model runs at the Hawaii Ocean Time Series (HOT) site in the North Pacific, along 
with in situ observations. The assimilation results in a much better match for both the magnitude 
and seasonality of the observations. It is also able to produce a reanalysis which is stable with 
time whilst displaying inter-annual variability. 
 
 

 
Figure 1: Time series of modelled and observed chlorophyll concentration in the surface 10 m at the 
HOT site. Observations have been obtained from http://hahana.soest.hawaii.edu/hot. 

 
 
The largest impact of the assimilation was on sea surface chlorophyll, but an improved 
representation of chlorophyll was also found throughout the water column, including an 
improved representation of deep chlorophyll maxima, which are an important contribution to 
global primary production and not directly observed by ocean colour sensors. Corresponding 
changes were found in phytoplankton and zooplankton biomass, although limited observational 
data are available for validation. Changes to nutrient concentrations were small, with some 
evidence of improvement compared with in situ observations. This is an important result, as 
some studies have found a degradation of nutrients due to chlorophyll assimilation. 
 
Validation has also focused on the impact of the assimilation on the model carbon cycle, as this 
is of particular relevance for climate studies. Validation has been performed against surface 
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fugacity of carbon dioxide (fCO2) observations from the SOCAT V2 database (Bakker et al., 
2014). Overall, the effect of the chlorophyll assimilation was small compared with the 
magnitude of model biases. In part, this is because there are large physical controls on the 
carbon cycle. The impact on these of additionally assimilating physical ECVs is being addressed 
as part of the integrated marine ECV assessment detailed below. In regions of strong biological 
activity, the chlorophyll assimilation was found to have a beneficial impact on air-sea CO2 
fluxes, an example of which is shown in Figure 2. In some areas, the assimilation was found to 
improve representation of the biological component of the carbon cycle, but overall degrade 
fCO2 compared with observations due to compensating errors in the physical component of the 
carbon cycle. This provides important information on model biases which can be fed back into 
model development activities. Again, the impact in these cases of combined assimilation of all 
marine ECVs is being assessed as part of the integrated marine ECV assessment detailed below. 
 

 
Figure 2: June mean air-sea CO2 flux (mol C m-2 yr-1) in the North Atlantic from a) climatology of 
Takahashi et al. (2009), b) FOAM-HadOCC control, c) reanalysis assimilating GlobColour data, d) 
reanalysis assimilating OC-CCI data. Positive values represent a flux into the ocean. The reduction in 
spurious outgassing in the centre of the domain in c) and d) compared with b) is due to the assimilation 
reducing the chlorophyll bias in this area. An alternative version of this figure, not including OC-CCI 
data but mentioning the CCI project, has been published in Gehlen et al. (2015). 
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ii) Comparison of OC-CCI V1, V2 and V3, and use for CMEMS 
Technical issues with the OC-CCI V1 products were reported on during Phase 1. OC-CCI V2 
products were released in April 2015, and CMUG have tested these in comparison with V1. 
The Product User Guide was expanded on and improved, particularly regarding use of the 
uncertainty estimates, which is highly beneficial for users. The V2 products were not quite 
“plug-and-play” with the V1 products, since the variable names for the chlorophyll uncertainty 
have been changed in the NetCDF files. Whilst consistency between releases is generally 
preferred, in this case the change of variable name makes the contents of the variable clearer, 
so is a reasonable change to have made. Minor metadata errors which had been identified in the 
V1 products were corrected, and no new errors identified. Short like-for-like assimilation runs 
were performed with FOAM-HadOCC using the V1 and V2 products, with similar results 
obtained, but small regional differences, indicating the V2 products to be of at least equal 
scientific quality to the V1 products, as well as of improved technical quality. 
 
OC-CCI V3 products were then released in August 2016, and updated in May 2017. The V3 
products were “plug-and-play” with the V2 products, allowing the new products to be used with 
no system changes, which is extremely important from a user perspective. A major scientific 
development for V3 was to introduce a blend of chlorophyll algorithms based on water type, 
increasing the applicability of the products to Case 2 (largely coastal) waters. This has allowed 
the assimilation of V3 OC-CCI products in a reanalysis of the North-West European Shelf Seas 
which is currently being produced for release through the Copernicus Marine Environment 
Monitoring Service (CMEMS). The assimilation of these products has been found to improve 
the consistency of model chlorophyll values with independent in situ observations, both on and 
off the continental shelf. In particular, the timing of the spring bloom is much improved by the 
assimilation. In sediment-dominated coastal waters, the OC-CCI products can still over-
estimate chlorophyll compared with in situ observations, suggesting further research is still 
required to improve the accuracy of these global products in complex regional seas. However, 
in these regions the uncertainty estimates provided with the OC-CCI products appear to 
accurately reflect these differences. Whilst insufficient in situ observations exist to perform a 
detailed study, this suggests that the uncertainty estimates are of good quality and confidence 
can be had in their use. The assimilation methodology has therefore been developed to make 
direct use of these uncertainty estimates, which resulted in a further improved match of model 
chlorophyll values with independent in situ observations. 
 

iii) Integrated assessment of marine ECVs 
The assessment of OC-CCI V1 products has been extended to an integrated assessment of the 
four marine ECVs, ocean colour (OC), sea surface temperature (SST), sea level anomaly (SLA), 
and sea ice concentration (SIC). The model and assimilation framework is still FOAM-
HadOCC, but upgraded to use the GO5 configuration of the NEMO ocean model (Megann et 
al., 2014) and the 3D-Var implementation of the NEMOVAR data assimilation scheme (Waters 
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et al., 2015). Surface forcing comes from ERA-Interim (Dee et al., 2011). Some runs have 
included the assimilation of in situ temperature and salinity (T&S) profiles from the EN4 
database (Good et al., 2013), in order to assess the complementarity of in situ and remote 
sensing observations. An overview of results is given here; more detailed assessment will be 
presented in a publication currently being prepared for submission to a peer-reviewed journal. 
 
The CCI products used are the latest that were publicly released at the time this work was 
started: V2 OC, V1.1 SST, V1.1 SLA, and OSI SAF sea ice. The use of OSI SAF rather than 
CCI sea ice was on the advice of the sea ice CCI team (who also produce OSI SAF), who could 
not recommend use of their CCI products if wishing to perform a consistent assessment through 
the year 2002, as required for this work. In order to provide an assessment of the final Phase 2 
CCI products for each ECV, including sea ice, an additional run has been performed using the 
latest products (V3.1 OC, V1.1 SST, V2.0 SLA, V2.0 SIC), documented at the end of this 
section. 
 
Following processing of the observations and associated inputs (e.g. mean dynamic topography 
for SLA), two sets of model runs have been performed with FOAM-HadOCC, summarised in 
Table 2. Long 1° resolution runs covering the overlapping period of the data sets (1998-2010) 
have been used to assess the consistency of inter-annual variability and the response to climate 
drivers such as the El Niño Southern Oscillation (ENSO). Higher resolution 0.25° resolution 
runs covering the final three years of this period (2008-2010) have been used to assess the 
consistency of spatial features. In each case, there is a non-assimilative control run, runs 
assimilating each ECV individually, a run assimilating the ECVs in combination, and runs using 
other selected combinations of products. The impact on non-observed variables of climatic 
importance, such as air-sea CO2 fluxes, has also been assessed. 
 
Run OC SST SLA SIC T&S 
Free      
OC X     
SST  X    
SLA   X   
SIC    X  
OC+SST+SIC X X X   
OC+SST+SIC+SLA X X X X  
OC+SST+SIC+SLA+T&S X X X X X 
SST+T&S  X   X 
SLA+T&S   X  X 

Table 2. Model runs performed, with X marking the assimilation of a particular variable. Each run has 
been performed at both 1/4° from 2008-2010 and 1° from 1998-2010. 
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When assessing the consistency of observation products by performing data assimilation 
experiments, it is important to distinguish between what the results are saying about the 
observations, and what the results are saying about the model and assimilation system. In the 
latter case this is still vital information for climate modellers, as it means the use of the 
observation products allows the partitioning of errors, which can inform the future development 
of reanalysis systems. For instance, it would intuitively be expected that if the satellite ECV 
products are consistent, then the assimilation of one variable would improve the simulation of 
another. This has been investigated in these runs, and found to not necessarily be the case, but 
further assessment has demonstrated that this is highlighting issues with the assimilation 
scheme, rather than inconsistencies in the CCI products. For instance, when assimilating SST 
and SLA in combination, the mean assimilation increments for each field are larger than when 
assimilating the variables individually, indicating that the assimilation has to overcome larger 
biases despite the extra information. This has helped highlight an issue with the way in which 
the assimilation scheme propagates information from the surface ocean throughout the water 
column, and so is not a reflection of the consistency of the input observations. Similarly, the 
assimilation of physical data, in particular SLA and T&S, has been found to degrade the 
simulation of biogeochemical variables, due to an unsolved problem within the scientific 
community that physical data assimilation can cause spurious vertical mixing (see e.g. 
Raghukumar et al., 2015, While et al., 2010), bringing excessive nutrients and carbon to the 
surface and fuelling production. However, for the simulation of chlorophyll, the assimilation of 
OC-CCI products has been found to effectively mitigate this. 
 
Despite the issues with the assimilation that use of the CCI products has highlighted, the 
experiments are still able to provide valuable information about the consistency of the CCI data 
sets. An example is shown in Figure 3, which shows the spatial gradients of different variables 
in the Gulf Stream region of the North Atlantic, for an example month (June 2009). For SST, 
SLA, and log10(chlorophyll), the satellite observations over the month have been binned into 
1/4° boxes, and the spatial gradients calculated and plotted (Figure 3a-c). The 1/4° model runs 
have been sub-sampled at the observation locations and times, and binned and processed in 
exactly the same manner. The resulting gradients are plotted for the free run (Figure 3d-f) and 
the OC+SST+SIC+SLA assimilation run (Figure 3g-i). In the SST observations the gradients 
seen mark the northern extent of the Gulf Stream, whilst in the SLA observations the gradients 
show eddy activity within the Gulf Stream. The edges of these gradients match neatly, 
demonstrating the position of the Gulf Stream to be consistent in the SST and SLA CCI 
products. A less clear relationship is expected with log10(chlorophyll), due to the complexity of 
the underlying dynamics, but given the SST and SLA gradients, and expected nutrient gradients, 
the OC products appear consistent with the SST and SLA products. In the model free run the 
SST gradients are well represented, but there is insufficient variability in the SLA and 
log10(chlorophyll) fields, as would be expected from an eddy-permitting rather than eddy-
resolving resolution model. When the ECVs are assimilated in combination, the representation 
of gradients in all fields is greatly improved compared with the observations. Crucially, the 
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consistency of spatial gradients in the different fields is maintained, with assimilation of CCI 
products giving a consistent reanalysis product. Similar conclusions are reached when an 
assessment of frontal positions is performed in the North Atlantic (not shown). For instance, 
assimilating only SST gives a better match of the positions of log10(chlorophyll) fronts with a 
run assimilating OC data than the free run does. This suggests a consistency of information 
about spatial ocean dynamics in the OC and SST CCI data, which is being successfully 
transferred to model reanalysis fields.  
 

 
Figure 3. Spatial gradients of SST, SLA and log10(chlorophyll) in the Gulf Stream region of the North 
Atlantic, for June 2009, from a-c) CCI data, d-f) 1/4° free run, and g-i) 1/4° run assimilating ECVs. 

 
Another important area in which to assess the consistency of the CCI products is around the 
edge of the sea ice extent. There is an obvious relationship between SST and the presence of 
sea ice, and there can often also be observed intense biological activity around the sea ice edge, 
due to changes in stratification and light limitation. For an example day (01 June 2009), Figure 
4 shows the chlorophyll concentration in the Arctic Ocean, overlaid by the sea ice extent as 
defined by the 15% ice concentration contour, from CCI products and three of the 1/4° model 
runs. In the observations plot (Figure 4a), the chlorophyll concentration plotted is from the OC-
CCI 5-day composite containing 01 June 2009, in order to reduce gaps due to cloud cover, and 
the ice extent comes from the L4 OSTIA reanalysis product produced by SST-CCI, 
incorporating CCI SST and OSI SAF SIC data. The edge of the OC coverage and the edge of 
the ice extent generally match well, suggesting consistency of ice extent in both products. 
Where there are OC observations within the 15% ice contour, such as in the Greenland Sea, ice 
concentrations in these regions are still well below 100%, so OC data would be expected, 
especially in a 5-day composite. A chlorophyll bloom is observed in the Barents Sea, near the 
sea ice edge. The model free run captures this bloom (Figure 4b), but it is too large and extends 
too far into the Norwegian Sea. The representation of it is much improved when OC-CCI data 
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is assimilated (Figure 4c), but uncorrected errors in the sea ice extent prohibit the capturing of 
the details around the ice edge. When SIC data is additionally assimilated (Figure 4d), the ice 
extent is better represented, allowing the details of the chlorophyll bloom to be better captured. 
This further demonstrates consistency between the ECVs, and that for the best reanalysis results 
they should be assimilated in conjunction with each other. Assimilating the ECVs together also 
gives more variability in modeled chlorophyll concentrations under sea ice. Lack of 
observations prohibits the validation of these results, but recent studies (Horvat et al., 2017) 
suggest such blooms are to be expected. 
 

 
Figure 4. Chlorophyll concentration on 01 June 2009 from a) OC-CCI data and b-d  three 1/4° model 
runs. Overlaid in red is the sea ice extent as defined by the 15% concentration contour from a) SST-CCI 
L4 OSTIA reanalysis and b-d) the corresponding model fields. 

 
An important feature for climate studies is the Atlantic Meridional Overturning Circulation 
(AMOC), and recent studies have begun to assess the representation of AMOC variability in 
assimilative reanalyses (Jackson et al., 2016). Figure 5 shows a Hovmöller plot of the AMOC 
at 26°N from 2008-2010, from independent in situ observations at the RAPID array 
(http://www.rsmas.miami.edu/users/mocha/mocha_results.htm), and different 1/4° model runs. 
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A clear feature in the observations is a large slowdown in the AMOC around January 2010, 
which has been linked with extreme weather events in the Northern Hemisphere (Bryden et al., 
2014). CMUG work has also demonstrated an impact on the variability of the carbon cycle 
(Ford and Barciela, 2017), benefitting from the assimilation of OC-CCI data. This event is well-
captured by the free-running model, suggesting the variability to be largely atmospherically-
driven, supporting the conclusions of Roberts et al. (2013). However, as with most forced ocean 
models, the magnitude of the AMOC is consistently too weak. When CCI ECV products are 
assimilated (SST+SIC+SLA; OC assimilation has no impact on the physical circulation in these 
runs), the magnitude of the AMOC is duly strengthened, but there is a negative impact on the 
sub-surface variability. When in situ T&S data (not including the RAPID data) are assimilated 
in addition to the satellite products, this gives the best representation of the AMOC of all the 
model runs. This demonstrates that whilst satellite ECVs have an important role to play, in situ 
observations are also required in order to accurately capture the ocean circulation and sub-
surface variability. 
 

 
Figure 5. Hovmöller plot of the AMOC at 26°N from RAPID observations and three 1/4° model runs. 

 
 
 
As stated above, in order to assess the final Phase 2 products for each ECV (apart from SST, 
whose Phase 2 release is not expected until March 2018), an additional run has been performed 
using V3.1 OC, V1.1 SST, V2.0 SLA, and V2.0 SIC. This repeats the 1/4° OC+SST+SLA+SIC 
assimilation run for the year 2008. For SIC a choice of 25 km or 50 km resolution is available, 
and the higher resolution product has been used. 
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Figure 6. Model Antarctic sea ice concentration for 31st December 2008, assimilating 
OC+SST+SLA+SIC. Left: using OSI SAF SIC, right: using CCI V2.0 SIC. 

 
 
In terms of model SIC, the spatial patterns of ice concentration are very similar whether OSI 
SAF or CCI V2.0 products are used, but as shown in Figure 6, the higher resolution V2.0 
observation product allows the model to capture finer details in the structure of the sea ice. In 
turn, this should allow more detailed study of biogeochemical and other processes around the 
ice edge. 
 
The conclusion from the previous runs was that the different ECVs appear to be consistent, and 
this is maintained with the updated product versions. As an example, Figure 7 shows spatial 
gradients of observation and model fields for December 2008 in the South Atlantic sector of the 
Southern Ocean, calculated in the same way as for Figure 3. There are no major differences 
between the two sets of observations, although the V3.1 OC data extends further south, better 
matching the sea ice concentration and the SST and SLA coverage. In the Agulhas region in 
particular the SST and log10(chlorophyll) gradients match up very clearly, demonstrating 
consistency in placement of the detailed current features in this area. These are in turn consistent 
with the eddies seen in the SLA products. Both sets of products improve the spatial features of 
all model fields compared with the free run, and the consistency between the ECV products is 
maintained in the resulting reanalyses. 
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Figure 7. Spatial gradients of SST (column 1), SLA (column 2) and log10(chlorophyll) (column 3) in the 
South Atlantic sector of the Southern Ocean including the Agulhas region, for December 2008. Row 1: 
Original CCI data used (V1.1 SST, V1.1 SLA, V2.0 OC); row 2: new CCI data used (V1.1 SST, V2.0 
SLA, V3.1 OC); row 3: 1/4° model run with no assimilation; row 4: 1/4° model run assimilating original 
data; row 5: 1/4° model run assimilating new data. 
 
 
Similar experiments to those detailed here have also been performed at ECMWF as part of WP 
O3.1, results from which are presented in Section 3.2 of this report. In particular, both centres 
have assimilated the marine ECVs combined with in situ T&S profiles into a 1° model covering 
1998-2007. In each case the base model and assimilation code was NEMO v3.4 and 
NEMOVAR v3.0. However, despite these similarities, the way in which the assimilation is 
applied for each variable differs in many key aspects (Waters et al., 2015; Zuo et al., 2015). 
This gives an opportunity to compare the interaction between the CCI products and the 
assimilation methodology. 
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Figure 8. Mean SLA assimilation increments for 1998-2007 from 1° SST+SLA+SIC+T&S assimilation 
runs. Left: WP 3.1; right: WP O3.1. 

 
Figure 8 shows the mean assimilation increments made to the model SSH fields over the period 
1998-2007 in the 1° SST+SLA+SIC+T&S runs from a) WP 3.1 and b) WP O3.1. Broadly 
similar patterns are seen in a number of regions in each case, in particular the Tropical Pacific 
and North Atlantic, suggesting that the products are being similarly exploited to address 
common model biases. The differences in smaller-scale details in these regions will be largely 
due to technical differences between the two assimilation schemes, such as choice of error 
covariances and correlation length scales. The increments are more distinct in other areas, such 
as the South Pacific, reflecting model and assimilation sensitivity, and a latitudinal cutoff in the 
SLA assimilation in WP O3.1. Such comparisons are valuable for learning about the 
assimilation methodologies, and can form the basis of ongoing collaboration to improve the 
assimilation schemes and the use of CCI products in model reanalyses. 
 

Quality relevant outcomes 
A comparison between the OC-CCI V1 and GlobColour observation products has been 
performed to assess their stability and spatial coverage, building on that reported on at the end 
of Phase 1. GlobColour has greater spatial coverage prior to 2002, as it uses an older NASA 
SeaWiFS processing which discards fewer data points. Between 2002 and 2012, OC-CCI has 
greater coverage as more use is made of MERIS data. This is of particular benefit to the 
assimilation in certain regions, such as the Mauritanian upwelling region and the Arabian Sea 
during the Asian monsoon period, which were poorly covered by GlobColour. There is a lack 
of in situ observations with which to validate the results in these areas, but the model fields 
when assimilating OC-CCI data are in line with qualitative expectations. Furthermore, carbon 
cycle variables are improved in these regions when assimilating OC-CCI data, as a result of the 
improved coverage. The global mean and spatial standard deviation of the OC-CCI chlorophyll 
products are also more stable with time than for GlobColour. A reduction in variability is noted 
when MERIS is introduced in 2002, which could be due to differences in the properties of the 
sensors, or could simply be an artifact of the sudden increase in the number of data points. Such 
features are less clear in the reanalysis fields, as to some extent the model acts to smooth these 
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out. Overall, very similar results are obtained whether OC-CCI or GlobColour products are 
assimilated, but where differences are found, there is evidence that results are improved due to 
the increased spatial coverage and improved stability of the OC-CCI data. Coverage is further 
improved in the V2 and V3 products, which is of further benefit. The uncertainty estimates 
provided with OC-CCI products have been found to accurately reflect differences compared 
with independent in situ data, and are being successfully used in the assimilation for a reanalysis 
of the North-West European Shelf Seas being produced for CMEMS. Use of these uncertainties 
in the assimilation leads to improved model results compared with the in situ observations. The 
uncertainties are also used in the quality control step for global assimilation studies. The only 
issue found was that not every observation has a corresponding uncertainty, as reported during 
Phase 1, leading to these observations being automatically rejected. This is a known issue which 
the OC-CCI team is aware of. 
 
Along with the OC-CCI data, the SST-CCI and SL-CCI data were able to be processed and 
assimilated with no more than the expected effort required for the assimilation of a new data 
type. On the whole the assimilation was successful with no special tuning required (e.g. of error 
covariances), although there was an issue on 18 November 2000 with a few extreme SLA values 
associated with the Geosat Follow-On mission causing the model to crash. It is unclear whether 
or not these values are realistic, but for assimilation stability the assimilation of SLA needed to 
be turned off for this single day. This has been reported to the SL-CCI, who advised a threshold 
to apply for this mission for assimilation purposes. 
As explained above, OSI SAF sea ice products have been used rather than CCI products. When 
CMUG researchers initially attempted to contact the sea ice CCI team about using their 
products, no helpdesk email address was apparent on their website (unlike for other ECVs), 
only an email address for the science lead. CMUG’s email to this address went unanswered. A 
contact in the SST-CCI was able to put CMUG in contact with a member of the sea ice CCI 
team who could answer the queries, but this is not the most efficient route for a user to get 
support. It is also a concern that the CCI V1 product is not deemed consistent before and after 
2002, and the V2 product only begins in 2002, meaning that an alternative product must be 
recommended for assimilation into long-term reanalyses, an important application of CDRs. 
Whilst scientific reasons have been given for the decision, it is likely to limit user uptake. 
Furthermore, whilst not tested in these experiments, the decision to not filter spurious noise in 
the V1 products would be expected to cause issues for the assimilation, as reported in WP O3.1 
below. This appears not to be an issue for the V2 products. 
 
All the assessment performed by CMUG so far, summarised above, concludes that the four 
marine ECVs are consistent in terms of their spatial features and temporal variability. When the 
ECVs are assimilated into the model the features and consistency are maintained, which is a 
highly positive result, meaning the use of the CCI products in combination can be 
recommended. There is an outstanding issue that the assimilation of one ECV does not 
necessarily improve the simulation of another, but this has been traced to issues with the model 
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and assimilation scheme, rather than the CCI observations. In fact, their use is able to help 
highlight such issues, which is invaluable for future reanalysis development. 
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3.2  Integrated assessment of Marine ECVs in the ORA system 
[WP O3.1] 
 
Introduction 
The aim of this WP is to perform an integrated assessment of CCI SST, SSH and SIC via 
assimilation using the ECMWF Ocean ReAnalysis (ORA) System. The focus is on multivariate 
detection of climate variability and change patterns in the set of CCI ECV in comparison with 
independent observational products. 
 
The baseline ocean assimilation system ORAS5 used for this WP is closely related to the 
ORAP5 system described in Zuo et al. (2015) and Tietsche et al. (2015). It uses the ORCA1 
global configuration of NEMO 3.4 forced by ERA-Interim (bulk formulas). Subsurface 
observations from EN4, SLA from Aviso V5, and SIC from OSI-SAF are assimilated using a 
3DVar-FGAT algorithm with a 10 day assimilation window. SST is restored to observations 
from HadISST2 with a restoring strength of 200 Wm-2K-1. 
 
Initial offline-inspection of the data has shown that the major climate modes of variability and 
change are very similar to pre-existing ECV data sets, as are the cross-variable statistics. 
However, for data assimilation, small differences in one variable can be amplified, or interact 
with how other variables are simulated. Therefore, we focus our discussion on the results of a 
series of assimilation experiments. In these assimilation experiments (see Table 3), 
observational products in the baseline assimilation system are exchanged one by one with their 
CCI equivalent, with an additional experiment which uses all marine CCI-ECV considered here 
together. 
 
The following CCI data products were used: 

• Sea surface temperature: level 4 data, analysed daily mean at 20cm depth on 1/20 degree 
regular grid, version 1.1, available 1992—2010 

• Sea surface height: level 2 data (along-track anomalies referenced to DTU10 mean sea 
surface), and level 4 data to calculate global mean sea level for freshwater budget 
corrections, available 1993—2012  

• Sea ice concentration: level 4 SSMI data, analysed daily means on EASE2 hemispheric 
grids with 25km resolution, available 1992—2008 
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Experiment  SST SIC SLA Start End 

ORA REF HadISST2 OSI-SAF Aviso 1975 2014 

ORA CCI-SST CCI v1.1 OSI-SAF Aviso 1992 2010 

ORA CCI-SIC HadISST2 CCI SSMI v1.1 Aviso 1992 2008 

ORA CCI-SLA HadISST2 OSI-SAF CCI v1.1 1993 2013 

ORA CCI-ALL CCI v1.1 CCI SSMI v1.1 CCI v1.1 1993 2008 

Table 3: Overview of assimilation runs 
 
Ingesting ESA-CCI SST in the ORA system 
 
This discusses results from the assimilation experiment ORA CCI-SST that ingested SST from 
CCI v1.1 instead of HadISST2. As shown in Figure 6, the variability and trend of global CCI 
SST agrees well with the non-ECV data set HadISST2. However, CCI SST are warmer by a 
constant amount of 0.05K. Global SST in the two assimilation experiments ORA REF and ORA 
CCI-SST reproduce trend and variability of the two observational products very well, each 
being close to the observational product which was ingested into the system. The fact that the 
ORA CCI-SST experiment simulates SST which are often halfway between HadISST2 and 
CCI-SST suggests that subsurface ocean observations and/or atmospheric forcing in the ORA 
system favour SST that are cooler than CCI-SST, but warmer than HadISST2. 
To understand better the potential causes for differences between CCI-SST and HadISST2, 
maps of regional biases and trends are needed. As shown in Figure 7 (left), there are systematic 
regional modulations to the global-mean warm offset. Averaged over the whole data set 1992-
2010, the tropical oceans tend to be 0.1 to 0.3 K warmer in CCI-SST than in HadISST2. 
However, CCI-SST are more than 0.2 K cooler in the North Pacific, and more than 0.5 K cooler 
in the Sea of Okhotsk. These regions are among the most cloudy in the world (Warren et al. 
2015), which is challenging for satellite-only SST products. The North Atlantic exhibits a 
complex pattern of cold and warm differences, which might be partially related to boundary 
currents and the presence of sea ice. 
From Figure 7 it can be seen that the assimilation systems tends to dampen the differences 
between the two data sets: in ORA CCI-SST, the tropical oceans SST is slightly cooler than in 
CCI-SST, and slightly warmer than it in the North Pacific. Disagreements in the upwelling 
regions of the west coast of South America and Africa are apparent, which might be partly due 
to well-known model biases in these regions. 



CMUG Phase 2 Deliverable  
Reference:  D3.1: Quality Assessment Report 
Due date:   June 2017 
Submission date:  21 December 2017 
Version:  4 
 

22 of 174 

 
Figure 6: Global-mean SST in the observational data sets HadISST2 and CCI-SST, and the 
assimilation experiments ORA REF and ORA CCI-SST over 1992—2010. 
 

 
Figure 7: SST difference averaged over 1992-2010 between (left) ORA CCI-SST and ORA REF, 
(right) CCI-SST and HadISST2. 
 
 
SST trends over the period 1992-2010 are not uniform, but depend on the ocean basin. While 
the Indian Ocean warmed at a rate of 0.1 to 0.5 K per decade, the Pacific exhibited a PDO-like 
pattern of warming SST in the west Pacific and cooling SST in the east Pacific, with a 
superimposed warming (Figure 8 left). The Atlantic warmed throughout, with a marked 
amplification at mid- and high northern latitudes, where warming in excess of 1 K per decade 
occurred. Differences in trends between observational data sets are not small (Figure 8 middle). 



CMUG Phase 2 Deliverable  
Reference:  D3.1: Quality Assessment Report 
Due date:   June 2017 
Submission date:  21 December 2017 
Version:  4 
 

23 of 174 

Over the western boundary currents, the warming in CCI-SST was up to 0.5 K per decade less 
than in HadISST2, whereas other regions like the Sea of Okhotsk and the Labrador Sea show 
up to 0.3 K per decade more warming in CCI-SST than in HadISST. The impact of in-situ 
observations is also clearly visible in the trend difference: it takes the form of linear features 
corresponding to busy shipping routes. In the ORA assimilation experiments, the trend 
differences in the observational data sets are reproduced (Figure 8 right). The patterns of the 
trend differences are very similar, but the amplitude is generally damped, similar to what was 
found when discussing differences in the mean state. 
 
Despite the differences discussed above, monthly-mean anomalies of SST are well correlated 
both between the two data sets, and between the model simulation and the data sets (Figure 9). 
Correlations between ORA CCI-SST and CCI-SST are generally 0.95 or higher, except in the 
presence of mesoscale eddies in the Southern Ocean and the western boundary currents, where 
correlations are degraded to values of 0.5 to 0.7. It is worth noting that the SST correlation is 
stronger between ORA CCI-SST and CCI-SST than it is between ORA-REF and HadISST2. 
This suggests that CCI-SST is better suited for ingestion into the ORA system than HadISST2. 
 
The stated uncertainties of the CCI-SST analysis are consistent with uncertainty estimates from 
other sources. As Figure 10 (left) shows, the CCI-SST analysis uncertainty of daily fields time-
averaged over 1992-2010 is mostly below 0.3 K in the interior of the ocean basins. Higher 
uncertainty exists in eddy-rich regions in the Gulf Stream and Kuroshio Current, and in the 
Southern Ocean. There, uncertainties exceed 1K in large areas. Regions characterized by 
upwelling off the tropical west coasts of South America and Africa also have elevated 
uncertainty levels of 0.5 to 1K. In the Arctic Ocean, CCI-SST uncertainty is high, and looks 
like a heavily interpolated field. Given that sea surface temperatures should on average deviate 
only very little from the freezing point of sea water, and given that remote sensing of SST in 
the presence of sea ice is difficult or even impossible, we suggest that neither the absolute values 
nor the uncertainty estimate of CCI-SST in the Arctic Ocean should be used. 
 
It is instructive to compare the CCI-SST analysis uncertainty (Figure 10 left) with the RMS 
difference between CCI-SST and HadISST2 (Figure 10 middle) and the ORAS5 ocean analysis 
ensemble spread (Figure 10 right). The same spatial patterns of different uncertainty levels are 
present in both. Compared to the CCI-SST analysis uncertainty, the overall magnitude of the 
RMS difference between CCI-SST and HadISST2 is larger, whereas the magnitude of the 
ORAS5 ensemble spread is smaller. Overall, based on this comparison with other estimates of 
uncertainty, the CCI-SST uncertainty estimates seem plausible and should be very useful for 
data assimilation and model validation applications. 
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Figure 8: SST trend 1992-2010 in CCI-SST (left), and trend difference between (middle) 
CCI-SST and HadISST2, and (right) ORA CCI-SST and ORA REF. 
 

 
Figure 9: Correlation of monthly-mean SST anomalies from 1992—2010 between (left) 
ORA-REF and HadISST2, and (right) ORA CCI-SST and CCI-SST. 
 

 
Figure 10: Comparison of SST uncertainties, averaged over all months 1992-2010. (Left) 
CCI-SST analysis uncertainty, (middle) RMS difference between CCI-SST and HadISST2, and 
(right) ORAS5 ensemble spread. 
 
 
Assimilating ESA-CCI sea-level anomalies in the ORA system 
 
We now briefly discuss the assimilation experiment ORA CCI-SLA, where CCI v1.1 sea level 
anomalies were assimilated in the ORA system instead of the Aviso sea level anomalies in the 
reference experiment ORA REF. We encountered two technical issues with the data, and we 
propose to address these in future data versions to increase suitability for modelling 
applications: 
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1. Due to the details of the analysis method, the MSLA gridded data contains spurious data 
over land points, but does not provide a land-sea mask. This is a well-known problem, 
but since it is not documented in the data themselves, it is easy to obtain wrong results 
when performing area averages. We suggest to either provide a land-sea mask in the 
files, or to remove the spurious data in future versions. To our knowledge, the problem 
has already been addressed for version 1.2 of the ESA-CCI SLA data. 

2. The gridded MSLA data are only available as monthly means. While this is sufficient 
for most applications, it poses a problem when the global mean sea level is needed on a 
daily basis to constrain the daily fresh-water balance. Therefore, for data assimilation 
purposes, it would be very helpful to have the gridded MSLA data as daily means. 

 
After addressing these issues, assimilation of CCI-SLA runs smoothly and gives global results 
that are very similar to what is obtained by assimilating AVISO data. Figure 11 shows global 
mean sea-level anomaly in the data products and in the assimilation experiments. The seasonal 
cycle, the year-to-year anomalies, and the overall trend match very well in the two data sets, 
with the exception of the late period from around 2011 on, when CCI-SLA shows a smaller 
trend than Aviso. This can be attributed to the fact that data from the CryoSat2 satellite is 
included in the Aviso product, but not in the CCI-SLA product. Assimilation of the products 
gives a difference in the model state that is proportional to the difference in the product, as 
shown in Figure 11 (right). 
 

 
Figure 11: Global mean sea level anomaly. (a) shows monthly anomalies referenced to the 
beginning of the period for Aviso and CCI-SLA. (b) shows the result of assimilating CCI-SLA 
instead of Aviso into the ORA system (12-month running mean anomaly referenced to the 
average over the period). 
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Assimilating ESA-CCI sea-ice concentration in the ORA system 
 
In the SSMI-derived sea ice concentration product CCI-SIC, spurious sea ice resulting from 
misinterpreting atmospheric microwave emissions has intentionally not been filtered out. In 
most other products, so-called weather filters in combination with masks of where sea ice 
occurrence is plausible are applied to eliminate these spurious sea ice concentrations. However, 
the application of weather filters and masks potentially removes correctly detected sea ice from 
the product, when sea ice either appears in unusual locations or under an atmosphere that 
distorts the microwave signature of sea ice. 
 
The sea ice data assimilation in the ORA system does not check consistency of sea ice 
observations with other meteorological and oceanographic parameters, and therefore takes the 
sea ice concentrations in the product at face value. Figure 12 shows annual-mean sea ice 
concentration in the Arctic (left, north of 70N) and Antarctic (right, south of 50S) in the CCI-
SIC data set, in the ORA assimilation experiments. In the Arctic, the excess spurious sea ice in 
CCI-SIC is not reflected in the assimilation experiment ORA CCI-SIC, presumably because the 
strong constraint to SST observations is enough to remove any sea ice that is introduced by the 
assimilation increments. In the Antarctic, however, assimilating CCI-SIC leads to an analysis 
which closely matches the observational product. As shown earlier, SST in the analysis are less 
tightly constrained to the observational product in the Southern Ocean, allowing the SIC 
assimilation to have a stronger effect. It is worth noting that ingesting CCI-SST has almost no 
impact on sea ice concentration in the Antarctic, which means that CCI-SIC and CCI-SST are 
not consistent. Trend and interannual variability of sea ice cover are however very similar 
between the CCI-SIC data set and all assimilation experiments. 
 

 
Figure 12: Annual-mean sea ice concentration in ORA assimilation experiments and CCI-SIC. 
(left) for the Arctic, (right) for the Antarctic. 
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The varying consistency between CCI-SST and the ORA system, and CCI-SIC and the ORA 
system is highlighted by the average sea ice concentration assimilation increments in the Arctic 
(Figure 13). For an unbiased model, the average assimilation increments should be zero. If 
assimilation increments are consistently positive, the model has a negative bias, and vice versa. 
In ORA-REF, the average assimilation increment is roughly 1x10-8/s (equals 0.1 % per day). 
When assimilating CCI-SIC, this increases by ~2x10-8/s, reflecting the fact that the assimilation 
increments constantly try to bring the model closer to the excess spurious sea ice in the 
observations. Interestingly, when ingesting CCI-SST into the ORA system, the average sea ice 
concentration increment is lower than in the reference experiment (decrease by ~2x10-8/s). This 
indicates that CCI-SST is more consistent than HadISST2 with the sea ice cover in the 
assimilation experiment. When combining ingesting CCI-SST and assimilating CCI-SIC in 
experiment ORA CCI-ALL, the two effects cancel out and the average assimilation increment 
is very similar to ORA-REF. 

 
Figure 13: Annual-mean assimilation increments over the Arctic region in different ORA 
assimilation experiments. 
 
 
Uncertainties of sea ice concentration provided with the CCI-SIC data are based on two distinct 
error sources: the algorithmic uncertainty which quantifies the variability of microwave 
emissivity for sea ice covered surface (Ivanova et al., 2015), and the smearing uncertainty which 
quantifies the error arising from interpolating brightness temperatures from variable satellite 
foot prints in the presence of strong spatial gradients. Likewise, if the footprint contains land 
surface, it is also very difficult to derive reliable ice concentration; this is covered by the 
smearing uncertainty as well. Figure 14 (left) shows the monthly average of these uncertainties 
during July 2007 for the Arctic as an example. The uncertainties are very high at the ice edge 
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and along the coast lines; values larger than 30% occur. Away from the ice edge and coasts, 
only the algorithmic uncertainty is important, with values of 5% or less. 
 
It is instructive to compare the CCI-SIC uncertainties (Figure 14 left) to the ORA ensemble 
spread (Figure 14 right). If ensemble spread is taken as a proxy for model uncertainty, then 
ORA analysis uncertainty is almost zero in the in interior of the ice pack, and in areas of open 
water. The ORA analysis is also very confident about sea ice concentration along the coast 
lines. Only regions close to the ice edge show elevated levels of analysis uncertainty, but the 
structure does not match well with the CCI-SIC uncertainty. In summary, uncertainties in CCI-
SIC are qualitatively different from uncertainties in the ORA system. This reflects the 
fundamentally different nature of observation and model errors and is not a problem. To the 
contrary: with a suitable data assimilation framework, the best fit between observations and 
model can be calculated using these spatially and temporally varying observation and model 
errors. This way, an analysis can be found that is superior to both the first guess of the model 
and the observational estimate, because it exploits the complementary strength of the model and 
the observations. 
 

 
Figure 14: Sea ice concentration uncertainty in July 2007 as represented by (left) ESA-CCI SIC 
analysis error and (right) ORAS5 ensemble standard deviation. Shown is the monthly mean of 
daily mean analysis error and ensemble standard deviation, respectively. 
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Impacts of assimilating ESA-CCI marine ECV on climate indices 
 
As mentioned in the introduction, the value of assessing the marine ECV through assimilation 
in the ORA system lies in the ability to discuss cross-variable consistency and impact. We chose 
two indices which represent global modes of variability and climate change, and which are 
sensitive to changes in the observational data sets: the upper 300m ocean heat content in the 
tropics (UOHC), and the Northern Hemisphere sea ice volume (SIV). 
 
Figure 15 (left) shows SIV November for 1993-2010 in all the assimilation experiments listed 
in Table 1. All show a similar strong decreasing trend between 2001 and 2007, with similar 
superimposed year-to-year variability. Observational estimates of sea ice volume from Kwok 
et al. (2009) and Tillich et al. (2015) are plotted as well. There are differences of 2000–3000 
km3 between the ORA experiments, with ORA REF having the lowest SIV, and ORA CCI-
ALL having the highest. There is reasonable agreement with the observational estimates. 
Overall it seems that ORA REF tends to have to low SIV, ORA CCI-ALL tends to have too 
high SIV, and CCI-SST and CCI-SIC agree with the observational estimates within the error 
bars. 
 
For UOHC in the tropics, year-to-year variability and strong increasing trend between 2000 and 
2005 are captured similarly by all assimilation experiments (Figure 15 right). During the early 
period, the different experiments have a larger difference in UOHC than in the later period, a 
fact that can be explained by the major increase in the density of in-situ observations with the 
implementation of the network of ARGO floats. In line with the SST differences discussed 
earlier, the ORA CCI-SST experiment has higher UOHC. Assimilation of SLA in ORA CCI-
SLA leads to lower heat content. For both SIV and UOHC, the effect of combining the ingestion 
of SST and the assimilation of SLA in ORA CCI-ALL seems to be a linear combination of the 
individual effects. 
 
Finally, it is worth noting that the simulation of major climate indices in the ORA system is not 
affected by exchanging the reference observational data sets for the CCI marine ECV data sets. 
Figure 16 demonstrates that there are hardly any discernible changes to monthly mean SST in 
the North Atlantic and in the Nino3.4 area, nor the Atlantic meridional overturning circulation. 
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Figure 15: Northern Hemisphere sea ice volume (left), and upper 300m ocean heat content in 
the tropics (right) in the assimilation experiments. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16: Monthly means of important marine climate indices as simulated by all assimilation 
experiments for the common period of all data sets. (Left) SST anomalies in the North Atlantic, 
(middle) SST anomalies in the Nino3.4 region, (right) Atlantic meridional overturning 
circulation. 
 
 
Summary 
 
A series of assimilation experiments with the ECMWF ocean reanalysis system has been 
performed, where standard observational data sets assimilated have been replaced by CCI 
marine ECV in different combinations. Results indicate that the simulation of large-scale 
climate indices and trends in the ocean reanalysis is only slightly affected. However, mean-state 
differences in the data products exist and appear in the reanalysis with some degree of 
moderation. There is evidence that especially the CCI-SST product has the potential to give 
positive contributions towards improving the ORA system. The provided uncertainties in the 
CCI-SIC product are an important improvement, and the overall trend and variability is 
consistent with earlier products. However, the decision not to mask out spurious sea ice creates 
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problems with the ORA system, because it is not equipped to treat this properly – it would 
therefore be preferable to have spurious sea ice filtered out within the data product as much as 
possible. Assimilating CCI-SLA gives results very similar to the reference experiment, with the 
noteworthy exception being a lower increase after 2010 due to excluding data from CryoSat2. 
Combining assimilation of all marine ECVs leads to a combined large-scale result as would be 
expected from a linear combination of the individual assimilation experiments. The 
uncertainties provided with the CCI-SST and CCI-SIC look reasonable, and should be very 
valuable when improving upon the existing ORA assimilation system. 
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3.3 Assimilation of several L2 ozone products in the ERA system 
[WP 3.2] 
 
The results presented in this Section were completed in 2016 and there is no update to 
them in this report. 
 

Aim 
The aim of this study is to promote and facilitate the integration of as many O3-CCI products 
as possible in reanalysis systems in general and in the forthcoming ERA5 production in 
particular. A number of Observing System Experiments (OSEs) have been designed to provide 
a detailed assessment of the quality and of the impact of these O3-CCI products. The list of 
assessed datasets includes seven products encompassing the three lines of production of O3-
CCI (total column, profiles from nadir instruments, and profiles from limb instruments).  

A set of Round Robin (RR) assimilation exercises for algorithm selection were performed using 
ozone datasets retrieved alternative algorithms from the same radiance measurements. The aim 
of the RR exercise was to provide an objective and rigorous assessment of the impact of 
assimilating similar datasets, thus giving the reanalysis community feedback on which one to 
use.  

By inter-comparison with the results from some of the performed experiments, it is possible to 
provide user recommendations to space agencies and retrieval teams on the most useful 
characteristics of future satellite instruments for ozone measurement. 

Summary of Results 
The results from this study were reported in the CMUG QAR (2015), and briefly summarized 
as follows:  

• The structure of observation uncertainties generally compare well with estimates obtained 
using the Desroziers method (Desroziers et al., 2005). The differences between estimated 
and provided uncertainties show up to 60% overestimation in the tropical mid stratosphere 
for GOME-2 NPO3 (this accounts for less than 4% of the observation values) and up to 
100% underestimation in the tropics for the total columns (this difference is about 8% of 
the global mean total column ozone value). 

• All the products exhibit negligible to very small biases. 

• All assessed O3-CCI datasets lead to improved ozone analyses.  
• Regarding the RR assimilation exercises, with the exception of OMI TCO3, the O3-CCI 

retrievals seem to better constrain the ozone analyses than retrievals obtained from the same 
radiances using alternative algorithms. 

• The assimilation of the GOME-2 NPO3 show a clear improvement in the internal 
consistency of the data assimilation system in terms of better fit to the AIRS ozone-sensitive 
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IR channels that in turn leads to statistically significant reduction (i.e. improvement) in the 
RMS of the geopotential forecast errors in the tropics.  

• Assimilation User Requirements to Space Agencies and retrieval teams:  
� The comparison of the impact generated by the GOME-2 TCO3 and that of the 

GOME-2 NPO3 shows that the latter dataset can lead to a greater positive impact on 
the ozone analyses than the former. 

� The comparison of the impact generated by the GOME-2 NPO3 and that of the MIPAS 
LPO3 shows that thanks to its higher vertical resolution limb observations can lead to 
a greater positive impact in the stratosphere and upper troposphere than the nadir 
ozone profiles. This is not always the case in the lower troposphere, where despite 
lacking visibility, the limb observations can still improve the ozone analyses compared 
to a control experiment if their synergy with other observations (in particular total 
column ozone products) can be exploited within the data assimilation system.  

 
The recommendations that were formulated on the basis of the results and conclusions 
summarized above were un-controversially accepted by the C3S reanalysis team, and the 
following O3-CCI products are being assimilated in the ERA5 reanalysis currently in 
production: SCIAMACHY TCO3; GOME and GOME-2 NPO3; MIPAS LPO3. 
 
A summary paper, Dragani (2016), was published in Atmospheric Chemistry and Physics. 
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3.4 Integrated assessment of the CCI Aerosols, GHG, and Ozone 
datasets [WP3.3]  

Aim 
WP3.3 aims at providing an integrated assessment of the impact of assimilating ozone, aerosol, 
and GHG datasets in the global atmospheric composition data assimilation system developed 
within the ECMWF Integrated Forecasting System (IFS) through a number of FP6, FP7, and 
H2020 projects (GEMS, MACC, MACC-II, and MACC-III) and currently operated by the 
Copernicus Atmosphere Monitoring Service (CAMS) to provide NRT monitoring of air quality 
relevant gases and their reanalyses. The results are expected to feed back into the decision 
process in preparation for the forthcoming, first reanalysis of the CAMS.  

 
Summary of the results and recommendations  
 
We have performed a set of experiments using the ECMWF Integrated Forecasting System in 
a configuration with enhanced atmospheric chemistry used routinely by the Copernicus 
Atmosphere Monitoring Service.  
 
The experiments were designed as integrated runs in which different ozone, aerosol and GHG 
products retrieved by the corresponding CCI consortia were assimilated in various 
combinations. The objectives were as follows: 

� to assess the impact of each product of each individual ECVs on the corresponding 
model equivalent; and 

� to discuss the level of consistency between the three ECVs. 
 
The impact of assimilating each product was individually assessed through the comparison of 
the corresponding analyses against independent observations. The results are as follows: 
 
� Ozone: Of the O3-CCI products, this work focussed on the exploitation of the limb 

instrument datasets that were not addressed in WP3.2. The results showed that  
� the SMR limb ozone profiles produce a negligible impact at most latitudinal band 

but they lead to an improvement of the level of agreement between the ozone 
analyses and reference data (MLS and ozone sondes) at high latitudes in the SH 
during winter and spring.  

� With a few exceptions, the assimilation of both the SCIAMACHY limb and the 
OSIRIS ozone profiles seem to degrade the analysis fit to MLS (either in the mean 
or standard deviation) and to the sondes at most upper tropospheric and stratospheric 
layers in the extra-tropics. 

� Aerosols: The assimilation of the SU and ADV datasets was individually assessed as the 
sole source of aerosol constraint and in combination with MODIS observations. The results 
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of the comparisons against AERONET show that: 
� The two CCI products have a very similar impact on the aerosol forecasts, with the 

ADV dataset being only marginally better than the SU one; 
� Neither of the two AATSR datasets can provide a constraint on the aerosol forecasts 

as important as that provided by MODIS observations, though the amount of data 
from the former is latter than that of the former; 

� The combination of AATSR data with MODIS improves the quality of the aerosol 
forecasts on that of either AATSR-only or MODIS-only assimilation. 

� GHG: The assimilation of several CCI CO2 and CH4 products were assimilated in different 
combinations with and without the LMD IASI CO2 and CH4 data used to derive a baseline 
set of analyses. The results show that: 

� The CO2 analyses all show very high correlation (>93%) with the TCCON 
observations. However, the control experiment only constrained by the LMD IASI 
data is the one with the highest correlation at over 99% and its combination with any 
of the CCI dataset seems to degrade the analysis agreement with the TCCON data. 

� Among the two full physics datasets, the SRFP is the one that in combination to 
IASI CO2 leads to a larger degradation of the fit to TCCON data than the IASI-only 
CO2 analyses. 

� The assimilation of BESD SCIAMACHY CO2 in addition to IASI leads to analyses 
that show only a minor degraded fit to the reference data while the incremental 
addition of the SRFP dataset produces the CO2 analyses with the worst fit to 
TCCON. 

� For CH4, the SRON SRFP and SRPR dataset were used to assess the impact of using 
a datasets produced by an algorithm with detailed physics versus a proxy. The use 
of the proxy leads to CH4 analyses that have a 5% lower correlation with TCCON 
than their equivalent using the full physics product.  

� On average, either product leads to degraded CH4 analyses than those from an LMD 
IASI-only experiment. However, a number of sites showed that the agreement of 
individual TCCON measurements with their analyses equivalent was higher for the 
CCI data, particularly during the Aug-Oct period when the IASI-only analyses 
exhibited a divergent behaviour.  

� Cross-ECV consistency: two examples were discussed on the impact of O3 on aerosols and 
that of aerosols and GHG together on O3. In the first case, the assimilation of one additional 
CCI O3 dataset leads to a small, but non-negligible positive impact on the aerosols forecasts 
suggesting a good level of consistency between these two ECVs. The second case is 
inconclusive as it leads to improvements in some regions of the atmosphere and locations 
and degradation in others. The degradation found in the GHG analyses after adding the CCI 
datasets and the limitations of the system in not correcting for the surface fluxes could be 
the main reason for the degradation promoted in the ozone analyses. 
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The results of this study show some potential for some of the datasets (e.g. SMR), pose some 
questions about possible inter-instrumental biases affecting the analyses when combination of 
datasets are jointly assimilated, suggests that limitations in the data assimilation system can 
partly explain the limited ability of exploiting some of the considered datasets, and confirm that 
a proxy dataset cannot provide the same level of constraint of one based on full physics.  
 
Of all the datasets used in this study, the assimilation of the AATSR aerosols in combination 
with MODIS data can be recommended, that of the SMR ozone profiles could be considered 
but more experimentation might be needed to determine if more information can be extracted 
in the summer hemisphere and tropics. Additional work is perhaps needed before the GHG 
datasets can be efficiently exploited, especially when datasets from different sources are 
considered for a joint assimilation.   

The data assimilation system 
The data assimilation system used in this study consists in the most recent version of the global 
atmospheric composition data assimilation system operated at ECMWF for the CAMS. This 
system uses a bin-model for aerosol that includes desert dust, sea salt, organic matter, black 
carbon and sulphates, as well as the greenhouse gases, allowing assimilation of CO2 and CH4. 
For the chemical reactive species (i.e. O3, CO, NO2, SO2 and HCHO), the IFS data assimilation 
system was extended to include an integrated chemistry model (referred to as C-IFS), which 
provides emissions, deposition, and chemical tendencies for the species included in the system. 
These variables are all constrained by the assimilation of satellite observations, where possible.  
 

The experiment design 
The assessment of the three CCI ECVs is performed in both passive and active modes.  
 
To account for the CAMS and CCI requirements, a complex set of experiments was designed. 
This included six assimilation experiments, and it is presented in Table 4. Experiments gi91, 
gi92, gi93, and gi94 (Exp 1 – Exp 4) are used to assess the individual aspects for each of the 
three ECVs with respect to the Ctrl (gi90) while experiment gi95 (Exp 5) will help to assess the 
level of consistency between the three ECVs when contrasted with the results from some of the 
other experiments. 
 
All the experiments started on 1 Jan 2010, and ran until the end of September 2010, with the 
aim of analysing in detail the NH summer period (May-October 2010) after removing the period 
affected by spin-up. The experiments ran at a model resolution of TL255 (about 80 km) on 60 
vertical levels – as used in the Copernicus Atmosphere Monitoring Service at the time the 
experiments were submitted.  
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Impact of each ECV on their analysis equivalent: 
In this section, the focus is in assessing the impact of each ECV on their model equivalent. 
 
� Ozone: 
We first look at the impact of the assimilating the CCI limb ozone data on the ozone analyses by 
comparison with independent ozone observations from the Aura Microwave Limb Sounder 
(MLS), ozone sondes available at the World Ozone and Ultraviolet Radiation Data Centre 
(WOUDC). These were used as independent ozone references for the stratosphere and 
troposphere/lower stratosphere, respectively. In all comparisons, the ozone analyses were spatially 
co-located with the independent observations allowing a maximum three hour time lag.  
 
The MLS comparisons were performed in two stages. First, the 3D ozone analysis closest in time 
to the independent observation was interpolated at the observation location. This gives a temporal 
mismatch of up to 3 hours between the observation sensing time and the analysis valid time. The 
second stage takes care of the vertical interpolation. This is done by interpolating the profile with 
the highest vertical resolution to the coarsest grid. In these comparisons, the coarsest grid is 
represented by that of the MLS data with its vertical resolution of about 3 km. Only the levels 
spanning the region of the atmosphere encompassed by both datasets are used.  
 
The comparisons with MLS are displayed as the vertical cross-section of the change in the analysis 
fit to the observations due to the addition of any of the O3-CCI limb data to the reference observing 
system assimilated in the control experiment. Such a change, ∆, is defined as: 
∆	� 	 |�����	


��
 � 	
�����| �	 |�����	

��
 � 	


�����|	                    (1) 
 
where STAT() can be either the mean or the standard deviation. In equation (1), 	


��
 is the ozone 
observation from MLS, 	
���� and 	


���� are the ozone analyses collocated to the MLS 
observations from a perturbation and the control experiment (unless otherwise mentioned the 
control is gi90). The perturbation can be any of the other experiments.  
 
For either statistics, a negative value of ∆ means that the analyses from a given perturbed 
experiment fits MLS observations better than those from the control, thus leading to an 
improvement. In contrast, a positive value of ∆ is associated to a degradation in the ozone analyses. 
 
This quantity ∆ is showed in figure 17 for the assimilation of the SCIAMACHY limb, the SMR, 
and the OSIRIS ozone profiles. In the top panels, STAT is the mean; in the bottom panels, it is the 
standard deviation.  
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Figure 17: Change in the zonal mean (top panels) and standard deviation (bottom panels) 
differences between the MLS retrievals and co-located ozone analyses from a perturbation 
experiment compared to the Exp/Ctrl for May-Oct 2010, computed according to equation (1). The 
perturbation experiment is the one also assimilating the SCIAMACHY limb data in the left panel, 
the SMR profiles in the middle panel, and the OSIRIS profiles in the right panel. Negative (positive) 
values in blue (red) colours indicate a poorer (a better) fit of the control analyses to MLS than 
their perturbed equivalent, and thus, compared to MLS ozone profiles, an improvement (a 
degradation) in the data assimilation system due to the new observations. Data are in mg/kg. 
 
Compared to MLS, the assimilation of SCIAMACHY limb data produces a degradation in the 
analyses mixing ratio around the ozone maximum while the standard deviation of the residuals 
from the observations is normally improved. In contrast, the assimilation of OSIRIS retrievals 
(right hand side panels) leads to improvements in the mean analyses but a degradation in the 
standard deviation of the residuals, implying an increased noise in the ozone analyses. The 
assimilation of the SMR profiles is the only case in which both the mean state and the standard 
deviation are improved. However, the impact is only visible at high latitudes in the SH. This is 
most likely a consequence of the fact that the information provided by the SMR data at latitudes 
northern than around 60S was also available in the data assimilation system via the assimilation of 
other ozone observations (namely, total column ozone from SCIAMACHY nadir, and ozone 
profiles from NOAA-16, -17, and -18 SBUV/2). As these other sources of ozone data are all from 
UV instruments and those cannot provide measurements at high latitudes in the SH during the 
polar night (i.e. the period considered here), a positive impact on the ozone analyses is produced 
by the assimilation of the SMR dataset.   
 
Figures 18 and 19 show the comparisons of four sets of analyses (the control, and three sets of 
analyses assimilating also the SCIAMACHY limb, the SMR, and the OSIRIS limb profiles from 
CCI, respectively) and ozone sondes from the WOUDC archive, for May-Jul and Aug-Oct. The 
comparisons with the ozone sondes are shown in terms of mean RMS residuals, RMSE, between 
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the sonde profiles and the co-located analyses from the four experiments. Thus the smaller is the 
RMSE, the better is the analysis fit to the sonde measurements. For plotting purposes, the RMSE 
are computed and displayed in terms of integrated column quantities. 
 
The comparisons with ozone sondes in May-Jul (figure 18) confirm that the assimilation of SMR 
data has in general a neutral impact on the ozone analyses, except at high latitudes in the SH 
(wintertime) where it leads to a slightly better agreement with the independent data than that for 
the control analyses. With a few exceptions, the assimilation of both the SCIAMACHY limb and 
OSIRIS seem to degrade the fit to the ozone sondes at most upper tropospheric and stratospheric 
layers in the extra-tropics during May-Jul 2010.  
 

 
Figure 18: Fit of the ozone analyses from four experiments to ozone sondes given in terms of the 
RMSE over four latitudinal bands between 90S-60N. The comparisons were computed by 
averaging over May-Jul 2010. The analyses were taken from the control (black lines), and the 
experiments assimilating also the SCIAMMACHY limb O3 profiles (red lines), the SMR data (blue) 
and the OSIRIS data all from the O3-CCI. The latitudinal band each panel refers to and the number 
of ascents included in the average can be found in the corresponding panel title. Data are in 
Dobson Unit (DU). 
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In the tropical region, the impact of SCIAMACHY limb data is mostly neutral while OSIRIS has 
a positive impact in the region of the ozone mixing ration maximum between 15 and 30 hPa, and 
as a consequence of the synergy with the total column ozone retrieved from SCIAMACHY (nadir 
measurements) also at some levels in the troposphere. The reasons why this occurs were discussed 
in detail by Dragani (2016).  
 
During the period Aug-Oct (figure 19), the assimilation of OSIRIS is at best neutral in the NH and 
at mid-latitudes in the SH, and from neutral to slightly positive at high latitudes in the SH. The 
impact of SCIAMACHY limb is in general from slightly positive to positive at most levels and 
latitudinal bands, with only a few exceptions, for instance the middle stratosphere at mid-latitudes 
in the SH (bottom left panel of figure 19). As in the May-Jul period, also during the following 
three months the assimilation of SMR ozone profiles is neutral to slightly positive in the region of 
the ozone hole. 
 

 
Figure 19: Like in figure 18, but for Aug - Oct 2010. 
 
� Aerosols: 
The CCI aerosol AOD at 550nm produced with the SU and ADV algorithms from the ENVISAT 
AATSR measurements were each assimilated individually and together with AQUA and TERRA 
MODIS data. In all cases the impact is assessed against the AERONET dataset used as reference. 
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An additional experiment, in which only MODIS data are assimilated, is used as a control 
experiment. It is noted that the two MODIS instruments from AQUA and TERRA provide a larger 
amount of data than available from the AATSR instrument, thus it should be expected a larger 
impact of the former on the analyses compared to the latter. 
 
Figure 20 presents a summary of the comparisons. This is presented in terms of the scatter plots of 
the aerosol forecasts for different experiments against the AERONET observations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20: Scatter plot of the Aeronet AOD at 550nm (x-axes) against their forecast equivalent (y-
axes) computed for an experiment assimilating the CCI AATSR AOD retrieved with the SU 
algorithm (a)), an experiment assimilating the CCI AATSR AOD retrieved with the ADV algorithm 
(b)), an experiment assimilating the MODIS AOD (c)), an experiment assimilating both the CCI 
AATSR AOD retrieved with the ADV algorithm and the MODIS AOD (d)).    
 
Panels a) and b) in figure 20 show that the two CCI AOD products have similar impact on the 
AOD forecasts. A marginal higher level of agreement can be found in the case of the assimilation 
of the ADV AATSR dataset (+0.04% higher correlation) compared to the assimilation of the SU 
AATSR equivalent.  
 
When compared with the assimilation of only MODIS AOD data (panel c)), neither of the two 
CCI datasets can match the level of agreement that the AOD forecasts reach with the AERONET 
data. In this case the correlation between observed and forecasted AOD is about 5% higher than 

c) d) 

d) d) 
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the one computed from AATSR-based forecasts. Nonetheless, the assimilation of both MODIS 
and either AATSR dataset improves the correlation with AERONET of +0.6% compared with the 
assimilation of MODIS data alone. This increase in the correlation is a clear indication that the 
data assimilation system is able to exploit the synergy between the two datasets and transfer that 
information to the AOD forecast field. When referring to individual locations and regions, the 
above results are generally confirmed (figure 21).  

    

 

 
Figure 21: Correlation coefficient between the modelled AOD and the AERONET data at 500 nm 
at various sites for experiment gi90 (MODIS only, top panel), gi91 (AATSR only, middle panel) 
and gi92 (MODIS and AATSR, bottom panel). The size of each circle refers to the size of sample 
used to estimate the correlations.  
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The correlations between the modelled and AERONET AODs by station for the experiments gi90 
(top panel), gi91 (mid panel), and gi92 (bottom panel) show that over the South-East Asia the 
assimilation of MODIS AOD produces modelled AODs that have higher correlation with the 
AERONET observations than those constrained with the CCI AATSR retrievals. Some exceptions 
can be found for a number of station over the South America, over which the latter show higher 
correlation with the independent dataset than the former. 
 
� GHG: 
The SCIAMACHY CO2 and the TANSO CO2 and CH4 retrieved with several algorithms from 
GHG-CCI were assimilated in IFS in a set of experiments detailed in table 4. An experiment 
assimilating the IASI CO2 and CH4 retrievals was also run and used as a control. These IASI 
observations were retrieved by the Laboratoire de Météorologie Dynamique (LMD) and already 
available at ECMWF. None of the GHG product was bias corrected in the IFS. The analyses 
resulting from the set of experiments in table 1 were compared with observations from the TCCON 
network used as a reference. Not only the comparisons were performed by co-locating the model 
output with the observed reference but also accounting for the a priori and Averaging Kernels of 
the CCI data as explained by Massart et al (2016). A summary of the results is presented in figures 
22 and 23 for CO2 and CH4, respectively.  
 
For CO2, the experiments were designed to assess the impact of two full physics algorithms, and 
the incremental impact of two products, one from ENVISAT/SCIAMACHY and the other from 
GOSAT/TANSO. Figure 22 summarizes the results, and shows the scatter plots between TCCON 
CO2 and the CO2 analysis equivalent for several experiments. Each panel presents with black 
symbols the scatter plot for the control experiment assimilating only the IASI data. The CO2 
analyses from the control experiment exhibit very high correlation with the TCCON dataset with 
a level of 99.74% over all the available sites. Compared to this control, the other experiments 
(gi91, gi92, gi93, and gi94) were designed as incremental experiments assimilating one or two 
datasets from CCI. Overall, the analyses from all experiments show high level of correlation with 
the TCCON observations, ranging from a minimum of 93.52% to a maximum correlation of 
99.74%. Although the correlation is always above 93%, the combination of the IASI data with any 
of the CCI dataset seems to degrade the level of agreement of the analyses with the TCCON data 
compared to the assimilation of IASI only data. This could point to inter-instrumental biases 
between the IASI and the CCI CO2 retrievals that if uncorrected can deteriorate the resulting 
analyses. 
 
The CO2 analyses from experiments gi91, and gi92 were constrained by the IASI CO2, and by 
GOSAT TANSO CO2 data from CCI retrieved using the University of Leicester and SRON full 
physics algorithms, respectively. These two GOSAT datasets are referred to as the OCFP and 
SRFP datasets and their scatter plots are shown in the top left and top right panels of figure 22, 
respectively. The addition of either CCI CO2 retrievals to the IASI data leads to CO2 analyses that 
show a degraded fit to the TCCON observations. The degradation seems to be more important in 
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the case of the SRFP dataset than in the OCFP case with a reduction of the correlation of 4.23% 
and 1.7%, respectively.  
 

 

 
 
Figure 22: Scatter plot between the TCCON observations and their collocated CO2 analyses (y-
axis) for five experiments: the control experiment (gi90, black +), and different combinations of 
the CCI datasets as given in table X1. For each experiment, the correlation (labelled in the legend 
of each panel as ‘R’) is provided in %. All available TCCON data were used. 
 
  
The bottom left panel of figure 22 refers to the comparisons of the analyses constrained by both 
the LMD IASI and CCI BESD SCIAMACHY CO2 data against the TCCON observations. 
Although lower than for the control using only IASI, the correlation for the gi93 CO2 analyses is 
similar to the one obtained for the gi91 CO2 analyses, implying that the two products have a similar 
impact on the analyses.  
 
The bottom right panel of figure 22 refers experiment gi94 that assimilated the CCI SRFP GOSAT 
and BESD SCIAMACHY CO2 data in addition to the LMD IASI retrievals. The CO2 analyses 
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from this experiment is the one that exhibits the lower level of correlation with the TCCON 
observations at a level of 93.52%.  
 
For CH4, the experiments were designed to contrast the impact of a dataset retrieved with a full 
physics algorithm with that of retrievals from a proxy algorithm. In both cases, the impact was 
evaluated in isolation and in combination with a CH4 dataset retrieved by LMD from the IASI 
measurements. The full physics and the proxy data developed by SRON were considered in this 
case, and referred to as SRFP and SRPR, respectively. Figure 23 summarizes the results, and shows 
the scatter plots between the TCCON CH4 and the CH4 analysis equivalent for several 
experiments. Each panel presents with black symbols the scatter plot for the control experiment 
assimilating only the IASI data. The two top panels refer to the experiments using a combination 
of IASI data and either the SRFP (left panel) or SRPR (right panel) data. The bottom panels refer 
to the comparisons for the analyses constrained by only one of the CCI datasets.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 23: Like figure 22, but the CH4 analyses and TCCON observations. 
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On average, the CH4 analyses from the control experiment exhibit very high correlation with the 
TCCON dataset with a level of 99.76% over all the available sites. The two GOSAT CH4 products 
generate CH4 analyses that have a lower level of agreement with the TCCON CH4 data than that 
from the control experiment. The correlation with TCCON data is about 83% when the data from 
the full physics algorithm is used, and it decreases of about 5% to less than 78% when the analyses 
are constrained by the proxy dataset suggesting an advantage in using a product generated using a 
full physics algorithm compared to a simple proxy (bottom panels of figure 23). This result is 
confirmed in when the analyses are also constrained by the LMD IASI CH4 observations, albeit 
higher correlation values driven by the use of the IASI data.   
 
The level of correlation obtained from all sites over the whole period May-Oct 2010 does not 
always reflect the level of agreement found over individual sites. In particular, it was noted that 
during the second half of the considered period the analyses constrained by either the SRFP or 
SRPR datasets had a better agreement with their TCCON equivalent than those only constrained 
by the LMD IASI data. Figure 24 shows the time series of the three sets of analyses from gi90 
(IASI only, red), gi93 (SRFP only, blue), and gi94 (SRPR only, green) at four selected TCCON 
stations (as indicated in each panel) against the TCCON observations (black symbols). The red, 
blue and green symbols show the analysis equivalent of the TCCON data for the three experiments. 
At these stations, the analyses constrained by IASI-only generally compares better with TCCON 
data than the other analyses during summertime. Towards the end of the assimilation period, the 
analyses constrained by the two CCI products are in better agreement with the TCCON 
measurements over the shown sites while those constrained with the IASI data seem to 
progressively diverge.  
 
This situation could be related to a model error amplification with observations that are not able 
to properly correct for the model shortcomings. One of the problems of the system is that the CH4 
concentration is only constrained by the observed CH4 concentration while no correction is made 
to the surface fluxes. This suffices to produce sensible analyses in general. However, if in a given 
location/region and time the CH4 concentration strongly depends on and is driven by the surface 
fluxes then errors can result in the analysed fields as the data assimilation system cannot generate 
increments based on the assimilated data that account or can correct for the missed information in 
the surface fluxes.  
 
These situations can be exacerbated if the observations have limitation themselves, or when 
observations from different sources and affected by inter-instrumental biases are assimilated 
simultaneously without any bias correction. 
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Figure 24: Time series of the gi90 (red), gi93 (blue) and gi94 (green) analyses at four TCCON 
stations. The TCCON observations are shown by the black symbols. The analysis equivalent of the 
observations is indicated by the red, blue and green symbols for each of the three experiments.  
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Assessment of the cross-ECV consistency: 
In addition to the impact of each CCI ECV on their model equivalent, the data assimilation system 
was also used to assess the consistency between the three ECVs. It is important to note that the 
data assimilation system in its current development allows for little impact across-ECVs. This 
conservative approach is used to preserve the quality of the corresponding analyses and forecasts 
avoiding they could be degraded in the event of poor quality observations of a different 
geophysical variable are mistakenly assimilated. Nonetheless, variational data assimilation 
techniques, in particular 4DVar, can still provide a weak connection between different ECVs that 
in some cases can be large enough to be measurable. This is because 3D-Var and 4D-Var 
multivariate data assimilation schemes make use of explicit background-error correlations and 
balance relationships. That means that changes to one variable cannot happen in isolation. Thus, 
an ozone increment due to the assimilation of ozone observations can also be accompanied by an 
increment in other fields, e.g. aerosols. We show here two examples, the first refers to the impact 
of ozone data on aerosol forecasts, and the second is the impact of the assimilation of aerosols and 
GHG on the ozone analyses. 
 
Table 5 lists the data that were assimilated in the experiments gi90 and gi95 that are used for the 
first example. The same aerosols and GHG datasets were used in both experiments. In contrast, 
the ozone analyses in gi95 benefitted from the assimilation of SMR data in addition to the SBUV 
and SCIAMACHY TCO3 that were also used in experiment gi90. We now assess the quality of 
the aerosol AOD forecasts at 550nm for both experiments against the AERONET network.  
 
 

 

OZONE AEROSOLS 
GHG 

CO2 CH4 

gi90 SBUV 
SCIA TCO3 

MODIS IASI IASI 

 
gi95 

SBUV 
SCIA TCO3 
SMR 

MODIS IASI IASI 

Table 5: Experiments considered in figure 24. The CCI data are given in bold. Only the data 
assimilated in the data assimilation system are listed. 
 
Figure 25 presents the scatter plots of the AERONET AOD data and their model equivalent for 
the experiments gi90 and gi95. Albeit small, it shows that the correlation of the aerosol forecasts 
to AERONET increases from 82.94% to 83.11%, i.e. +0.17%, when the SMR ozone profiles are 
also assimilated. This is a clear indication that there is a consistency cross-ECV  
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It should be reminded that the assimilation of SMR ozone profiles has limited impact on the ozone 
analyses and that impact, albeit positive, is only measurable at high latitudes in the SH. One could 
argue that if a more significant positive impact was found in the ozone analyses, this could have 
triggered in turn a larger change also in the quality of the aerosol forecasts.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 25: Scatter plot of the Aeronet AOD at 550nm (x-axes) against their forecast equivalent (y-
axes) computed for gi90 (left) and gi95 (right) as defined in table 2.  
 
The second example refers to the impact aerosols and GHG on the quality of the ozone analyses. 
The considerations made above regarding the limited interaction allowed within the data 
assimilation system are also valid here, thus only a small impact should be expected. The 
experiments considered are gi93 and gi94, and as a reminder table 6 provides the list of datasets 
assimilated for each of the three ECVs. 
 
 

 

OZONE AEROSOLS 
GHG 

CO2 CH4 

gi93 SBUV 
SCIA TCO3 
OSIRIS 

ADV AATSR IASI 
BESD SCIA 

SRFP 
TANSO 

 
gi94 

SBUV 
SCIA TCO3 
OSIRIS 

ADV AATSR 
MODIS 
 

IASI 
BESD SCIA 
SRFP 
TANSO 

SRPR 
TANSO 

Table 6: Like in table 2, but for experiments gi93 and gi94. 
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Figure 26 shows the rate of change in the agreement of the ozone analyses to MLS computed as 
in equation (1) for the two experiments in table 6, using gi93 as reference. In the plot, negative 
values in either the mean (left panel) or the standard deviation (right panel) means that the changes 
inferred improve the ozone analyses (in the sense of the agreement to the MLS data used as a 
reference).  
 
Figure 26 shows that both in the mean and standard deviation the ozone analyses are degraded at 
some levels and regions and improved in others. Because of the way the experiments had to be 
designed interpreting the impact on the ozone analyses of changes in the aerosols and GHG 
observing system is not trivial, in particular to disentangle the relative weight of aerosols and GHG.   
 
One could speculate that perhaps the degradation found in the GHG analyses when adding the CCI 
datasets and the limitations of the system in not correcting for the surface fluxes could be the main 
reason for the degradation in the ozone analyses, but a clean demonstration of the linkages of each 
of the two ECVs on ozone is required. If the above speculation was confirmed, then it would also 
confirm the ability of a complex data assimilation system to assess the cross-ECVs’ consistency 
and to exploit it.  
 

 
Figure 26: Change in the zonal mean (left panel) and standard deviation (right panel) differences 
between the MLS retrievals and co-located ozone analyses from experiment gi94 compared to gi93 
for May-Oct 2010, computed according to equation (1). Negative (positive) values in blue (red) 
colours indicate a poorer (a better) fit of the control analyses to MLS than their perturbed 
equivalent, and thus, compared to MLS ozone profiles, an improvement (a degradation) of the gi94 
ozone analyses compared to those from gi93. Data are in mg/kg. 
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3.5 Integrated assessment of CCI terrestrial ECVs impact in the MPI-
ESM [WP3.4] 

Aim 
WP3.4 includes an integrated assessment of the terrestrial ECV variables available in the CCI with 
a joint analysis of the ECVs land cover, fire, soil moisture, and greenhouse gases (GHG). The 
ECVs were used to optimize uncertain parameters in the MPI-M ESM fire model process 
formulations using an optimum estimate framework, to make use of the uncertainty information 
provided with the ESA CCI datasets. The overarching questions to be addressed were: 
 

• Are the four CCI data-sets consistent with each other and with model data so that modelled 
and observations data can be used directly for model validation and data assimilation? 

• How can CCI data records be used to improve fire emission modelling in an earth system 
model? 

• Do simulated carbon emissions improve using CCI datasets?  

 

Summary of Results 
3.5.1 Fire model optimization 
 
SPITFIRE-JSBACH simulations were performed for the time period 1850 to 2010 in which burned 
area and fire carbon emissions are interactively simulated. Simulations were run with the standard 
model setup as described in detail in Lasslop et al., 2014. In addition, simulations were performed 
with a modified representation of the Nesterov-Index in SPITFIRE following Groisman et al. 2007. 
The modified version served as a first test case to use ESA CCI data in the evaluation of the 
SPITFIRE-JSBACH model. Simulated, FIRE_CCI burned area as well as burned area reported in 
GFEDv3/GFEDv4 based on MODIS (Giglio et al., 2006, Giglio et al., 2010) for the time period 
2006-2008 are compared in Figure 27.  
 
Contrasting the burned area with soil moisture reported from CCI_SM, we find a distinct 
relationship between burned area and soil moisture with low burned area for low soil moisture 
(fuel limitation) and low burned areas for high soil moisture (moisture limitation). The comparison 
shows that all products have a very similar distribution. The CCI-MERIS product peaks at a higher 
soil moisture compared to GFED products and the distribution is wider. Both versions of JSBACH-
SPITFIRE peak at a too high soil moisture and the distribution is too wide.  
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Figure 27: Burned area averaged for the years 2006-2008. FIRE_CCI (upper row), GFEDv3 and GFEDv4 
(middle row), SPITFIRE-JSBACH standard and modified (lower row).  

 
 
We identified two parameters (conversion soil moisture to fuel moisture and ignition rate) in 
SPITFIRE-JSBACH that are not well constrained by observations, which we systematically varied 
over a reasonable parameter space to optimize width and peak position of the soil moisture / burned 
area relationship. JSBACH-SPITFIRE was optimized to run a large number of experiments with 
varying parameter settings in a reasonable amount of time. Figure 28 shows the deviations in peak 
position and distribution width for 70 experiments with CCI-MERIS as reference. The optimized 
parameters do form the new standard values for JSBACH-SPITFIRE and are applied in the 
ongoing MPI-ESM CMIP6 simulations. 
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Figure 28: Relative difference in peak position and width of the burned area – soil moisture 
relationship for 70 experiments performed with JSBACH-SPITFIREv1/v2 compared to 
GFEDv3/v4 and CCI MERIS (reference).  
 
 
The Fire Model Intercomparison Project (FIREMIP, Hantson et al. (2016) allowed us to perform 
similar analysis for a range of state-of-the-art global fire models. Figure 29 shows the relationship 
between burned area and soil moisture for four fire models. The models all show rather different 
relationships, which might partly explain the very different distributions of burned area simulated 
in the FIREMIP models. The relationship between soil moisture and burned area will be included 
in the benchmarking scheme developed for FIREMIP including ESA CCI burned area data.  
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Figure 29: burned area – soil moisture relationship in four global fire models participating in 
FIREMIP. 

 
3.5.2 Fire carbon emissions  
 
With the release of the FIRE CCI data version 4.1 in July 2016 the longer time period  covering 
the year 2005 to 2011 allowed us to prescribe the burned area data as boundary condition in 
JSBACH. Prescribing burned area in a global vegetation model as boundary condition to derive 
related fire carbon emissions still requires parameterizations of a range of processes including fire 
history, fuel consumption and mortality rates. Here we followed the approach applied in GFEDv3 
(van der Werf et al., 2010). Figure 29 shows on the left hand side the Fire CCI burned area data 
and on the right and side the simulated fire carbon emissions using Fire CCI burned area data as 
boundary condition. Globally the mean annual burned area of 346 Mha for the time period 2005 
to 2011 results in the emissions of 2.19 PgC/year. This compares well to the most recent GFEDv4s 
estimates (van der Werf et al., 2010 and updates) in which a global MODIS based burned area of 
402 Mha results in fire carbon emissions of 2.18 PgC/year.  
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The fire CCI data are reported with an uncertainty range for the global burned area of +/- 28%. 
Applying the uncertainty range for the prescribed burned area data in JSBACH results in +15% 
and -19% difference in the simulated fire carbon emissions. 
  
A crucial parameter for the fire carbon emissions is the prescribed landcover distribution, which 
defines which vegetation type burns. Next to the standard JSBACH landcover distribution 
(Raddatz et al., 2007) we applied CCI LC product. Landcover classes reported in ESA CCI were 
converted into plant functional types used in JSBACH following Poulter et al., 2015. Using ESA 
CCI LC results in global fire carbon emissions of 1.85 PgC/year which is 4% lower than using the 
standard JSBACH landcover distribution.  
 

Quality relevant outcomes 

In WP3.4, only the gridded FIRE_CCI products were used. The FIRE_CCI gridded products from 
phase I were only available for a 3 year period (2006-2008), which limited their applicability for 
climate studies. To test the functional relationships, such as the relationship between burned area 
and soil moisture, global data coverage was available, reducing the dependency on having a long 
time series. Further assessment for fire model development will require categorization by land 
cover type to optimize land cover dependent parameters, which will benefit from a longer time 
series.  
 
The CCI-MERIS product shows a very similar distribution of soil moisture dependency compared 
with the MODIS based GFEDv3/GFEDv4 product, which was applied in previous studies. These 
findings agree with the analysis of the FIRE CCI team reported in the Product Validation Report 
II and the Climate Assessment Report. The temporal stability of the product was not assessed due 
to the limited time period covered by the global product. 
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3.6 Cross assessment of clouds, water vapour, aerosols, ozone, 
GHG, SST, radiation and soil moisture impact on global climate 
variability and trends [WP_O3.4] 

 

Aim 
The aim of this WP is to make an integrated assessment of ESA-CCI ECVs and other observations 
studying climate variability by investigating relationships between co-varying variables and 
evaluate the same processes, such as ENSO, in global climate models. The uncertainty information 
for the CCI data sets are used when comparing to other observational data sets and the associated 
model-generated variability. The scientific questions are: 

• How are the observed ECV's related and what is the robustness of associated mechanisms 
across different observational data sets (section 3.6.2) 

• Can the models capture the relations between ECVs and the variability seen in observations 
for ENSO? (section 3.6.3) 

 
 

Key Outcomes of CMUG Research 

• Assessments of the CCI observations 
o CCI SST and clouds spatial and temporal mean and variability agree well with other 

independent observations. Cloud CCI cloud fraction (CLT) has higher variability 
for tropical ocean high pressure regions than the other AVHRR datasets possibly 
linked to an underestimation of low level clouds. CCI SST, Cloud cover, sea level 
and ocean colour all capture the ENSO variability consistently. 

o The CCI SST mean uncertainty is smaller than the difference compared to other 
observations. CCI total cloud cover uncertainty is larger than the difference 
compared to similar observations. The assumption on pixel independent cloud 
fraction errors over estimates the uncertainty, this should be improved in the next 
Cloud_cci v3 product.  

o Some CCI data issues: CCI AVHRR cloud products have inconsistency in their 
timeseries due to NOAA satellites scanning motor problems in 2000. This has been 
amended for in the Cloud-CCI v2.0 dataset, although some features remain and 
should be communicated to end users. The aerosol early AOD products were not 
stable across the satellite changes, improvements have been made for the latest 
versions.  
 

• Evaluation of AMIP5 atmospheric simulations forced with observed monthly SST 
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o All four models, have despite prescribed SST, cold biases and too small variability 
in their two meter temperatures (T2M's) over the tropical Pacific Ocean especially 
for the western part. These T2M biases are similar to the biases found for SST for 
coupled models, except there is no warm bias for the eastern Pacific Ocean. This 
suggests that the atmospheric models affect the well known cold tongue bias but 
has less influence on the eastern warm bias. 

o The AMIP5 model spread in mean cloudiness is large. Two of the models capture 
the longitudinal variation of the mean and variability and the time variation 
associated with ENSO for both CLT and Top of the Atmosphere Outgoing 
Longwave Radiation (OLR).   
 

• Evaluation of CMIP5 atmosphere-ocean coupled simulations 
o All four CMIP5 models present day simulations have too cold SST's over most of 

the Pacific Ocean except for warm biases at the eastern edge, as found in previous 
studies. The SST variabilities are too small with a peak in standard deviation (STD) 
around 240-250°E contrary to the observed flat profiles. Towards the end of the 
century all models mean tropical Pacific Ocean SST increase by 1-2°C and the 
variability increase for most models, retaining the erroneous peak in STD. 

o The CMIP present day cloudiness biases and variabilities are similar to the AMIP 
simulations except over the Eastern Pacific where the models have larger 
underestimates of CLT in accordance with their positive biases in SST. Three of 
the models show small increases in cloudiness towards the end of the century and 
their longitudinal pattern remain. While the fourth model has a small decrease in 
cloudiness. The changes in CMIP cloudiness between present day and future are 
smaller than difference between AMIP and CMIP present day simulations. 

 

Summary of Results 

3.6.1 Introduction 
The El Niño Southern Oscillation (ENSO) is the most important coupled ocean-atmosphere 
phenomenon affecting global climate variability on seasonal to inter-annual time scales. It is an 
irregularly periodical variation in winds and sea surface temperatures (SST) over the tropical 
eastern Pacific Ocean, affecting much of the tropics and subtropics. The warm (El Niño) phase is 
associated with large positive SST anomalies in eastern to central Pacific occurring on 3-7 years 
times-scales and the cold phase (La Niña) occurring every 2-4 years is less intense but longer 
lasting. The phases can be classified by calculating SST anomalies for different regions of the 
Equatorial Pacific, most typically the Niño3.4 region (190E-240E, 5S-5N). Figure 30 shows the 
correlation between CCI SST Niño3.4 index and CCI global cloud cover. The warm El Niño 
phases are accompanied with deep convective clouds in the central or eastern Pacific and reduced 
cloudiness in the western Pacific. The maximum positive correlation is for the mid Pacific shifted 
west of the Niño3.4 box. More recently other variables, top of the atmosphere outgoing long-wave 
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radiation and clouds have also been used to classify the ENSO events giving new perspective of 
the ENSO phase distributions (Chodi and Harrison 2010, Chodi and Harrison 2013, L’Heureux et 
al 2015). 

 
Figure 30: Correlation between CCI SST Niño 3.4 SST time series and CCI global Cloud cover 
for 1992-2008. The boxes show the Niño3.4 region (170W-120W, 5S-5N, full black box) and the 
Hovmöller region (100E-80W, 5S-5N, hatched box). 
 
Outgoing Longwave Radiation (OLR) at the top of the atmosphere variability is a good proxy for 
the deep atmospheric convection in the tropics that generates atmospheric heating anomalies which 
force local and remote atmospheric circulation anomalies (Lau et al 1997). Negative (positive) 
OLR anomalies are indicative of enhanced (suppressed) convection and hence more (less) cloud 
coverage typical of El Niño (La Niña) episodes. The tropical Pacific deep atmospheric convective 
activity spreads eastward during the transition to El Niño state as found for satellite-measured OLR 
(Chodi and Harrison 2010). Unfortunately the existing directly measured OLR satellite datasets 
are short, only 15 years or less, while there exist multiple cloud satellite datasets with long time 
records. We investigate if the cloud dataset can be used to complement the OLR datasets when 
evaluating ENSO in observations and models. 
 
The relative short time scale, large amplitude and multiple ECV's affected by ENSO makes it an 
ideal natural forcing to focus on for cross-assessment of multiple satellite records as the CCI data 
sets, albeit the records are too short for sampling the full ENSO diversity and the decadal ENSO 
variability. Climate models capture the basic ENSO features but the amplitude, life cycle and 
frequency are not properly reproduced and most models variability extends too far into the Western 
Pacific. To further understand model performances and biases, evaluating models with 
observational constraints derived from multiple variables as described in this research, can give 
new perspectives.  
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We examine the tropical Pacific Ocean variability and ENSO in the following satellite 
observations, CCI SST (Merchant et al 2014 a,b), sea level (Quartly et al 2017), ocean colour 
(Valente et al 2016) and clouds (Stengel et al 2015, 2016), PATMOS-X (Heidinger et al 2014), 
CLARA-A2 (Kaspar et al 2009), HadISST (Rayner et al 2003), CERES OLR (Loeb et al 2012), 
NOAA OLR (Liebmann and Smith 1996) as well as the corresponding variables from climate 
models from the CMIP dataset (Taylor et al 2012) and ERA-Interim (Dee et al 2011).  
 
 
 
3.6.2 Cross assessment of the observations 
For the CMUG cross-assessment and to find alternative ENSO indices, we investigate the 
variability for all CCI variables for the equatorial Pacific Ocean, by calculating normalized 
anomalies (5ºS to 5ºN) for all longitudes and months for CCI SST, Sea level, ocean colour 
(chlorophyll) and cloud cover. The results are shown in Hovmöller diagrams (Figure 31), where 
the positive and negative values show the deseasonalised monthly anomalies as function of 
longitude and time. For all variables we see the strong El Niño event 1997/1998 and the following 
longer La Niña period as well as other weaker El Niño's peaking further west. We note that the 
largest variability for the different ECV's occur at different longitudes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 31: Hovmöller diagrams for Pacific Ocean 5S-5N normalized anomalies for CCI SST, Sea 
Level, Chlorophyll and Cloud cover as function of time and longitudes between 100E to 270E. 
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For the rest of this WP we concentrate on SST, clouds and OLR. Observed and simulated ENSO 
characteristics is thought to depend on the mean state in the tropical Pacific Ocean as well as the 
variability in time and space. We compare the ECV's mean values (left column) and variability 
(right column) to other observations and ERA-Interim as a function of longitude in Figure 32. The 
CCI SST varies from 30ºC over the western warm pool decreasing over the cold tongue region to 
25ºC of the South American coast (Fig 32a). CCI SST is very similar to HadISST data but 
somewhat warmer, 0.5ºC, for the western part. We also show the CCI SST uncertainty plotted 
around the mean. It is too small (~0.1ºC) to be clearly visible but we note it is smaller than the 
difference compared to HadISST mean value. 

Figure 32: Mean (left column) and STD (right column) values across the tropical Pacific Ocean 
(5S-5N) for SST (a and b) CCI 1992-2015 (red lines mean and uncertainty), HadISST 1992-2015 
(black hatched lines) and ERA-Interim 1979-2008 (blue lines), for Cloud cover (c and d) CCI 
1982-2014 (red lines mean and uncertainty), PATMOS-x 1982-2014 (black hatched lines) and 
ERA-Interim 1979-2008 (blue lines), for OLR (e and f) NOAA 1982-2015 (blue lines) and CERES 
2001-2016 (black hatched lines).  
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The mean cloudiness across the Pacific Ocean is U-shaped, all cloud data sets have high values 
(~70%) for the western convective region, minima (35-40%) over the mid Pacific Ocean and high 
values (~70%) for the eastern stratocumulus region off the South America coast and (Fig 32c). 
The CCI cloud minima is 5% smaller than for the other data sets. The CCI uncertainty (red thin 
hatched lines in Fig 32c) is unrealistically large ~10%, i.e. larger than the differences compared to 
PATMOS-x and other AVHRR datasets (not shown). The CCI cloud mask uncertainty is based on 
hit rate scores against measurements from the Cloud-Aerosol Lidar with Orthogonal Polarization 
(CALIOP) not taking into account co-dependent pixel errors. This will be improved in the next 
CCI release v3.0. For most other CCI cloud variables such as liquid and ice water path, the 
uncertainty estimates are based on optimal estimation theory.  
 
OLR is low over the western convective region for both NOAA and CERES as expected for the 
high clouds emitting at lower temperatures, while OLR is high for the mid Pacific where on 
average less high clouds shield the surface and for the western stratocumulus region with low 
clouds emitting at higher temperatures (Fig 32e). CERES provides direct measurements of OLR 
although data is only available from year 2000. NOAA OLR is derived from AVHRR data from 
1979 and onwards and has a coarse resolution of 2.5ºx2.5º and therefore not ideal. 
 
We examine the variabilities across the Pacific Ocean to find the optimum region to characterize 
ENSO for each ECV. As noted before the largest variability for the different ECV's occur at 
different longitudes as seen for the deseasonalised monthly standard deviations (STD's) (right 
column, Figure 32). SST has a wide flat peak in STD (and wide gradient in mean SST) over the 
Pacific cold tongue region (enclosing the Niño3.4 region), which is the standard region for 
classifying the ENSO phases. In contrast the cloud and OLR variabilities have peaks in their STD 
distributions just east of the dateline (~190E) in the Niño4 region (160E-210E) where their mean 
values have sharp gradients (Fig 32c).  
 
The CCI SST variability is larger than for the other observations which likely due to the high 
horizontal resolution (0.25°) than for the HadISST and ERA Interim datasets (1.0°). CCI CLT has 
higher variability than PATMOS-x and ERA-interim for the warm pool region, which appears to 
be due to less CCI cloudiness during La Niña time periods compared PATMOS- and CLARA-A2 
(not shown). The reason for CCI AVHRR detecting fewer low and mid clouds common for La 
Niña is unknown, but it has been communicated to the Cloud CCI team. For OLR we note that 
CERES has much lower STD values than NOAA east of the dateline (Fig 32d), this is due to the 
short CERES time record, 2001-2016, which does not include the major El Niños over the central 
and eastern Pacific during the 80's and 90's (see Fig 33c).  
 
Next we investigate the time variabilities for the ECV's by calculating indices for the different 
regions with the highest variability. The deseasonalised monthly anomalies normalized by the 
mean standard deviation are shown in Fig 33 for the Niño3.4 region. The CCI SST timeseries is 
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almost identical to HadISST and show the ENSO phases. The cloud index (Fig 33b) covary with 
the SST index especially for the positive ENSO phase. OLR is anti-correlated with SST and Clouds 
(Fig 33c), i.e. less emitted OLR for high convective clouds associated with El Niño and the 
opposite more OLR when convection is suppressed during La Niña. 
 
The scatter plots in Figure 43 show the relations between the SST indices and CLT (top row) and 
OLR (bottom row) indices, respectively. For the Niño34 region (left column) the relationships are 
stronger for El Niño, high positive values, than for La Niña, negative values, for SST and CLT. 
For the Niño4 region (right column) the relationship between the indices is skewed towards 
negative values, capturing the La Niña phase better.  

Figure 33: Timeseries of Niño3.4 indices for a. SST HadISST (black thin line, repeated in all 3 
panels) and CCI SST (red line), b. CCI CLT (red line) and PATMOS-x CLT (black hatched line), 
and c. NOAA OLR (blue hatched line) and CERES OLR (black hatched line).  
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The CLT-SST (Fig 34a and d) relations are similar to the OLR-SST relations (Fig 34b and d) that 
has been used to characterize ENSO phases (L’Heureux et al 2015). The CLT-OLR relationships 
for the different regions are close to linear (Fig 34e and f) especially for the Niño4 region. The 
existing direct measured OLR satellite datasets are short, only 15 years or less, while there exist 
multiple cloud satellite datasets with long time records. From these comparisons we therefore 
suggest using satellite cloud dataset to complement the OLR datasets when evaluating observed 
ENSO. The relationships in Fig 34 can be viewed as the ENSO relation between the ocean part 
(SST) and the atmospheric part (OLR or CLT), next step is to evaluate these relationships in the 
models.   

Figure 34: Scatter plots of the Niño3.4 (left column) and Niño4 (right column) timeseries indices for 
CLT versus SST (top row), CCI SST vis CCI CLT (red dots), HadISST vis CCI CLT (black circles), 
for OLR versus SST (middle row), CCI SST vis NOAA OLR (red dots), HadISST vis NOAA OLR (black 
circles) and for CLT versus OLR (bottom row), CCI CLT versus NOAA OLR (black circles). 
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3.6.3 Evaluation of ENSO in climate models using CCI and other observations. 
We now examine the ENSO variability in climate models evaluating SST, T2m, Clouds and OLR 
from climate models. Most CMIP5 coupled atmosphere-ocean models have cold SST biases in the 
western equatorial Pacific for the cold tongue region and warm SST biases in the far eastern Pacific 
(east of 260E) where stratocumulus clouds are underestimated (Bellenger et al 2014). To evaluate 
the climate models, we first analyse AMIP simulations, with prescribed observed monthly SST at 
the lower boundary, thereby isolating the atmospheric part of the model and capturing the present 
day ENSO through the SST variations. Thereafter we evaluate the corresponding CMIP5 historical 
simulations for present day and RCP4.5 scenarios for end of the 21th century. The models 
presently used are CNRM-CM5 (1.4°x1.4°, L31, Voldoire et al. 2013), EC-Earth (1.1°x1.1°, L62, 
Hazeleger et al 2010), HadGEM2-AO (1.9°x1.3°, L60, Collins et al 2011) and IPSL-CM5A-MR 
(2.5°x0.6°, L39, Hourdin et al. 2013), the data were obtained from the World Climate Research 
Programme’s (WCRP) CMIP5 data archive made available through the Earth System Grid 
Federation. 
 
All four AMIP5 models, have 1-3ºC colder two meter temperatures (T2m's) than the prescribed 
SST's for the tropical Pacific Ocean, especially for the western part as seen in Figure 35a. These 
T2m biases are similar in magnitude and shape to the well known western Pacific cold SST bias 
mentioned above. The other common coupled model problem, the warm SST bias for the eastern 
Pacific Ocean, is not present in the T2m's. The SST STD (Fig 35b) are close to HadISST, plotted 
for the same time period 1979-2008. The T2m variability is smaller than the prescribed observed 
SST STD for the western Pacific. The cold two meter temperatures and small variability over the 
cold tongue region suggests that the atmospheric models in this study are contributing to the cold 
tongue coupled model SST bias, but for the eastern warm bias the ocean play a larger role. 
 
The AMIP5 model spread in mean CLT is large (-10 to +20% biases compared to observations for 
mid Pacific Ocean Fig 35c). Two of the models (EC-Earth and HadGEM) capture the longitudinal 
variation of the mean and variability for both CLT and OLR. CNRM underestimate clouds for the 
eastern Stratocumulus region and has a peak in variability too far east. IPSL CLT mean and 
variability do not change much across the Tropical Pacific Ocean but it has a maxima for the 
stratocumulus region. Both CNRM and IPSL OLR have maxima further east than observed thereby 
underestimating OLR for the western part and overestimating for the eastern part, still their OLR 
variability peaks for the Niño4 region as observed. 
 
The results for the coupled atmosphere-ocean simulations are show in Figure 36. All four CMIP5 
models SST's for present day are too cold over most of the Pacific Ocean except for warm biases 
at the eastern edge, as found in previous studies and mentioned above. The present day variabilities 
are too small compared with observations and there are peaks in STD around at 240E-250°E, 
contrary to the observed flat structure. Towards the end of the century all models mean tropical 
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Pacific Ocean SST increase by 1-2°C and the SST STD increase for most models. All four models 
retain the longitudinal pattern with the erroneous peak in STD around 240-250°E.  
 
The CMIP present day cloudiness biases compared to the observations are similar (in shape) to the 
AMIP simulations biases except over the Easter Pacific where the models have larger 
underestimates of CLT in accordance with their positive bias in SST. The CMIP CLT present day 
variabilities are smaller than the AMIP variabilities and have a flatter structure. The variabilities 
become slightly larger towards the end of the century, except for eastern parts where they remain 
fixed.  

Figure 35: AMIP5 1979-2008 simulations. Mean (left column) and STD (right column) values 
across the tropical Pacific Ocean (5S-5N) for SST (a and b, observations HadISST, full lines SST, 
hatched lines T2m), CLT (c and d, observations CCI) and OLR (e and f, observations NOAA) for 
EC-Earth (cyan),  HadGEM (green), CNRM (magenta) and IPSL (red). 
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Three of the models have a small increase in cloudiness towards the end of the century (2-5%) and 
their longitudinal pattern remain. While the fourth model, IPSL, has a small decrease in cloudiness 
(3%). The changes in cloudiness between CMIP  present day and future are smaller than difference 
compared to the AMIP cloudiness.  

Figure 36: CMIP5 1979-2008 (full lines) and CMIP5 2070-2099 (hatched lines). Mean (left 
column) and STD (right column) values across the tropical Pacific Ocean (5S-5N) for SST (a and 
b, observations HadISST), CLT (c and d, observations CCI) and OLR (e and f, observations 
NOAA) for EC-Earth (cyan), HadGEM (green), CNRM (magenta), IPSL (red). (The model OLR 
will be added to e and f) 
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The ENSO relationships between the AMIP SST indices and clouds and OLR indices are shown 
for the Niño34 region in Fig 37. The models relationship for SST-OLR are close to the 
observations, while for SST-CLT only HadGEM and EC-Earth are (fairly) similar to the 
observations. This confirms that the two models, CNRM and IPSL, have cloud fraction that are 
not radiatively consistent with their OLR. In order to properly compare model CLT with 
observations we need to use a cloud satellite simulator.  

Figure 37: Scatter plots of the Niño3.4 AMIP5 (left column), CMIP5 1979-2008 (middle column) 
and CMIP5 2070-2099 (right column) timeseries indices for CLT versus SST, CCI CLT versus 
NOAA OLR (black dots), EC-Earth (cyan dots), HadGEM (green dots), CNRM (magenta dots) 
and IPSL (red dots). 
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However, since most CMIP5 and CMIP6 historical and scenario simulations are run without 
simulators, except for a number of specific CFMIP experiments, an alternative would be to 
calculate an effective radiative cloudiness from CLT, LWP and IWP since those variables are 
standard CMIP output. This will be tested as well as the difference using EC-Earth CLT without 
and with Cloud_cci simulator. 

Figure 38: Relationships between CLT and SST (top row) and OLR and SST (bottom row), for 
Niño3.4 (left column) and Niño4 (right column). Observations black markers and models coloured 
markers, EC-Earth (cyan), HadGEM (green), CNRM (magenta) and IPSL (red). The grey box 
shows the observed spread and the dark grey the cci uncertainties. 
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From this CMUG study we aim to derive observational relations that can be used for evaluation of 
models and possibly for obtaining observational constraints. By comparing the covarying SST and 
CLT or OLR variabilities for the different regions we get measures of the ENSO amplitude, and 
the covariaton of the ocean and atmosphere. The preliminary Figure 38 show these relationships 
for the two Niño regions. For CLT the models show a large spread as previously discussed we 
need to use satellite simulators for the model data as will be done using the Cloud_cci simulator 
as well as the simplified simulator using the CMIP model output. For OLR we can compare 
directly which will be done when the CMIP5 data have been obtained. 
 
3.6.4 Feedback to the ECV teams 
This CMUG process study revealed issues for some of the CCI ECV's which have been 
communicated to the teams. Three examples are described here. We found inconsistencies in the 
Aerosols ECV AOD550 time series, they were not stable across the ATSR2 and AATSR satellite 
change, adjustments of the jump in timeseries have since been made in their latest versions. We 
also noted that the Cloud_cci v2 cloud fraction uncertainties were unrealistically large, due to 
assumption of independent cloud fraction pixel errors, which should be improved for Cloud_cci 
version 3.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 39: Hovmöller diagrams for CCI, CLARA and PATMOS-x LWP, anomalies for 5S-5N as 
a function of time and longitude, 100E-270E. 
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For other CCI cloud products we found inconsistencies in the timeseries due to hardware problems 
for the NOAA satellites as shown in Figure 39. The Hovmöller diagrams for liquid water path 
(LWP) for Cloud-CCI, CLARA and PATMOS-x show unrealistic high values for the anomalies 
after year 2000. This is due to problems with the scanning motor on-board the NOAA satellites. 
The Cloud-CCI and CLARA team were aware of this problem but it was not clear on how it could 
affect the ECV's. In the latest Cloud CCI data v2.0 corrections have been made that mitigated the 
issue but some features remain, which should be communicated to end users. 
 
3.6.5 Outlook 
This study will be updated with the final CCI ECV's products, SSH and ocean colour, covering the 
full time records when available in 2017. Other satellite datasets such as ISCCP cloud and radiation 
products and water vapour will be added to the analysis as well as additional reanalysis products. 
We will also add products missing for the climate models such as OLR and include several more 
models from the CMIP5 and CMIP6 archives.  
 
We will continue the analysis on how to compare satellite observed cloudiness with model 
simulated cloud fraction, using Cloud_cci simulator but also trying simplified versions that can be 
used to derive model satellite clouds form standard CMIP output. The impact on the ENSO 
characteristics for EC-Earth simulations of different horizontal and vertical resolution is also 
ongoing. A paper is in preparation in collaboration with the ECV teams on this ENSO evaluation 
using multiple ECV's. Thereafter the new ENSO diagnostics will be implemented into the 
ESMValTool  
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3.7 Coupled climate model assessment [WP3.5]  
 
 
Key Points: 

• Comparison of satellite derived products for Soil Moisture and Evaporations exhibit huge 
differences. It is not possible to say which one is closer to the reality. 

• Partitioning combined SW surface radiation and evaporation data with respect to 4 soil-
moistures quartiles at regional scale allow to derive consistent diagnostics on the land-
atmosphere coupling. 

• These diagnostics can be used to better constrain parameterization implemented in climate 
models. 

 

3.7.1 Introduction 
The strength of the coupling between the soil-moisture and surface atmospheric variables has 
important implications for regional climate simulations as well as for cli- mate projections Cheruy 
et al. (2014),Orth and Seneviratne (2017). It is controlled by the boundary layer turbulence, the 
radiation at the surface, the precipitation and the state of the soil. The observation and/or the 
numerical simulations of processes like cloud-radiation interactions, boundary layer-turbulence, 
precipitation that control the coupling are still challenging. The soil-moisture itself is a quantity 
poorly observed at scales consistent with the numerical models requirements. In this work we 
explore conjointly various state-of- the-art satellite or site-observations upscaled products for 
evaporation, soil moisture and radiation in order to derive guidance for the development of 
parameterizations relevant for the soil-moisture atmosphere coupling in the IPSL-CM.  

 

3.7.2 Materials and Methods 
Observations 

We used site-observations Jung et al. (2011) upscaled product for evaporation and, satellite 
estimation of evaporation and soil moisture through data assimilation process Martens et al. (2017) 
and ESA-CCI Blended Active and passive microwave retrieval of surface soil moisture Dorigo et 
al. (2017) and CERES-EBAF for surface shortwave radiation Kato et al. (2013). For the sake of 
manageability of the comparison with model outputs, we used monthly mean values and we apply 
to the products derived from the observations a first-order conservative remapping on a common 
longitude-latitude grid identical to the one of the model simulations. The period analysed last over 
10 years from 2001 to 2010, where all sets of data are available.  

Numerical Simulations 

We used the atmosphere-land component of the IPSL-CM (Dufresne et al 2011). LMDZ is the 
atmospheric General Circulation Model (GCM) that has been developed for about thirty years at 
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the Laboratoire de Meteorologie Dynamique. The model resolution for this study is 2.5 degree 
(latitude) by 1.25 degree (longitude) with 79 vertical levels. The physical parameterizations 
originally implemented in the version used here are described in (Hourdin et al., 2011) , (Rio et 
al., 2010) and (Jam et al., 2013). The Land Surface is the ORCHIDEE model (Krinner et al., 2005). 
The parameterization of the soil hydrology allows for a physically-based description of vertical 
water fluxes, using Richards equation (De Rosnay et al., 2002; d’Orgeval et al., 2008). This work 
has been conducted during a phase of intense activity on the parameterizations in view of the 
Coupled Model Intercomparison Project Phase 6 (CMIP6) (Taylor et al., 2012) and the combined 
evaporation/radiation/soil-moisture dataset has been used to assess the impact of new 
developments of the hydrology module implemented in ORCHIDEE (paper in preparation) on the 
realism of the simulated soil-moisture atmospheric coupling. A reference simulation and three 
sensitivity experiments relying on the new developments of the hydrology module have been 
performed with the LMDZOR model. The sensitivity experiments are designed to test a 
modification of the vegetation map and of the back-ground albedo (a), in addition to (a) a 
modification of the stress function for the transpiration (b), in addition to (c) the implementation 
of a resistance for the bare soil evaporation. Each experiment follows the Atmospheric Model 
Intercomparison Project (AMIP) protocol where the AGCM is constrained by realistic sea surface 
temperature and sea ice, the runs cover the period 2001-2011. The large-scale atmosphere 
dynamics is constrained towards prescribed atmospheric conditions using a nudging approach 
(Coindreau et al. (2007)). This method has been successfully used to evaluate the 
parameterizations related to the land-surface/atmosphere coupling (Cheruy et al. (2013)). The 
simulated global wind fields (zonal u ; meridional v) are nudged with the ECMWF reanalyzed 
winds by adding a linear restoring term with a 6-hour relaxing time (τnudge).  

Method 

The global dataset is split into regions in order to insure homogeneous climate conditions to 
prevail. The Koeppen Geiger climate classification system is adopted. We focus on three regions 
where the soil-moisture/atmospheric coupling is strong: the Mediterranean coasts (region 15), the 
South Great Plains (SGP) in United States (06) and the western Europe (21) depicted in figure 1. 

For each region, histograms of the soil-moisture and of the evaporation have been produced with 
the various datasets and compared for the whole period. They are reported on figure 2 and 3 for 
the Mediterranean coasts and Western Europe.  

For the evaporation (Figure 2), the histogram of the GLEAM product has a much larger amplitude 
than the one of the Jung’s product, but the form of the histograms are similar. Concerning the 
surface soil moisture, differences exist in both the amplitude and the form of the histograms, 
especially for the Western-Europe and the SGP (not shown) regions where the GLEAM histogram 
is much skewed to the downside than the CCI-SM one. Note that GLEAM produces the highest 
values of both the surface soil-moisture and of the evaporation, this is consistent with the use of a 
retrieval algorithm that is based on a water budget approach. For the surface soil-moisture retrieval 
the ESA-CCI approach uses an heuristic evaluation of the driest and wettest reference values where 
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the saturated conditions for the soil moisture may not be always captured (Algorithm Theoretical 
Baseline Document: http://www.esa-soilmoisture-cci.org/sites/default/files/documents /ATDB/ 
CCI2_Soil_Moisture_DL2.1_ATBD_v3.2_01_Executive%20Summary.pdf), this can explain the 
smaller amplitude of the histograms. In this work we used the combined ESA-CCI product which 
results from blended ACTIVE and PASSIVE merged products.  

 

Fig. 1. Regions used for the stratification of the data. The Koeppen Geiger climate classification 
system is used. 

 

 

 

 

 

  

 

 

 

 



CMUG Phase 2 Deliverable  
Reference:  D3.1: Quality Assessment Report 
Due date:   June 2017 
Submission date:  21 December 2017 
Version:  4 
 

75 of 174 

 

 

Fig. 2. Regional histogram for the evaporation (GLEAM.3.1 and Jung products) for the 
Mediterranean coasts and the western Europe region. 
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Fig. 3. Regional histogram for the surface soil moisture (GLEAM.3.1 and ESA.CCI Combined 
products) for the Western Europe. 

 

 

In the merging process, since the passive and active products have different dynamical range they 
have to be rescaled. This is done with the help of GLDAS- Noah land surface model Rodell et al. 
(2004). This approach rises the questions of the nature of the surface soil moisture observations 
and on how much the observational product is independent of the model used to rescale the 
observations. This issue requires additional investigation which is out of the scope of the present 
work. 

From these results, it is difficult to say if one dataset is closer to the reality than another. This 
makes the straightforward use for evaluation purpose complicated. However, we notice that the 
agreement is more satisfying for the evaporation than for the soil moisture. This suggests to look 
for robust information combining the available datasets and giving less weight to the absolute 
values of the soil-moisture. 

The surface soil moisture for GLEAM as well as for ESA-CCI is expressed in m3.m-3 which is 
consistent with a volumetric soil moisture. We converted it in a soil moisture content in the first 
10 cm of soil in order to compare them to the similar simulated quantity (expressed in kg.m-2). 
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3.7.3. Characterizing Soil-moisture - Evaporation Regimes using the 
observational products 
 

The way the respective role of soil moisture and radiant energy at surface impact the evaporation 
is poorly constrained at scales representative of the grid-boxes of a cli- mate model. This induces 
significant dispersion in the response of the evapotranspiration in a changing climate (e.g. Boie 
and Terray (2008)) with consequences on the possible impacts of climate change. The above 
described datasets can be used to better document this process. According to the previous findings, 
we now use the soil-moisture information to discriminate between very dry, moderately dry, 
moderately moist and highly moist soil and investigate the links between evaporation and net SW 
radiation at the sur- face for each class of soil moisture. More than absolute values of the 
evaporation or of the soil moisture, we look for information on the strength of the response of the 
evapo- ration to the net SW radiation available at the surface. For each region and all the possible 
combinations of data, bi-dimensional histograms for simultaneous (at the monthly time scale) 
estimations of evaporation and net shortwave radiation have been plotted for each of the 4 quartiles 
of the soil moisture distribution. In order to get information of the impact of the uncertainties of 
the observational products on the robustness of the diagnostics, we constructed the histograms for 
all possible combination of data. This gives sets of histograms for a particular region. 

 

 Whatever the combination used, the scatter plots exhibit robust behaviours for each soil moisture 
quartile. When the soil moisture is not too low, the relation between radiation and evaporation is 
almost linear. A straight line depicting a linear regression is super-imposed on the plots. For all 
datasets and all regions the intersection with x-axis occurs for positive values of the SW radiations, 
meaning that below a certain threshold of incoming energy, the evaporation is not triggered. This 
threshold is lower when Jung product is used to estimate the evaporation but it is almost insensitive 
to the choice of the soil moisture product. For the Mediterranean and the SGP and for the lowest 
values of the soil moisture the linear relation almost vanishes. In dry regions (figures 6, 5) and 
during the dry season radiation has hard time to trigger the evaporation. When it is triggered, it is 
a yes-or-no process and the evaporation rates can vary over a large range of values. The highest 
values of the evaporation rates occur for the intermediate values of the soil moisture and the highest 
values of the net SW radiation. For the moistest quartile (figures 6, 5, 7) the values of the SW 
radiation and of the evaporation are relatively low. In this case the surface layer is probably too 
moist to allow available soil moisture to evaporate and the radiation is lowered because of clouds. 
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Fig. 4. Bi-dimensional histograms of the occurrence of pairs of (Evaporation, SWnet radiation) 
values binned into 20 intervals and for each quartiles of the soil moisture distribution for the 
Western-Europe and for 10 years. The colour scale indicates the percentage of the total population 
with particular (SWnet,Evaporation) binned values. The scale is bounded at 3%, the values out- 
side the range are set to the maximum and minimum. The maximum value is indicated in the title 
of each histogram. The datasets used are indicated in the title of each set of histograms. 
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Fig. 5. Two dimensional histograms of the occurrence of pairs of (Evaporation, SWnet radiation) 
values binned into 20 intervals and for each quartiles of the Soil moisture distribution for the 
Mediterranean coasts and for 10 years. The colour scale indicates the percentage of the total 
population with particular (SWnet,Evaporation) binned values. The scale is bounded at 3%, the 
values outside the range are set to the maximum and minimum. The maximum value is indicated 
in the title of each histogram.
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Fig. 6. Bi-dimensional histograms of the occurrence of pairs of (Evaporation, SWnet radiation) 
values binned into 20 intervals and for each quartiles of the Soil moisture distribution for the 
Southern Great Plains and for 10 years. The colour scale indicates the percentage of the total 
population with particular (SWnet,Evaporation) binned values. The scale is bounded at 3%, the 
values outside the range are set to the maximum and minimum. The maximum value is indicated 
in the title of each histogram. 
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Fig. 7. bi-dimensional histograms of the occurrence of pairs of (Evaporation, SWnet radiation) 
values binned into 20 intervals and per each quartiles of the Soil moisture distribution for the 
Western Europe and for 10 years. The colour scale indicates the percentage of the total population 
with particular (SWnet,Evaporation) binned values. The scale is bounded at 3%, the values outside 
the range are set to the maximum and minimum. 
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Fig. 8. Soil moisture distribution for Western Europe and Southern Great Plains, and histograms 
of the distribution of the evaporation and SWnet radiation binned into 20 intervals for each 
quartile of the soil moisture and for 10 years. 

 

Figure 8 gives an even clearer picture of the indirect impact of the soil moisture on the SW 
radiation. The histogram of the SW radiation and the evaporation have been plotted for each 
quartile. The blue line which corresponds to the moister upper soil layer peaks at low values of 
both SW radiation and evaporation. The occurrence of high evaporation rate is more frequent in 
the driest quartile. 

 

3.7.4 Comparison with the model simulations 
Discussion of the bi-dimensional histograms 

We produced bi-dimensional histograms similar to the ones produced with the observations but 
for the reference simulation and the 3 sensitivity experiments. All these sensitivity experiments 
potentially impact the radiation and the evapo-transpiration. The model produces more regular 
distribution than the observations (e.g. figure 9). The difficulty to trigger the evaporation when the 
soil is dry is captured by the model. When the soils are moister, the almost linear behaviour of the 
evaporation-radiation relationship is also captured by all experiments. The results of the reference 
experiment and the first 2 sensitivity experiments are similar (not shown). When the soil is dry 
(first 2 soil moisture quartiles), the model appears to be slightly more efficient to evaporate for the 
high values of the net SW radiation. It is remarkable that the intersection of the regressed straight 
line with x-axis occurs for negative values of the SW radiation. This indicates that evaporation can 
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occur even when the SW radiation is very low in contradiction with the observations. This 
behaviour is corrected when the resistance to the bare soil evapo- ration is activated in the 
simulations. Note that this modifies the distribution of the SW radiation for all quartiles as well. 
For intermediate values of the SW radiation, the evaporation rates are lower, in better agreement 
with the histograms obtained with the pro- ducts derived from observations. This is particularly 
true for the Mediterranean area and the Southern Great Plaines. The maximum value of the SW 
radiation, is often higher in the numerical simulations compared to the CERES derived 
observations. 

 

 

 

 

Fig. 9. 2D-histograms of the simultaneous (evaporation, net SW radiation) pairs for each quartile 
of the soil moisture distribution for the Western-Europe. The values outside the range are set to 
the maximum and minimum. The left hand side histograms corresponds to the reference 
experiment, the right hand-side plot corresponds to the sensitivity experiment where the resistance 
to the bare soil evaporation is implemented (v3.c).
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Fig. 10. 2D-histograms of the simultaneous (evaporation, net SW radiation) pairs for each 
quartile of the soil moisture distribution for the Mediterranean area. The values outside the 
range are set to the maximum and minimum. The maximum value is reported in the title of each 
histogram. The left hand side histograms corresponds to the reference experiment, the right 
hand-side plot corresponds to the sensitivity experiment where the resistance to the bare soil 
evaporation is implemented (v3.c). 

 

Fig. 11. upper panel: histogram of the surface soil moisture for the Western Europe area, middle 
panel : histograms of the SW net radiation for each soil moisture quartile, lower panel: histogram 
of the evaporation for each soil moisture quartile. The left hand-side panels correspond to the 
reference numerical experiment, the right hand-side one to the sensitivity experiment where the 
resistance to the bare-soil evaporation is turned on. 
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Figure 11 and 12 (lower 2 panels) show the histograms of the evaporation and the SW radiation 
for each soil moisture quartile and for the reference numerical experiment and when the resistance 
to the bare soil evaporation is turned on. For the first 3 quartiles, the histograms of the evaporation 
and of the SW Radiation are very similar, contrarily to the observations. In Western Europe (figure 
4.1), the model shows very low values (less than 10 W.m−2) of the SW radiation for the dry 
quartiles in contradiction with the observations. When the resistance of the evaporation for the 
bare soil is turned on the frequency of the low evaporation rates is increased in the moister quartile 
(blue curve). Negative values of the evaporation (down to -0.3 mmd) are simulated during winter 
over Western Europe they corresponds to condensation processes. 

Revisiting a long lasting bias 

Most state-of-the art climate models contributing to CMIP5 shared a strong summer- time warm 
bias in mid-latitude areas, especially in regions such as the Southern Great Pains where the 
coupling between soil moisture and atmosphere is effective. The most biased models overestimate 
solar incoming radiation, because of cloud deficit and have difficulty to sustain evaporation. These 
deficiencies are also involved in the spread of the summer temperature projections among models 
in the mid-latitudes Cheruy et al. (2014) Near surface simulated temperatures are compared to the 
0.5◦ × 0.5◦ CRU-TS3.10 2- m temperature dataset (Mitchell and Jones, 2005) and the 2D 
histograms of the (SW radiation, temperature bias) couples are calculated for each of the soil 
moisture quartiles. The results are displayed on Figure 13. 

Whatever the quartile, the bias is stronger for the highest values of the SW radiation. An interesting 
result here is that the bias exists even for last quartile, where soil moisture is available for 
evaporation. When the resistance to bare soil evaporation is activated, the bias increases more 
rapidly with the SW radiation (the slope of the linear regression depicted by the white straight line 
on the plots increases from 0.6% to 1.2 %). This is consistent with insufficient evaporation rates 
contributing to the bias and in this model difficulty to evaporate occurs even when enough soil 
moisture and radiation are available. Evaporation is made of bare soil evaporation and transpiration 
by the plants that take the moisture from deeper layer in the soil. It is possible that in this case an 
under-estimation of the transpiration is responsible for the too elevated temperature. 
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Fig. 12. Upper panel: histogram of the surface soil moisture for the Southern Great Plains area, 
middle panel : histograms of the SW net radiation for each soil moisture quartile, lower panel: 
histogram of the evaporation for each soil moisture quartile. The left hand-side panels correspond 
to the reference numerical experiment, the right hand-side one to the sensitivity experiment where 
the resistance to the bare-soil evaporation is turned on. 

Fig. 13. Bi-dimensional histograms of the occurrence of pairs of (surface air temperature bias, 
SWnet radiation) values binned into 20 intervals and for each quartiles of the surface Soil moisture 
distribution for the Southern Great Plains and for 10 years. The colour scale indicates the 
percentage of the total population with particular (SAT bias, SWnet) binned values. The bias is 
evaluated against CRU data. The scale is bounded at 3%, the values outside the range are set to 
the maximum and minimum. The maximum value is indicated in the title of each histogram. 
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Soil Moisture Histograms 

The upper panels in Figure 4.1 and 12 show the histograms of the soil moisture for the Western 
Europe and the Southern Great Plains. The histograms of the soil moisture are significantly 
different, especially for Western Europe, where they show a tri-modal distribution. While in the 
real world a large number of texture is present and is mixed in each model grid box, the soil 
hydrology module works with the predominant soil texture in each only the predominant soil 
texture is selected for the description of the water fluxes by the soil hydrology module ; the tri-
modal structure of the histogram reveals the signature of the three different textures present in the 
Western Europe region according to the USGS-produced soil property maps 
(http://soils.usda.gov/use/worldsoils/mapindex/) used in the numerical experiments. This rises 
several questions on both the retrieved and the simulated surface soil moisture and on the approach 
to compare them. 

– The tri-modal structure of the simulated soil moisture histogram might shows that it is 
necessary to improve the representation of the variations of the pedotransfer function with 
the soil grain size distributions (e.g Schaap et al. 2001). 

– Underlying hypothesis in the numerical model and in the retrieval algorithms (e.g. 
dependency of the wilting point and field capacity with the soil grain size distribution) 
might leads to inconsistent estimation of the soil moisture content. This can lead to 
misleading conclusion when directly comparing simulated and retrieved soil moisture 
content. 

– Greater care should be taken in order to allow meaningful comparison. This requires more 
detailed description of the underlying hypothesis in the retrieval algorithm in order to 
allow to construct and compare normalized histograms Koster et al. (2009) with rely on 
similar hydrological properties related to the soil texture. 

 

 

3.7.5. Summary 
We showed that satellite derived products for evaporation and surface Soil Moisture exhibit strong 
differences. It is not possible to say which one is closer to the reality. This is particularly true for 
the surface soil moisture. Nevertheless the partitioning of combined SW surface radiation and 
evaporation data with respect to 4 soil-moisture quartiles at regional scale and on a monthly basis 
allowed to derive consistent diagnostics which can be used to better document the soil-moisture 
atmosphere coupling and as a guidance for the development of the parameterizations implemented 
in the climate model. A better description of the underlying hypothesis used to derive surface soil 
moisture from satellite observations is critical to better assess the nature of the soil moisture 
observations and to reinforce the robustness of these diagnostics. Instrumented sites such as the 
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ARM site located in the Southern Great Plains provide quality checked observations of the surface 
radiation budget, the boundary layer turbulence and the soil-moisture which might help to assess 
the robustness of the diagnostics as well. In addition, we investigated the behaviour of a long 
lasting warm bias which exists in most of the climate models over Central North America in 
summer. For each soil moisture quartile, 2D-histograms of combined SW radiation, temperature 
bias have been constructed. While this bias is attributed to insufficient evaporation, these 
histograms show that the bias is present even when surface soil moisture is not a limitation to the 
evaporation. We propose that the transpiration of the vegetation, which can rely on the moisture 
present at deeper levels into the soil, can play a role. Finally we identified a spurious behaviour in 
the histograms of the simulated surface soil moisture when compared to the satellite product. This 
behaviour can be related to the restricted number of soil textures implemented in the hydrological 
module. The consequences on the soil-moisture/atmosphere coupling have to be investigated and 
improvement in the hydrological module of the LSM are foreseen. 
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3.8 Improved process understanding from Arctic and Antarctic 
cross ECV assessment [WP3.6] 

 

ESA-CCI sea ice and sea surface temperature data products 
 
We assess here the quality of sea ice concentration and sea ice thickness datasets compiled by the 
ESA Sea Ice CCI (SICCI) team, and perform a polar ECV cross assessment between ESA-CCI ice 
concentration and sea surface temperature datasets. To analyse the quality of the sea ice 
concentration and thickness products we assimilated these datasets into the Max Planck Institute 
Earth System Model (MPI-ESM; Stevens et al., 2013). In order to evaluate the SICCI ice 
concentration dataset we assimilated only SICCI ice concentration data into the model, and 
compared the performance of the simulated sea ice behaviour with identical experiments where 
ice concentration data from the National Snow and Ice Data Center (NSIDC) was assimilated. To 
evaluate the quality of the SICCI ice thickness dataset, we assimilated both SICCI ice 
concentration and thickness data into the model, and compared the simulated sea ice volume to 
other observational datasets as well as to the ice volume derived from the experiment where only 
ice concentration was assimilated. For the polar ECV cross assessment ESA-CCI sea ice 
concentrations and sea surface temperatures were assimilated into the model. For each of the two 
ECVs the assimilation run was repeated with a reference data product. 
 
The assimilation technique we apply in our model system is Newtonian relaxation (or “nudging”), 
and besides sea ice also atmospheric and oceanic observations are assimilated into the model. In 
the atmosphere vorticity, divergence, temperature and surface pressure data provided by ERA-
Interim reanalyses (Dee et al., 2011) are assimilated, while ocean temperature and salinity are 
nudged with ORA-S4 reanalysis data (Balmaseda et al., 2013). Relaxation times applied when data 
was assimilated into the model vary from 1 day for atmospheric nudging to 10 days for ocean 
nudging, and 20 days for nudging of sea ice. When only sea ice concentration is assimilated into 
the model, sea ice thickness is updated proportionally to sea ice concentration updates (Tietsche et 
al., 2013). 
 
Results of our performance analysis for both SICCI sea ice concentration and thickness datasets, 
as well as for the polar ECV cross assessment, are given below. 
 
 
3.8.1 ESA-CCI sea ice concentration dataset (version 1.1, daily data, 1991-2008) 
 
A comparison of SICCI and NSIDC sea ice concentration products shows that the Arctic sea ice 
area computed from SICCI data lies between NASA-Team (Cavalieri et al., 1984) and Bootstrap 
(Comiso, 1995) datasets from NSIDC. While NASA-Team data shows lower Arctic sea ice area 
than SICCI, the Arctic sea ice area derived from Bootstrap data is larger than for SICCI. The 
difference between NASA-Team and Bootstrap products lies in the selection of tie points for 
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brightness temperatures representing “fully ice-covered” grid boxes. In the Bootstrap retrieval 
algorithm 100% ice cover is obtained already for lower brightness temperatures compared to the 
NASA-Team algorithm. From computed Arctic sea ice areas we infer that the SICCI algorithm 
gives intermediate ice concentrations in the Arctic. This result also holds for simulated Arctic sea 
ice area in assimilation experiments with the different ice concentration datasets. 
 
The Antarctic sea ice area derived from both the SICCI ice concentration dataset and the 
assimilation run performed with SICCI ice concentrations shows that in the Antarctic the SICCI 
product resembles the NSIDC Bootstrap product, while the NASA-Team product shows about 
10% less sea ice area. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 40: Sea ice concentration differences between observations and the associated assimilation runs 
are presented for SICCI (left) and NSIDC/NASA-Team (right) data products. March-mean values over the 
period 1991 to 2008 are shown. 

 
 
A regional evaluation of the correspondence of the assimilated sea ice data product with the model 
physics indicates, however, a clear difference between SICCI and NSIDC data products. In many 
regions, especially in the Norwegian and Labrador Sea, low ice concentrations (< 3%) are obtained 
by the SICCI algorithm in grid boxes where observed sea surface temperatures as well as NSIDC 
ice concentration products indicate ice-free waters (see Figure 40). These spurious ice 
concentrations occur, because consciously no weather filter was applied in the SICCI algorithm. 
In NSIDC ice concentration products these low ice concentrations, which originate from the 
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contribution of clouds to brightness temperatures recorded by the satellite, are removed by a 
weather filter. However, since it is not feasible to objectively distinguish between the origins of 
possible brightness temperature sources, weather filters are likely to filter out also contributions of 
actual sea ice. Thus, although not using a weather filter introduces spurious ice concentrations in 
the open ocean, it provides a more objective view on the satellite data, since no actual ice 
concentrations are removed and it is left to the user to discard spurious low ice concentrations over 
open waters, if intended. 
 
The regional investigation of the assimilation performance also showed that a notable amount of 
sea ice in the marginal ice zone melts directly after assimilation into the model. The most 
prominent area for this to happen is the Davis Strait (see Figure 40). Sea ice observations show 
that in a few years (e.g. 1993) this area is largely covered by sea ice in March, however, model 
physics does not allow here for sea ice to exist. The model physics in a grid box where both sea 
ice and sea surface temperature are assimilated can be described as follows: 
In a model grid box the temperature of the uppermost ocean layer needs to be at freezing point to 
allow even for small amounts of sea ice to exist. Thus, assimilated sea ice cannot persist if the heat 
content in a certain ocean model grid box plus the sum of heat contributions from the assimilated 
sea surface temperature and the assimilated sea ice adds up to an ocean surface temperature above 
freezing. 
 
In many regions inconsistencies with the assimilated SST data also play an important role (see also 
Section 3.7.3). 
 
In summary, we consider the SICCI sea ice concentration data product as adequate for use in 
climate modelling, and of comparable quality as NSIDC data products. A major advantage of the 
SICCI product with respect to other datasets is its error characteristics. The different types of 
uncertainties provided with the dataset allow for more accurate studies, e.g., on the evaluation of 
model physics. 
 
 
3.8.2  ESA-CCI sea ice thickness dataset (version 0.9, Arctic-only, monthly data 
for October to March, 2003-2008) 
 
A comparison of the SICCI ice thickness product with other data products derived from 
observational time series reveals a substantial positive bias in SICCI data. When besides sea ice 
concentration data also SICCI ice thickness data is assimilated into the model, the March-mean 
Arctic sea ice volume exceeds the ice volume derived from the assimilation run where only ice 
concentration is nudged by almost 100% (see Figure 41).  
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Figure 41: March-mean reduced Arctic sea ice volume over 2003-2008, as derived from SICCI ice thickness 
data (red dotted line), the combined SICCI ice thickness/concentration assimilation run (red solid line), as 
well as the SICCI ice concentration-only assimilation run (black line), is shown. The term “reduced” is 
introduced here, since only grid boxes, where the SICCI ice thickness dataset contains non-missing non-
zero values, are considered. 

 
 
A side effect of assimilating high SICCI ice thicknesses into the model is that almost no assimilated 
sea ice in the marginal ice zone is lost directly after assimilation due to sea surface temperatures 
above freezing (see section on SICCI ice concentration data). The additional cooling of the system 
due to the positive bias in assimilated ice thicknesses prevents assimilated sea ice from being 
melted. However, we find the positive bias in the SICCI sea ice thickness dataset to be too large 
to allow for the data product to be of adequate quality for climate modelling studies. Error 
characteristics were not provided with the SICCI ice thickness data product. 
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3.8.3 Cross assessment ESA-CCI sea surface temperature and ice concentration 
(SST data version 1.1, daily data, 1992-2008) 

 
A comparison between ESA-CCI sea surface temperature (SST) and sea ice concentration (SIC) 
datasets reveals that inconsistencies among the data products exist in many regions close to the ice 
edge. Figure 42 shows the ESA-CCI sea surface temperature for March 1998 in all grid boxes 
where the ESA-CCI ice concentration is larger than 5%. Particularly in the Denmark Strait, but 
also in other regions such as the Baltic Sea, sea surface temperatures exceed 2°C over large areas, 
although ice concentrations above 5% are found in the same grid boxes. This result does not change 
qualitatively in other years. 
 

 
Figure 42: ESA-CCI sea surface temperatures are shown for March 1998. Grid boxes with less than 5% 
ice concentration were set to 0°C. 

 
The reason for these inconsistencies is likely that for the compilation of the ESA-CCI SST product 
another sea ice dataset, the OSI-SAF SIC product, was used to determine the exact position of the 
ice edge. Thus, ESA-CCI SST and SIC datasets are two independent data products, each showing 
the location of the ice edge as retrieved from the respective algorithm. 
In order to test how MPI-ESM model physics agrees with both ESA-CCI SST and SIC data, we 
assimilated both datasets simultaneously into the model. To assess the quality of the 
correspondence between the model and the data products, we repeated the assimilation run once 
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with ERA-Interim (instead of ESA-CCI) SST data, and once with NSIDC/Bootstrap (instead of 
ESA-CCI) SIC data. For reference, we also performed an assimilation run without any ESA-CCI 
data by using the respective SST and SIC reference products. 
 
The impact of the assimilated SST data product on the simulated total Arctic sea-ice area is almost 
undetectable. Figure 43 shows that both SST products assimilated into the model give very similar 
Arctic sea-ice area. This result holds, independent of the SIC product assimilated simultaneously. 
The total Arctic ice area reduces, however, after assimilation into the model. This reduction is 
slightly higher for the ESA-CCI compared to the NSIDC/Bootstrap SIC product, and is generally 
more prominent in March than in September (see Figure 43). The cause for this reduction is 
twofold. On the one hand, SSTs above freezing overlapping with the marginal ice zone cause ice 
melt in the respective regions (compare Figure 42). On the other hand, in regions such as the Davis 
Strait MPI-ESM model physics does not allow for ice being formed. The reduction is higher for 
ESA-CCI SIC than NSIDC/Bootstrap sea ice data, since the ESA-CCI algorithm does not apply a 
weather filter, so that clouds over open water are interpreted as ice concentrations by the algorithm 
(compare Figure 40).  
 
The general offset between ESA-CCI and NSIDC/Bootstrap SIC data is likely to originate from a 
different setting of the ice tie points in the different retrieval algorithms. 
 

 
Figure 43: Arctic sea-ice area in March (left) and September (right) as derived from observational datasets 
(solid lines) and assimilation runs (dashed and dotted lines). Only grid boxes with non-missing values in 
all datasets were considered for the computation. 
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3.8.4 Update on CCI Sea-ice concentration data set Version 2.0 
 
In spring 2017, an updated version of the CCI sea-ice concentration data set was published. There 
are four main differences compared to the earlier version of this product. 
First, many of the algorithms and processing steps have been improved in this version 2.0. 
Noticeably, the calculation of dynamic tie-points, the tuning of the sea ice concentration algorithm, 
and the mitigation of land spill-over effects were all revised. 

Second, the product comes at three distinct resolutions: A high-resolution product at 12.5 km 
resolution, a medium-resolution product at 25 km resolution and a low-resolution product at 50 
km resolution. The 12.5km product is deemed more experimental and for internal evaluation only. 
It is not at present made available to the scientific community. 

Third, the product now only covers the period 2002 to 2015, with a gap of several months in 2011.  

Fourth, the product now comes with a filtered version where artefacts possibly arising from 
weather influence for example have been removed, and an unfiltered version that all values as they 
are reported by the algorithm. This includes values above 100 % and below 0 % ice concentration. 

In the following, we will discuss the impact of these changes from a climate-model perspective.  

For doing so, we first repeated our analysis for the previous product version as we have moved on 
to a new version of our Earth-System-Model, namely MPI-ESM-LR V 1.1. Using that version, we 
in particular found that much of the spurious ice directly at the ice edge that we had identified with 
the previous version of our model has disappeared (Fig. 44 a vs. b). This might be a reflection of 
changes in the oceanic mixing scheme that more realistically distributes the nudged sea-surface 
temperature distribution, causing a better representation of the observed ice edge in the 
assimilation simulation. 

Regarding the changes between SICCI 1 and SICCI 2, a major improvement of the compatibility 
of the SICCI product with model physics comes about by the improved algorithms of SICCI2. 
This is visible by comparing in particular the difference between the assimilation simulation and 
SICCI data for SICCI 1 unfiltered versus SICCI 2 unfiltered (Fig. 44 b vs. d), both evaluated 
against our new model version MPI-ESM-LR 1.1. SICCI 1 contained large areas where sea-ice 
concentration was clearly incompatible with model physics, for example in between Svalbard and 
Scandinavia. In contrast, in SICCI 2, the unfiltered version shows far less differences between the 
model simulations and the satellite record. These are usually located along coast lines and near the 
ice edge, where issues such as grid interpolation become important. The 50 km resolution SICCI 
2 product contains a band of sea ice between Greenland and Iceland that is not compatible with 
model physics. This band of sea ice is absent in the 25 km resolution product. Other than that, the 
difference between the low-resolution and the medium-resolution product are small. We have not 
been able yet to successfully assimilate the 12.5 km unfiltered product into our model.  

The provision of a version containing both filtered and unfiltered version came about in response 
to feedback from CMUG that the unfiltered, original product contains sea ice in areas where no 
sea ice can be found on physical grounds. While such sea ice would usually not affect the use of 
the data for climate-model evaluation or initialisation studies, it nevertheless made the earlier 
product appear less reliable than comparable products. This is despite the fact that this apparent 
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lack of reliability indeed came along with a more honest representation of the possible limitations 
of the underlying algorithms. In particular, the unfiltered product contains values for sea-ice 
concentration that lie outside of the physical bounds from 0 to 100 %, which allows data-
assimilation schemes a possibly more reliable representation of the model-data mismatch. 

In comparing the simulation with our new model version for the old and the new product of CCI 
sea-ice concentration, we see comparably little overall long-term impact of the filtering (middle 
row versus bottom row in Fig. 44). Some ice is removed by the filter along coast lines, and the 
band of spurious ice between Greenland and Iceland is removed in the 50 km product. Other than 
that, on the multi-year average that we consider here, the filtering is of limited impact. Note, in 
particular, that the filtering might for individual time steps remove actually existing ice for 
example near the ice edge, such that use of the filtered data in climate-model application might 
give misleading results. Hence, as stated above, from a climate-research perspective we very much 
welcome the inclusion of the unfiltered data, which the experienced user can then combine with 
the filtered data according to their own needs.  

Regarding resolution, the different products show a different distribution of observational 
uncertainty, with a clear tendency to higher uncertainty for the high-resolution 12.5 km product. 
This is probably related to the fact that this product includes information from the 89 GHz channel 
of the AMSR satellites, which is significantly affected by weather noise. The products at 25 km 
and 50 km resolution at first sight show a fairly similar distribution of observational uncertainty. 
There does not seem to be a distinct advantage of the 50 km product, despite its use of a 6 GHz 
channel that should be quite insensitive to atmospheric noise. Our model at present cannot fully 
exploit the information content of the 12.5 km and the 25 km product, as our model grid resolution 
usually is below these values. We can hence not reliably evaluate a possible advantage of the 
higher-resolution product for higher-resolved model simulations. 

Regarding the shorter observational period, this came about by an agreement between ESA and 
EUMETSAT that the ESA CCI product will be based on the AMSR satellites, which only cover 
the period from 2002 onwards, with a gap of several months during the shift from AMSR to 
AMSR-2 in 2011. EUMETSAT provides data based on the SMMR and SSMI satellites in their 
OSI-SAF project, covering the period from 1979 until today. Note that many of the insights gained 
during the ESA-CCI project have informed the development of the recent OSI-SAF product, which 
hence profited substantially from the ESA-CCI developments. However, from a climate-research 
perspective the much shorter time series of the official ESA CCI product severely limits its 
usefulness. Indeed, except for use as initialisation data in seasonal prediction studies we currently 
do not believe that the higher reliability of the CCI sea-ice concentration time series can 
compensate for the drawbacks that stem from its short length, at least not for the rather coarse 
model resolution that is typical for most current climate models. This will likely lead to rather 
limited use of this time series by the climate-model community in the foreseeable future, until 
models become standard that employ the higher native resolution that underlies the SICCI product. 
Note, in particular, that the native resolution of OSI-SAF is around 50 km, which is then upsampled 
to 25 km. In contrast, the native resolution of the SICCI 25 km product is indeed 25 km. For the 
time being, however, because of the greater length of the OSI-SAF product, it is well possible that 
the major impact of the SICCI work on current climate research will not carry the SICCI name in 
it, but will be hidden behind the label OSI-SAF. 
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3.8.5 Update on CCI sea-ice thickness product 
 
At the time of writing in May 2017, no new CCI sea-ice thickness product is available. 
 

 

  
Fig 44: Difference in March sea-ice concentration between the model assimilation and the satellite 
retrieval. Negative (blue) values indicate that the satellite retrieval contains less ice than the model 
simulation. The panels show the multi-year mean difference of March sea-ice concentration for 
the period 2003 to 2008. 
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3.9  Cross-Assessment of Aerosols, Cloud and Radiation CCI ECVs 
[WP3.7] 
 
The results presented in this Section were completed in 2016 and there is no update to them 
in this report. 
 
 
Aim 
The aim of this work package is to complement the work of the Aerosol CCI Climate Research 
Group by providing a cross-assessment in the ESA CCI ECVs and in the CMIP5 climate models. 
We also aim at providing an improved process understanding by performing additional, more-
detailed studies with the global aerosol model EMAC. The following scientific questions shall be 
addressed: 
 

• What is the interrelation between different aerosol, cloud and radiation ECVs in CCI data 
and Earth System Models? 

• How do the CMIP5 models perform in comparison to a more detailed aerosol global model 
(EMACMADE) in the representation of processes related to aerosol-radiation and aerosol-
clouds interactions? 

 
Summary of Results 
A first working version of the EMAC model, coupled with a new version of the aerosol sub-model 
MADE (MADE3) has been set up. The MADE3 sub-model is able to simulate the main aerosol 
microphysical processes, such as nucleation, condensation and coagulation, as well as the 
equilibrium between the gas and the aerosol phases. In the current version of EMAC-MADE3, it 
is also possible to calculate aerosol optical properties using the aerosol quantities calculated by 
MADE3 (particle number, mass and radius) combined with pre-calculated lookup tables of optical 
parameters. This allows us to couple MADE3 to the radiation scheme of the model. An additional 
coupling of MADE3 to the cloud scheme (including aerosol interactions with liquid, mixed-phase 
and ice clouds) is currently being developed and will be used to perform the planned experiments 
if a working version is available by the end of the project. 
 
Several test simulations have been conducted with the new model system. Using the ESMValTool, 
which is being developed within WP5.1, the model has been extensively evaluated by comparison 
with several observational datasets, including the ESA-CCI aerosol products for aerosol optical 
properties. In particular, we compared the simulated aerosol optical depth (AOD) at 550 nm against 
the ESA-CCI satellite products (Figure 45). The simulated AOD is higher than that derived from 
ESA-CCI satellite measurements, especially over the southern oceans, which may indicate too 
high sea spray emissions, and in East Asia, where an incorrect estimate of the input emissions may 
play a role. As mentioned in the previous quarterly report, however, differences exist also in the 
observational data, e.g. when comparing the ESA product with MODIS. Furthermore, deviations 
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in the simulated AOD compared to measurements are common also in other models. The relative 
error of MADE3 in this experiment is comparable to or smaller than those of other global models. 
 
In order to perform a full transient simulation with EMAC-MADE3 and to compare its 
performance to that of the CMIP5 models, a similar emission setup has been developed, covering 
the period 1950-2010. It makes use of the MACCity inventory, which builds on the original CMIP5 
emission data, but considers yearly-resolved emissions (using a linear interpolation between the 
decades) and a sector-specific seasonal cycle based on RETRO. This should allow a more precise 
representation of the emissions with respect to the CMIP5 models, which is particularly important 
for aerosol and aerosol precursors given the relatively short lifetime of these species. 
 

 
Figure 45: aerosol optical depth at 550 nm (od550aer) as simulated by EMAC-MADE3 (left panel) and 
from the ESA-CCI satellite product (middle panel). The right panel shows the difference model minus 
observations. Average values for the year 2001 are depicted in all panels. 
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3.10 Cross assessments of clouds, water vapour, radiation, soil 
moisture for regional climate models [WP3.8] 

 
The results presented in this Section were completed in 2016 and there is no update to them 
in this report, subsequent research in this area was redirected to WP 3.14. 
 

Aim 
The aim of this work package is to make an integrated assessment of ECV's related to regional 
moisture processes - clouds, soil moisture, precipitation and water vapour, to assess their 
consistency for African monsoons and European rainfall as simulated by regional climate models. 
The assessment will include an estimation of the usability of the corresponding CCI uncertainties. 
It will address the following scientific questions: 
 

• How do the CORDEX regional climate models simulate cloudiness and soil moisture for 
the African and European regions? 

• Are observed soil moisture and extreme precipitation relationships captured by regional 
climate simulations at different horizontal resolutions? 

• Investigate moisture related feedbacks in observations which are important in the African 
monsoon development. This involves local feedback mechanisms, lagged regional 
correlations in time and space and large scale forcing. 

• Identify key processes in regional climate models affecting the simulated rainfall and 
monsoon systems that can lead to improvements in their representations in the climate 
simulations. 

 
Key Outcomes 
For Europe, 

• The observed variabilities of CCI cloud cover, CCI soil moisture (SM) and EOBS 
precipitation are consistent over Europe and suitable for climate model evaluations. The 
regional model anomalies are of similar magnitude as the observed anomalies. 

• The climate model output (SM and Clouds) differ in absolute values compared to the 
observations. For SM it is due to difference in what is possible to compare, for cloudiness 
it is due to observational and model errors, as listed in the 3 points below.  

• SM-CCI absolute values representing the top 2cm cannot be compared directly to model 
fields (see SM FAQ http://www.esa-soilmoisture-cci.org/node/136). However, 
comparisons of absolute values can help to identify seasonal model short comings. For 
comparisons with models, the model data should be sampled in time and space according 
to the availability of the satellite data (also stated in SM FAQ).  

• Cloud-CCI prototype data v1.4 cloud cover is overestimated over North Atlantic and 
Mediterranean Sea. Feedback to the Cloud-CCI team has led to changes in thresholds for 
the cloud mask, which has improved the cloud cover in the final v2.0 data. 
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• ERA-Interim underestimate cloud fraction in southern Europe. The regional climate model 
HCLIM agrees better with the satellite observations.  

For Africa, 
• The observed variabilities of CCI and other satellite datasets and surface based 

observations are consistent over Africa and suitable for climate model evaluations.  
• Cloud-CCI and other cloud satellite data reveal that cloud cover in the CRU surface 

observations have “country shaped” errors.  
• CCI Cloud prototype data v1.4 overestimate cloud cover over sea for latitudes north and 

south of 20º, here the Mediterranean Sea and Southern Ocean (improved for v2.0). 
• RCA4 overestimate clouds over seas compared to the satellite observations, for regions 

with thin clouds as the stratocumulus region off the African west coast and cloudiness over 
sea East of Africa horn. 

Summary of Results 
The work so far for WP3.8 include evaluation of cloudiness, soil moisture and precipitation 
simulated by two Regional Climate Models (RCMs) utilizing the ESA CCI data soil moisture 
remote sensing product (Wagner et al., 2012) and CCI-clouds (prototype v1.4, Stengel et al 2013) 
and EOBS precipitation (Haylock et al 2008). In addition we use satellite cloud data from CLARA-
A1 (Caspar et al 2009) and PATMOS-x (Heidinger et al 2014) and land surface based cloud data 
from CRU (Haylock et al 2008). Simulations were performed using two different RCM systems, 
the Rossby Centre Regional Climate model (RCA4) and a climate version of the non-hydrostatic 
meso-scale modelling system HARMONIE (HCLIM). Both models are driven by ERA-Interim 
(ERAI, Dee and co-authors, 2011) lateral boundary fields of winds, temperature and humidity and 
sea surface temperature, every six hours.  
 
All comparisons have been made for monthly mean values. Since the CCI-SM data is available on 
daily bases with spatial and temporal gaps, we used a simplistic simulator interpolating the regional 
models daily values of soil moisture to the observational grid. A daily mask represented by the 
grid boxes which have valid CCI-SM values was applied to the interpolated model SM fields. 
From these daily values monthly mean values were calculated for the RCM's and CCI-SM, 
respectively. 
 
HCLIM over Europe 
The aim is to evaluate moisture processes for Europe in the high resolution model HCLIM for a 
30 year, 6km horizontal resolution simulation (work not yet completed). Here, we show 
preliminary results from a four year (2003-2007) HCLIM simulation at 15km horizontal resolution 
over Europe (Figure 46). An example of the co-variability of the moisture related variables is 
shown for the Mediterranean region in Figure 47. Time series of absolute values (left column) and 
de-seasonalised anomalies (monthly mean removed, right column) are shown for cloudiness, 
precipitation and soil moisture.  
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Figure 46: Map of the HCLIM area, the red box show the region for the time series in Figure 32. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 47: Monthly mean time series 2003-2007 for the Mediterranean region marked in the 
previous figure. Left column show absolute values for clouds (top), precipitation (middle) and soil 
moisture (bottom). Right column shows de-seasonalised anomalies for clouds (top), precipitation 
(middle) and soil moisture (bottom). Black lines CCI data, red lines HCLIM, blue lines CLARA 
data and cyan lines ERA-Interim. 
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The different observations show consistent variations in time with higher cloud fraction, 
precipitation and soil moisture in winter and lower values in summer (left column). The regional 
model anomalies are of similar magnitude as the observed anomalies (right column). Both 
observations and model anomalies have the wettest winter 2003/04 and the driest 2006/07.  
 
ERA-Interim underestimate cloud cover all year but especially in autumn to spring (top left), as 
also found in other studies for Southern Europe (Calbó et al 2016). HCLIM is similar to ERAI and 
does not manage to produce more clouds than ERAI, except in summer when the regional model 
is less influenced by the inflow from the lateral boundaries. Both HCLIM and ERAI reproduce the 
observed cloud monthly variability (right top panel) but HCLIM has smaller variations than 
observed. Cloud-CCI v1.4 overestimate cloud cover over the Mediterranean Sea compared to 
CLARA and PATMOS-x data (top left) and over the Atlantic (not shown). This issue was reported 
to the Cloud-CCI team and was found to be due to too low thresholds over sea in the Neural 
Network cloud mask. In the latest v2.0 Cloud-CCI data the cloud cover bias over sea has been 
reduced. 
 
HCLIM surface scheme has three layers of soil moisture, here we used the top 1cm to compare 
with the satellite observation. SM-CCI absolute values representing the top 2cm cannot be 
compared directly to models as known (http://www.esa-soilmoisture-cci.org/node/136). However, 
comparisons of absolute values can help to identify seasonal model short comings. As an example 
we note SM-CCI has a peak value each December while the simulated SM peaks later during the 
spring (lower left panel). This model SM bias can be explained by an overestimation of 
precipitation in spring as seen in the middle left panel in Figure 47. Further analysis into the 
moisture ECV's relationships will be made for the longer simulation. 
 
CORDEX RCA4 simulations over Africa 
The analysis of African monsoon and relationships between clouds, precipitation and soil 
moisture, in observations and CORDEX (Coordinated Regional Climate Down-scaling 
Experiment) simulations is ongoing. Here, we show examples comparing cloud cover from 
different observational data sets and RCA4 (Strandberg et al., 2014) run at 50 km horizontal 
resolution for the time period 1982-2010 driven by ERA-Interim and different CMIP5 models at 
the lateral boundaries. 
  
The East African Monsoon is associated with the ITCZ moving south of the equator. The so-called 
long rains prevail during spring (MAM) and the short rains during autumn (OND). The transition 
season (JFM) bring most rainfall and cloudiness to East Africa. Figure 48 show the mean cloud 
fraction for January to March for the satellite observations, Cloud-CCI, CLARA, PATMOS-x and 
land surface observations CRU and three reanalysis datasets (ERAI, MERRRA2 and JRA25). For 
now, we use CLARA as the reference cloud data set, since the Cloud-CCI prototype data v1.4 has 
some known errors, the analysis will be remade for the final phase 2 Cloud-CCI v2.0 dataset. All 
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observational datasets have a maximum in cloud cover over East Africa consistent with the region 
of large amounts of rainfall. The reanalysis models underestimate the East-African cloud cover 
maxima, ERAI being closest to the observations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 48: Top panel: Cloud fraction for observations and reanalysis over Africa. Bottom panel: 
CLARA cloud fraction and differences for satellite and reanalysis data compared to CLARA. All 
figures for January-March 1982-2012 (%). 
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We note some problem regions for CRU, Cloud-CCI and CLARA cloud fraction. CRU surface 
observations have “country shaped” differences compared to CLARA (Fig 48 lower panel) and 
compared to the other satellite and reanalysis data sets (not shown). CCI Cloud prototype data v1.4 
overestimate cloud cover over sea for latitudes north and south of 20º, as seen here over the 
Mediterranean Sea and Southern Ocean. The biases have been reduced in the latest Cloud-CCI 
v2.0 datasets. CLARA cloud cover is about 10% smaller than Cloud CCI, PATMOS and the 
reanalysis over Sahel and the desert regions in North Africa. This could be due to problems over-
detecting clouds over desert surfaces for CLARA.  
 
Figure 49 (top panel) show the cloud fraction for CLARA and the bias for RCA4 driven by ERA-
Interim and 10 CMIP5 GCM models (resolution 200-300km) at the lateral boundaries. RCA4 
overestimate clouds over sea; for the stratocumulus region off the African west coast and for seas 
East of Africa horn, the biases are very similar for all RCA simulations indicating problems with 
RCA thin cloud formation over sea that needs to be looked into. RCA4 driven by ERAI has the 
smallest bias over land compared to RCA4 driven by the atmosphere-ocean coupled CMIP5 
models and the highest correlation compared to the observations (lower panel). This is expected 
since the coupled model climate do not reproduce the climate of a certain year, for coupled models 
other statistics is needed. To compare directly with the observations we will evaluate RCA4 driven 
by CMIP5 AMIP simulations (GCM's driven by observed SST and Sea-Ice at the lower boundary) 
which can reproduce the climate natural variability. We will also extend this study to include all 
moisture variables and other CORDEX RCM's for the final CMUG QAR report.  
 

Quality relevant outcomes (updates from CMUG QAR 2015) 
We found from these preliminary results assessing CCI SM and cloud cover that both variables 
are of “climate quality”. CCI clouds and soil moisture are consistent on a regional scale. Listed 
below are some remarks and recommendations for the individual variables and some general 
thoughts on observed versus modelled soil moisture. 
 
Cloud-CCI Quality 
The Cloud-CCI prototype data v1.4 was obtained directly from the Cloud-CCI team in December 
2015, some issues were found and are listed below. These issues have been corrected and reduced 
in the final version that will be available summer 2016 from ftp://ftp-cmsaf-
projects.dwd.de/ESA_Cloud_CCI/CLD_PRODUCTS/L3C/.  

• Cloud-CCI prototype data had too much cloud fraction over sea compared to other satellite 
data (CLARA, PATMOS) and models (ERA-Interim, EC-Earth) as communicated to the 
Cloud-CCI team and since improved in the latest v2.0 dataset.  

• For the NOAA satellites there are overlapping L3C data for same time periods. What is the 
Cloud-CCI recommendation on how to make one single time series, to minimize the drift 
and any artificial trend?  
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Figure 49: Top panel: Cloud fraction for CLARA and differences RCA4 (driven by ERA-Interim 
and 10 CMIP5 models) - CLARA. Bottom panel: CLARA cloud cover and correlation CLARA and 
RCA4 cloud cover. All figures for January-March 1982-2010 (%). 
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SM-CCI Quality  
The Frequently Asked Questions on the SM website (http://www.esa-soilmoisture-
cci.org/node/136) was very useful. It is recommended that a FAQ page be set up for all CCI 
ECVs, and any bugs can be listed under known issues/errors. The following points should be 
added to the SM FAQ to avoid misuse under ‘Do’, Don't’ or ‘Data usage in models’. 

• Do not compare (or take care when comparing) your model total SM directly with these 
products, the satellite observes the top ~2cm”. 

• Any model data should be masked (“simplistic simulator approach”) when compared to 
the observations. This is indirectly implied in the spatial and temporal availability SM 
FAQ's. It was less important in this study but for other regions and time periods the 
differences can be much larger. Any user comparing with model data should strongly be 
recommended to do mask the model data. 

• It would be useful to have a presentation similar to that presented at the CMUG 5th 
integration meeting available at the FAQ link or somewhere else at the website. 

 
General thoughts on satellite and model soil moisture comparisons 
The CCI-SM represents a very shallow layer corresponding to approximately the top two 
centimeters of the soil, however, the observed depth depends on the soil moisture content (deeper 
for drier soils). It is not easy to characterize this top soil layer but in many regions it is some 
combination of active or dormant vegetation mixed by some dead vegetation material mixed with 
mineral soil. In the model, depending on the exact parameterization applied, the top SSM layer 
may be purely mineral soil or some weighted value between mineral soil, soil carbon and 
vegetation material. 
 
As stated on the CCI-SM web page “the statistical comparison metrics like root-mean-square-
difference and bias based on our combined dataset are scientifically not meaningful. However, the 
CCI SM products can be used as a reference for computing correlation statistics or the unbiased 
root-mean-square-difference”. This would support the anomaly analysis of SM in the 2015 CMUG 
Quality Assessment Report (CMUG 2015), although the absolute simulated SM values are 
sometimes at the uncertainty limit of the CCI-SM. The most important soil moisture in models is 
represented by the layer occupied by roots since this is the soil moisture limiting the transpiration. 
Methods do exist which can be used to integrate CCI-SM in time to reach a soil moisture 
representing a thicker layer but assumptions, sometimes difficult to control, are needed for such 
methods. CCI-SM can be nudged or assimilated in a land-surface model to compile a deep soil 
moisture product but such a product will always be model dependent and must be used carefully 
when compared to other models. A soil moisture product representing the degree of saturation 
rather than volumetric soil moisture would limit, or even exclude, any model dependence. 
We argue that such a product is preferable. The SM team at the CMUG 5th integration meeting 
informed that such products are planned to be made, we support that work. 
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3.11 Cross assessments of ESA CCI glacier, land cover and sea level 
data for hydrological modelling of the Arctic Ocean drainage 
basin [WP3.9] 

 

Aim  
The aim of this study is to assess the use of the CCI Glacier and Land cover data in hydrological 
modelling of the Arctic Ocean drainage basin. The main underlying question is if the use of CCI 
Glacier and Land cover can improve hydrological models and simulated river runoff to the Arctic 
Ocean. The current assessment is focused on the usefulness of the data as input for model 
parameterization, initialization, and evaluation compared to pre-cursor datasets, as well as on the 
‘climate quality’ of the products in terms of understanding long term trends and seasonal variation 
in the Arctic hydrological system. In addition, we evaluate the suitability of ESA – CCI Land cover 
data to derive the location of irrigated areas for hydrological modelling at global scale.   

Use of Land cover and Glacier data in the Pan-Arctic hydrological model Arctic-HYPE 
A pan-arctic application of the hydrological model HYPE (Hydrological Predictions for the 
Environment) developed by SMHI (e.g. Lindström et al., 2010; Arheimer et al., 2012) is used in 
the analysis. The model is based on a semi-distributed multi-basin approach, with each river basin 
divided into sub-basins, and each such sub-basin divided into a set of soil-type/land-cover classes. 
The model domain includes the land area draining into the Arctic Ocean (excluding Greenland) 
and covers 23 million km2, divided into 32,599 sub-basins with an average size of 715 km2 (see 
further on ). The model simulates processes including for instance accumulation and melt of snow 
and glaciers, evapotranspiration, surface runoff, and drainage from individual soil layers, routing 
in lakes and rivers, and accumulated water discharge through the mouth of each sub-basin. Arctic-
HYPE version 2.5 was developed without any CCI data using GlobCover 2004-2006. A first model 
version 3.0 based on CCI data was developed during 2015-2016 including information from CCI 
Land cover (v1.4) and CCI Glacier (Randolph Glacier Inventory, RGI v4.0). Included in the 
current analysis is also some initial assessments of CCI Land Cover v1.6 and RGI v5.0. 
 
Land cover information is used in the partitioning of the hydrological model sub-basin areas into 
the runoff-generating sub-units representing unique combination of soil types and land cover types. 
The original land cover data is re-classified to a smaller number of classes in order to represent 
only the most important hydrological responses and processes. The current land cover classes in 
Arctic-HYPE are: lake, glacier, urban, wetland, crops, forest, open vegetation, and bare soil. This 
may be a oversimplification, since we know for instance that different types of forest tend to grow 
in different hydrological and permafrost conditions (deciduous needle leaf and evergreen needle 
leaf, respectively). It should be noted that land cover classes are fixed and their areal extent cannot 
be changed during the HYPE model simulation. The exception is the glacier land cover class, for 
which the glacier covered areal fraction is calculated based on the glacier ice volume (see further 
below). Lakes and rivers are given special attention in HYPE: surface water area can be separated 
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into rivers, lakes on the main river course, and internal lakes connected to the main river through 
local rivers. The outlet of the major lakes are used in the delineation of the river network and sub-
basins, and their position is thus crucial for the basic understanding of the hydrological system. 
The internal lakes are important for the runoff from the sub-basin areas to the main river network, 
and characterization of the number of lakes and their size distribution can be further used for 
analysis of variation in hydrological response. However, none of the land cover data used in Arctic 
HYPE (neither GlobCover nor CCI land cover) contains information to separate surface water area 
into rivers and lakes. Lake polygons from the Global Lake and Wetlands Database (GLWD) are 
used to identify the major lakes situated on the main river network, whereas the remaining water 
area from the land cover data is considered as internal lakes in the model sub-basins. To illustrate 
the impact of this assumption, the river area is separated from the internal lake area by a simplified 
approach based on a buffer zone around the Hydro1k and HydroSHEDS flow lines.  
 
Irrigation plays a crucial role in water management around the world. According Portmann et al. 
(2010) at 25% of the global harvest areas are irrigated. Therefore, many hydrological models 
including HYPE (e.g. Lindström et al., 2010; Arheimer et al., 2012) has specific parameterizations 
to simulate the role of irrigation on the water cycle, where water is extracted from surface water 
bodies or ground water aquifers and applied in the irrigated areas depending on the simulated plant 
water demand or pre-defined schemes. CCI land cover (v1.6) provides a specific class for 
irrigation: land-cover 20 “Cropland, irrigated or post-flooding” (Figure 50, blue). The CCI data on 
irrigated areas is assess using data from the Global Map of Irrigated areas (GMIA, Seibert et al, 
2005), the Global Water Surface Explorer (Pekel et al, 2016) and USDS.   
 

 
Figure 50. Global map with the location of ESA CCI v1.6 land-cover 20 “Cropland, irrigated or 
post-flooding”(blue) and GMIA (yellow.) 
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The distribution of irrigated areas in the CCI land cover data compares well with GMIA over all 
continents except America where irrigated areas are completely lacking in the CCI product. The 
irrigated area is also larger in GMIA than in the CCI data in specific regions in India and China. 
However, there is also large areas where irrigation is missing the GMIA data compared to the CCI 
data, for instance along the Yangtze and Ganges rivers. More results of this analysis is given in the 
summary section below.   
 
Glacier information is used to initialize and parameterize a simplified glacier area and mass 
balance sub-model in HYPE, representing all glaciers within a hydrological model sub-basin by a 
single storage of ice. Total glacier area within each sub-basin is the main input information, 
whereas the total glacier volume is the main state variable in the model. Glacier area and volume 
is related using area-volume relationships following Bahr et al. (2015). The initial volume is 
calculated from the input glacier area, whereas during the simulation, the glacier area is updated 
as a function of the simulated glacier volume. In summary, there are at least 4 major issues related 
to glacier modelling in HYPE that has been assessed using the CCI Glacier data: 

• The use of glacier area-volume scaling is actually not intended for dynamic modelling of 
individual glaciers, but rather for volume estimates of populations of glaciers. It has been 
suggested by the CCI Glacier scientific leader to instead use glacier models or glacier 
volume estimates by Huss and Farinotti (2012). On the other hand, the more simple area-
volume scaling models might still be motivated for large-scale hydrological models, since 
the interest is mass balance and runoff generation of the population of glaciers within a 
river basin and not of individual glaciers. As a compromise for Arctic-HYPE v3 and later, 
the linear coefficients in the area-volume relationships are calibrated by fitting the total 
glacier volume per RGI zone to the values reported in Huss and Farinotti (2012). The 
glacier type data field in the RGI v4 was used to separate into glaciers and ice caps.  

• When area-volume scaling is used, it should be applied on the individual glacier areas; 
otherwise the total volume will be different due to the non-linear properties of the scaling-
functions. This poses a problem for the lumped model structure in HYPE where smaller 
glaciers within the same sub-basin are lumped together, and larger glaciers and ice caps 
covering several sub-basins are divided in smaller sections. This problem was solved using 
the RGI v4 glacier outlines by deriving sub-basin-specific corrections of the linear area-
volume coefficients. The exponential coefficients are kept constant with different values 
for glaciers and ice caps, as discussed by Bahr et al., 2015). 

• In previous versions of Arctic-HYPE (version 2.5 and earlier), the glacier area was derived 
from GlobCover’s land cover class “Permanent snow and ice”. First of all, this land cover 
class largely overestimate the glacier area (both using GlobCover and CCI Land Cover; 
Figure 51; Table 5), and obviously, land cover data does not provide information on 
individual glacier basis, which is needed for the area-volume coefficient estimations as 
described above - only the total area of (permanent snow and) ice.  
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• A major issue is the problem of: How to initialize glacier area and volume for historical 
time periods? The mean year of the RGI v4 glacier outline source data is 1996 and the CCI 
land cover data is representing the period 1998-2012, whereas we would like to start model 
simulations around 1960. The World Glacier Monitoring Service (WGMS) provide annual 
glacier mass balance from a large number of glaciers, but still that information need to be 
generalized through some sort of modelling in order to be applied on all glaciers in the RGI 
database. The following method was developed solve this problem for the Arctic-HYPE 
model:  

• Used annual mass balance data from 74 WGMS glaciers within the Arctic-HYPE 
model domain (Figure 52). The data was used to derive statistical models for the annual 
glacier mass balance at any point in the Arctic-HYPE model domain as a function of 
a) a 9 year centered running mean of all annual mass balance data points within the 
same RGI zone plus b) a linear regression model for the annual deviation from the 
regional running mean taking into account annual precipitation and temperature  

• An example of the statistical annual glacier mass balance model from the RGI zone 
Scandinavia is shown in Figure 53. 

• The annual mass balance was integrated backwards to 1961 from the RGI source data 
year, for each glacier in the model to obtain the initial ice volume. In total over the 
Arctic-HYPE model domain, the initial ice volume increased only by 2% by this 
procedure. But there were large regional differences: For the regions Iceland, Svalbard 
and Western Canada/US the initial glacier volume increased by 5%, 10%, and 30% 
respectively, whereas for Scandinavia and North Asia the initial glacier volume 
decreased by 17% and 36%, respectively.  

 

  
 

Figure 51: Comparison of glacier area in Alaska derived from CCI land cover and ESA GlobCover 
2004-2006 (permanent snow and ice) and the glacier outlines from CCI Glacier (RGIv4).  

 

Table 5: Glacier area in the Arctic-HYPE model per RGI region, comparing data from CCI glacier 
(RGI v4), Huss and Farinotti (2012), and estimations based on the land cover class “permanent 
snow and ice” in CCI land cover v1.4 and GlobCover 2004-2006. 
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RGI region 

All glacier areas ArcticHYPE model domain 

RGIv4 HF2012 Based on RGIv4 

Based on 

LCv1.4 

Based on 

GlobCover 

km2 % of RGIv4 km2 % of region % of area based on RGIv4 

01 Alaska 86723 104% 10346 12% 140% 157% 

02 Western Canada/US 14559 100% 2151 15% 325% 1711% 

03 Arctic Canada North 104873 100% 104716 100% 123% 240% 

04 Arctic Canada South 40883 100% 40875 100% 159% 265% 

06 Iceland 11060 100% 11060 100% 101% 208% 

07 Svalbard 33959 100% 33458 99% 117% 165% 

08 Scandinavia 2851 100% 2268 80% 157% 131% 

09 Russian Arctic 51592 100% 50844 99% 121% 229% 

10 North Asia 3435 82% 1613 47% 235% 860% 

Total 349934 101% 257330 74% 130% 242% 

 
 

 
Figure 52: Left: Location of 74 WGMS glaciers with mass balance data within the Arctic-HYPE 
model domain and RGI regions 1-10 (Greenland zone 5 excluded from the model), Right: average 
annual glacier mass balance per RGI region. 
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Figure 53: Annual glacier mass balance data from WGMS database for all glaciers in RGI zone 
8 (black dots) (Scandinavia), simulated and observed for one of the glaciers (green and red dots, 
respectively) and the centered running average using a 9 year window (red line).  

 

Summary of Results 

CCI Glacier 

CCI Glacier data (Randolph Glacier Inventory, RGI v4 and v5) was found to be very useful for 
evaluating and improving the setup of the glacier sub-model in the Arctic-HYPE model, especially 
in combination with additional information from other data on glacier mass balance (WGMS) and 
glacier volume (Huss and Farinotti, 2012): 

1. The use of CCI glacier data drastically changed the total area of glaciers compared to 
previous model versions. Glacier area estimated from the class “permanent snow and ice” 
from CCI Land cover v1.4 and GlobCover 2004-2006 was found to overestimate the glacier 
area derived from RGIv4 by 30 % and 140 %, respectively (Figure 51; Table 5).  

2. The individual RGI (v4) glacier areas and glacier type information were used to calibrate the 
area-volume scaling parameters used in the Arctic-HYPE model, by fitting the total glacier 
volume per RGI region in the Arctic area versus regional glacier volume estimates from Huss 
and Farinotti (2012).  

3. Furthermore, the RGI data enabled the derivation of basin specific corrections of the area-
volume scaling coefficients to correct for errors in the volume estimation when lumping or 
dividing individual glaciers by the hydrological model sub-basin delineation. 

4. Compared to estimates with the scaling parameters used in Arctic-HYPE version 2.5, the 
new scaling parameters implies a decreased glacier volume by 8% when applied on the 
individual RGI glacier areas for all glaciers in the arctic RGI regions (Table 6). However, 
when applied on the total glacier area within the Arctic-HYPE sub-basins, the area-volume 
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scaling resulted in a 37% overestimation of the total glacier volume if the new sub-basin 
corrections without the scaling parameters. 

5. If the overestimation of glacier area in previous model version is also taken into account, the 
total overestimation of glacier volume in previous model version was even larger (44%, 
Table 4).  

6. RGI glacier outlines could probably also be further used for improving sub-basin delineation 
following the glacier outlines. The data also includes additional information that could be 
further used to improve the glacier sub-model parameterizations: mean, maximum and 
minimum elevation, slope and length, as well as the detailed hypsography, but none of these 
potential values of the CCI glacier data have been assessed yet. 

 
A first preliminary analysis of RGI v5 showed substantial improvements in North Asia, where 
previously many glaciers were only marked by a circle area without a real outline (Figure 54). 
Previous glaciers outlines were also improved and many of them shifted laterally in this region – 
some glaciers rather large shifts. It has not been not assessed if these updates have been adopted 
in the CCI Land cover data v1.6.  
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Figure 54: Comparison of Glacier area derived from CCI Glacier (RGI v4 and v5) and CCI Land 
cover ´permanent snow and ice’ v 1.6. Glaciers with unknown outline but known existence and 
known area were represented by circles in RGI 4.0 (example in lower right panel from upper part 
of River Ob basin). 
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Table 6: Glacier volume estimated for RGI regions in the arctic region and in the Arctic-HYPE 
model per RGI region, comparing data from Huss and Farinotti (2012) with data estimated by 
area-volume scaling with glacier areas based on CCI glacier (RGI v4), CCI land cover v1.4 and 
GlobCover 2004-2006. 

RGI region 

All glacier areas Arctic-HYPE model domain 

HF2012 

Area-volume scaling based 

on RGI v4 

Area-volume scaling 

Based on RGI v4 

Based on 

Land Cover 

v1.4 

Calibrated 

parameters 

Reference 

parameters 

calibrated calibrated reference reference 

subbasin 

corrected 
uncorr. uncorr. uncorr. 

km3 % of HF2012 km3 % of sub-basin corrected 

01 Alaska 20402 99% 118% 2112 153% 182% 212% 

02 Western Canada/US 1025 96% 115% 109 298% 356% 1463% 

03 Arctic Canada North 34399 101% 94% 34705 123% 114% 127% 

04 Arctic Canada South 9814 97% 79% 9476 134% 114% 210% 

06 Iceland 4441 103% 61% 4555 104% 62% 74% 

07 Svalbard 9685 95% 80% 9015 166% 140% 155% 

08 Scandinavia 256 99% 78% 216 200% 148% 276% 

09 Russian Arctic 16839 99% 74% 16516 158% 112% 133% 

10 North Asia 140 118% 141% 71 288% 344% 922% 

Total 97001 99% 92% 76777 137% 116% 144% 

 
 
 
CCI Land cover 
CCI land cover v1.4 was compared to the precursor data GlobCover 2004-2006 with regard to 
differences in land cover distribution. The “climate quality” of the information in the land cover 
time series (2000, 2005, 2010) was of special interest, since the on-going changes in the Arctic 
regions (mainly climate related) are expected to be expressed for instance in the distribution of 
vegetation, surface water, and snow and ice. Furthermore, a initial assessment was made 
comparing CCI land cover v1.4 and v1.6 for the Arctic region. 

 
Results to date:  
� More surface water area in CCI Land cover data sets compared to the pre-cursor GlobCover 

2004-2006): 
1. Arctic-HYPE water surface area based on CCI Land cover v1.4 increased with about 6-

20% compared to the precursor based on GlobCover 2004-2006 (Figure 55), with ranges 
depending on how the land cover data was combined with the GLWD lake vector data. 
This is a very important improvement for understanding Arctic hydrology which is 
dominated by large rivers and a large number of small and large lakes. The total water 
body area in the Arctic domain further increased with about 1% from v1.4 to v1.6.  
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2. More realistic distribution and higher resolution of water bodies in CCI Land cover v1.6: 
3. CCI Land cover v1.6 includes a new water body mask with higher spatial resolution 

(150m), which represented small lakes and river outlines much realistically than v1.4. 
4. The new 150 m resolution water mask has also been re-sampled in the v1.6 300 m land 

cover products with similar improvements in the representations of water bodies 
compared to v1.4 (Figure 56).  

5. By vectorizing the water body pixels, statistics on number of lakes and lake size 
distribution within the hydrological model sub-basins where further used to regionalize 
lake runoff generating parameters, which was helpful for improving the river discharge 
simulations in the model. 

 
 

 
Figure 55: Land cover data from the area around the Ob River showing a clear increase in surface 
water area from Left: GlobCover to Right: CCI land cover. 
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Figure 56: ESA CCI Land Cover Water bodies 2010 showing the difference between (top panels) 
v1.4 and (bottom panels) v1.6, as well as the difference between the 150 m resolution water body 
mask (ESACCI-LC-L4-WB-Map-150m) and the 300m land cover product in v1.6 (ESA CCI LU v 
1.6), with examples from the Lena River delta (left panels) and the Mackenzie River (right panels). 
 
 
 
� The class “water bodies” is constant throughout the three epochs and water bodies are not 

included in the seasonal products.  
1. From a “climate quality” perspective, it would be interesting to get information on the 

trends and seasonal variation in the spatial distribution of surface water. Variation in small 
water bodies is a relevant ECV related to permafrost melting, which is of highest interest 
in the Arctic region. 

� The fraction of deciduous needle leaf trees was reduced in the latest epoch (2008-2012) 
compared to previous periods in eastern Siberia (based on v1.4, still to be evaluated in v1.6).  
1. Field observations suggest that this might be due to increasing precipitation during the 

period.  
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2. This will affect the ‘climate quality’ of the land cover time-series data. 
3. Analysis of relation to observed and simulated river discharge still to be analyzed. 
4. Improved distribution of lichens and mosses in v1.6 compared to v1.4: 
5. In Land cover v1.4 there was no lichens and mosses in the Eurasian part of the Arctic 

region. In v1.6 this is improved (Figure 56), mainly by replacing sparse vegetation and 
bare soils. Summarized over the entire Arctic-HYPE model domain, water bodies and 
lichens and mosses increased by 1% and 2% respectively, between v1.4 and v1.6, whereas 
sparse vegetation and bare soil classes were reduced by 1.5% and almost 1% respectively. 
There were also minor reductions in forests and other remaining classes (Figure 57). 

  
 

 
Figure 57: Changes in some aggregated land cover classes between CCI land cover v1.4 and v1.6, 
summarized over the Arctic-HYPE model domain. 
 
 
CCI Land cover – Irrigated areas 
The CCI land cover data on irrigated areas (“Cropland, irrigated or post-flooding”) was initially 
assessed versus the Global Map of Irrigation Areas (GMIA) published by Seibert et al (2005) 
(Figure 50). GMIA was developed by combining irrigation statistics for 10 825 sub-national 
statistical units and geo-spatial information on the location and extent of irrigation schemes and 
provides irrigated area on a 5 arc minute by 5 arc minute grid. The CCI data was upscaled to the 
GMIA resolution for quantitative comparison (Figure 58).   
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Figure 58: Global map with the differences between GMIA and “Cropland, irrigated or post-
flooding”- CCI Land cover v1.6. Red pixels shows areas where irrigation from GMIA is greater 
than those proposed by CCI Land cover v1.6 and vice versa. Numbered circles indicate the 
location of the areas with the highest differences.  

 
In many areas of the world, the difference between GMIA and the CCI Land cover irrigated 
areas is small, however there are some areas with large discrepancies indicated by numbered 
circles in Figure 43 and summarized in Table 7.  
  
 
Table 7 Location of the mainly areas with high mismatches between irrigated area derived from  
CCI Land cover (v1.6) and GMIA. 

 CCI-ESA > GMIA GMIA > CCI-ESA 
1 Riverbank of Ganges River USA fields crops 
2 Yangtze River mouth Yellow River Mouth 
3 Central Asia (Naryn River Basin) Ganges Delta 

 
 
Irrigation overestimation by CCI Land cover (v1.6) compared to GMIA 

The tree selected areas where CCI land cover (v1.6) overestimates irrigation compared to GMIA 
are located in the surrounding of big rivers in Asia (Ganges, Yangtze and Naryn). Additional data 
for assessing this discrepancy was taken from the recenly published Global Surface Water Explorer 
data  (Pekel et al, 2016), which is based on the analysis of Landsat imagery 1984-2015. 
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Figure 59: Comparison between the overestimation in irrigation in CCI-ESA (right column) 
compared with the annual water recurrence (Pekel et al., 2016) (left column) on the three selected 
areas.  

 

Figure 59 compare the location of the selected areas where irrigated areas in CCI Land cover is 
larger than GMIA with the water annual recurrence product from the Global Surface Water 
Explorer (Pekel et al., 2016). In cases 1 and 2 there is a clear relation between these areas and areas 
where water is recurrently present according to the Global Surface Water Explorer. This can be 
explained by the fact that the CCI land cover (v1.6) in fact includes both post-flooding and irrigated 
areas in the same category. In case 3, the study region is one of the main Chinese rice producers 
between 10000 and 20000 thousand of ton in 2014 (Clauss et al., 2016). Rice is a crop that usually 
grows in post-flooded areas. However, the Global Water Surface Explorer does not indictate the 
same amount of recurrent water presence in this area as in area 1 and 2.  
 
Irrigation underestimation by CCI land cover compare to GMIA  

The underestimation of irrigated areas in CCI Land cover compared to GMIA is located in 
agricultural areas of USA, China and India. In the two first cases, there are indicators that probe 
that they are irrigated areas (Census of Agriculture reported by USDA 2013, Clauss et al., 2016, 
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respectively). Over the areas is also common to find in satellite images the characteristic circular 
and gridded patterns of irrigated fields. In the case of India there is not a clear understanding that 
why there is these mismatches between the two sources.  
 

Quality relevant outcomes 
• Disagreement between CCI Glacier and CCI Land cover: 

o The CCI Land cover class “permanent snow and ice” is larger than the glacier area 
derived from the glacier outlines in CCI Glacier - in total over the Arctic-HYPE 
model domain 30% too large (Figure 51; Table 5). 

o The CCI Land cover documentation reveals that the CCI Glacier outlines have been 
used to assign “permanent snow and ice” to all land cover pixels within the outlines 
– however, areas outside of the CCI Glacier outlines classified as “permanent snow 
and ice” have not been reset to “unclassified” or any other land cover class. In 
addition, the latest version of land cover (v1.6) does not seem to be updated to the 
latest version of glacier data (RGI v5). 

o Previous discussions with Science Leaders from CCI Glacier and Land cover 
confirmed that CCI glacier area was added to “permanent snow and ice”. It was 
suggested to include a sub-class under “permanent snow and ice” separating pixels 
under ice and other snow pixels. But as we can see, it has not been implemented 
yet in CCI LandCover v1.6. 

• No ice thickness in CCI Glacier data (RGI v4 or v5): 
o Glacier thickness is not included in RGI even though estimates of each glacier exist 

based on modelling and observations (Farinotti and Huss, 2012). 
o The model estimates can be requested from the CCI Glacier team on request. 

However this information is not yet clear in the CCI Glacier documentation. 
• No temporal information in CCI Glacier (RGI v4 or v5): 

o The RGI data provide the date of the source data, but information is still needed for 
proper initialisation of glacier models for previous time periods. Recommended 
practices on how to model historical glacier extents and volumes would be useful 
as an extension of the CCI Glacier. 

• The need for a CCI Hydrography 
o Hydrography data (river network, sub-basin delineation, lake and water delineation, 

flow directions, man-made and natural diversions, dams, etc) is one of the most 
important inputs for hydrological models. Arctic-HYPE uses a polygon based 
partitioning of the landscape into sub-basins derived from digital elevation data 
(Hydro1K), vectorised lake delineation (GLWD) and discharge station metadata 
(location and upstream area). Other models uses gridded hydrography (Flow 
directions), but the importance for model development and evaluation is 
nevertheless essential. The most used datasets on the global scale are the USGS 
Hydro1K (1km2 resolution) and only available below 60°N HydroSheds (90 m2 
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resolution), which both provide hydrologically constrained digital elevation and 
flow direction data.  

o Just like land cover, the river and lake network may change as a result of 
hydrological, climatological, morphological and anthropogenic processes. Both 
river morphology, flow directions, number and extend of lakes is changing in the 
Arctic region and in other regions of the world. 

o The CCI Land Cover mask include excellent information of water bodies and the 
latest version 1.6 provide a major improvement of identified water bodies and 
spatial detail. However, water pixels are not linked to lakes and river network data. 
For instance, separating water pixels into lake and river pixels would be a important 
first step towards and improved usefulness of the CCO water mask data in 
hydrological modelling. The ultimate goal of a CCI Hydrography could be to 
contribute to a global high resolution hydrography dataset, including lakes and river 
outline data, and gridded hydrologically constrained elevation and flow direction 
data.  
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3.12 Cross-assessment of CCI-ECVs over the Mediterranean domain 
[WP3.10] 

 
Aim 
 
The activity within the context of this Work Package is in some respect in the continuity of the 
Météo-France activity in the context of CMUG Phase 1. Its first main objective is to evaluate the 
performances (mean climate, variability and trends) of the Med-CORDEX regional climate system 
models (RCSMs) over the Mediterranean domain with a sub-set of atmosphere, marine and surface 
CCI-ECVs. A second objective is the evaluaton of the consistency between CCI-ECVs though the 
analysis of a climate specific event (the 2006 heat wave) observed with the CCI-ECVs and possibly 
reproduced by a RCSM.  Two scientific questions to address are the following: are the state of the 
art RCSMs able to reproduce observed Mediterranean climate trends and variability over the last 
decades? What are the potential coupled mechanisms between atmosphere, ocean and land that 
play a role on the characteristics of a climate specific event like a Mediterranean heatwave?  
 
Summary of results 
 
Seal level variability and trends  
 
During CMUG Phase 1, the SSH simulated by the so-called CNRM-RCSM4 coupled regional 
climate model (Sevault et al., 2009) developed at CNRM and applied in the Med-CORDEX 
international simulation exercise, was confronted with the CCI Sea Level ECV and its precursor 
over the 1993-2010 period (see Phase 1 deliverable 3.1). Some results of this confrontation have 
been recently published in the scientific literature as part of a presentation of the evaluation of the 
ocean component of the CNRM-RCSM4 model (Sevault et al, 2014). 
 
One main conclusion from this confrontation was that the CCI SSH is suitable for regional climate 
studies over the Mediterranean basin, even at a scale of a few tens of kilometres. The results of the 
model concerning trends of sea level change are encouraging. It also let some open questions 
concerning the way to facilitate the comparison between the modelled and observed sea levels. 
These questions come from the fact that climate models are not directly calculating the 
contributions to sea level changes that are due to mass changes implied by glaciers and ice sheet 
melting or by changes in continental water storage. In addition, in the specific case of regional 
climate models simulating the Mediterranean domain, the contribution to mass change in the 
Mediterranean Sea due to the mass flux at the Gibraltar Strait need also to be carefully taken into 
account.  
 
Since the beginning of CMUG Phase 2, thanks to the development of a new version of the 
Mediterranean Sea model, and thanks to the availability of a new ocean reanalysis, it was possible 
to improve the comparison between the modelled and the satellite-derived SSH.  
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The operational ocean reanalysis system (ORAS4; Balmaseda et al., 2013) has been implemented 
at ECMWF and it spans the period 1958 to the present. This make this reanalysis suitable for 
MedCORDEX simulations since it can be used to constrain the oceanic component of a regional 
climate model in the Atlantic buffer zone over the ERA-Interim period (1980-2013). Contrary to 
the so-called COMBINE reanalysis previously used, ORAS4 assimilates satellite-derived SSH 
anomalies from the AVISO dataset (the precursor used in Phase 1). It also includes sea level 
contributions from ice sheet mass loss, glaciers ice melt, changes in land water storage and global 
thermal expansion. This makes great difference because this potentially allows to account for sea 
level changes due to mass changes in the simulated Mediterranean sea level through the boundary 
condition applied in the Atlantic buffer zone (see Phase 1 deliverable 3.1). The results presented 
below confirm that this is indeed the case. 
 
The new version of the Mediterranean Sea model is NEMOMED12, a regional version of NEMO 
v3.2 model simulating the free surface evolution associated to the convergence of the oceanic 
current and to the fresh water flux at the ocean surface, as this was the case for NEMOMED8 used 
during Phase1. Compared to this last, the resolution is improved on the horizontal (1/12° versus 
1/8°) and on the vertical (75 vertical levels versus 43). The model was integrated over the period 
1980-2013 with an atmospheric forcing from ALDERA (a dynamical downscaling of ERA-Interim 
using the ALADIN-Climat regional climate model) and a relaxation toward ORAS4 in the Atlantic 
buffer zone of the model (3D for temperature and salinity, 2D for SSH). However, since ORAS4 
underestimate the mean seasonal cycle of the SSH over the basin (see Figure 60), it has been 
previously corrected in the Atlantic buffer zone in order to reproduce on average the mean annual 
cycle obtained from the CCI-ECV over the 1993-2010 period. This correction also applies before 
the satellite observing period. 

 
Figure 60: Seasonal cycle of mean sea level anomaly over the buffer zone (left) and over the 
Mediterranean Sea (right) for the CCI sea level (green dotted line), ORAS4 ocean reanalysis 
(orange dashed line), the coupled regional climate system model CNRM-RCSM4 (dark blue line) 
and the Nemomed12 Mediterranean sea model (light blue line). 
 
The results presented in Figure 61 show that the NEMOMED12 model reproduces correctly the 
mean seasonal cycle from the CCI-ECV over the buffer zone, small differences coming from the 
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fact that the relaxation coefficients toward the corrected ORAS4 are decreasing in the eastern part 
of this zone. But NEMOMED12 also reproduces fairly well the Mediterranean Sea mean sea level 
inferred from the CCI-ECV, and with a much better agreement than the CNRM-RSCM4 free 
surface (in Phase 1 Deliverable 3.1, CNRM-RCSM4 sea level was presented after adding the 
thermosteric component of sea level inferred from the simulated temperature changes only over 
the basin to account for missing terms in the model equations).  
 

 
Figure 61: Time series of mean sea level anomalies averaged over the Mediterranean Sea over 
the period 1980-2013 for the CCI sea level (dashed green line), the tide gauge derived sea level 
reconstructions of Meyssignac et al. (dotted grey line) and Calafat and Jordà (dotted brown line), 
for the coupled regional climate system model CNRM-RCSM4 (dark blue line) and the 
Nemomed12 Mediterranean sea model (light blue line). 
 
The positive impact of the assimilation of satellite-derived sea level in the ocean reanalysis used 
to constrain the ocean model in the Atlantic is also illustrated in Figure 61 showing the time series 
of mean sea level over the Mediterranean Sea. NEMOMED12 is indeed able to reproduce the sea 
level change over the period as observed from tide gauges and by the CCI-ECV. This also 
illustrates that the mean sea level change in the Mediterranean Sea mainly depends on the mass 
flux change at the Gibraltar Strait. Here again, without the thermosteric term contribution, the 
CNRM-RCSM4 model has low performance due to the absence of SSH assimilation in the 
COMBINE reanalysis used to constrain the model in the Atlantic. 
 
This analysis of the added-value of the CCI Sea Level ECV using the CNRM regional climate 
coupled and uncoupled models was completed by a multi-model intercomparison, considering two 



CMUG Phase 2 Deliverable  
Reference:  D3.1: Quality Assessment Report 
Due date:   June 2017 
Submission date:  21 December 2017 
Version:  4 
 

127 of 174 

additional coupled regional climate system models used within the context of the Med-Cordex 
project (Adloff et al., 2017). The first one is the so-called LMDZ-MED model (L’Hévéder et al., 
2013) coupling the LMDz4 regional atmospheric component with the NEMOMED8 regional 
configuration of the NEMO ocean model with a horizontal resolution of 9 to 12km. For this model, 
the mean sea level in the Atlantic buffer zone is kept constant. The second is the MORCE-MED 
model (Lebeaupin-Brossier et al., 2013) coupling the WRF atmospheric model with 
NEMOMED12. As for the CNRM-RCSM4 and the NEMOMED12 models, the simulated SSH is 
here relaxed toward a reference dataset in an Atlantic buffer zone. Over the period 2002-2008, it 
comes from the GLORYS-1 reanalysis (Ferry et al., 2010) which assimilates the AVISO satellite 
sea level. Over the period 1989-2001, the reference SSH varies seasonally but not interannually.  
 
 

Figure 62: Trends in mm/year of Mediterranean sea surface height anomalies with respect to basin 
average over the period 1993-2008 for the three coupled regional climate system model (CNRM-
RCSM4, LMDZ-MED and MORCE-MED), the NEMOMED12 Mediterranean Sea model 
(MED12) and the CCI Sea Level (CCI-ECV). 
 
We have also reproduced in Figure 62 the simulated and observed sea level trends anomalies with 
respect to basin average, for the 16-year of the simulations common period (1993-2008). For the 
three coupled models, to account for the imperfect boundary conditions applied to the sea level in 
the Atlantic buffer zone, the reproduced trends are calculated as the sum of the calculated dynamic 
component and a spatially constant thermosteric component of the sea level change. This consists 
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in neglecting the contribution of salinity changes in the computation of modeled sea level change 
at the Mediterranean basin scale as justified by previous analyses (see Phase 1 deliverable 3.1). 
However, whatever the hypothesis made to correct the trend averaged at the basin scale, the spatial 
trend variability reproduced in Figure 62 only results from the simulated dynamical processes and 
sea surface fresh water fluxes.  
 
Here CNRM-RCSM4 and NEMOMED12 display very similar performances because the different 
boundary conditions have little impact on the spatial trend variability. But this also proves that this 
variability is not too much affected by the coupling between the atmosphere and the Mediterranean 
Sea. The LMDZ-MED model also shows important similarities with the observations, showing 
that the spatial variability of the local trends is not significantly affected by the specification of the 
lateral boundary conditions. The difficulties of the models to reproduce the observed trends in the 
western part of the Mediterranean basin can be attributed to their difficulty to reproduce the 
circulation in the Alboran region (Adloff et al., 2017). The patterns are differently reproduced by 
the different models in this region. The patterns are better reproduced in the eastern part of the 
basin and in particular due to their ability to reproduce the recovery following the so-called 
“Eastern Mediterranean Transient” (EMT) anomaly. There is thus a model dependence of the 
results and the CCI-ECV can be used to assess the performances of the models.  
 
In addition, the level of agreement between the models and the CCI-ECV observations shows that 
the uncertainty on local trends first estimated to be 3mm/yr (Error Report v1.1 dated 9 April 4 
2013), might have been overestimated by the CCI Sea level team. The new error estimate presented 
as a map in their last error report (Error Characterization Report v2.2 dated 29 July 2016) are now 
of the order of 1 to 2 mm/yr over the Mediterranean Sea and are consistent with the model results. 
The modelled trends are indeed close to the observations in many regions but the differences are 
the most often higher than this estimated error. This finding has however to be confirmed through 
a more quantitative approach. 
 
Cross-assessment of a subset of CCI-ECVs  
 
The consistency of the CCI-ECVs is here evaluated through the analysis of a climate specific event 
that can be as well observed with the satellite-derived products as potentially reproduced in RCSM 
simulations. In this work we focus on the July 2006 heat wave that affected the western part of the 
Mediterranean continental and marine area. The model is the so-called CNRM-RCSM5 model 
close to the CNRM-RCSM4 model as it couples a version of the ALADIN-Climat atmospheric 
component with a 50km horizontal resolution and the NEMOMED8 Mediterranean model with a 
1/8° horizontal resolution, but including a prognostic aerosol scheme for desert dust, sea salt, 
organic, black-carbon and sulfate particles (Nabat et al., 2015). The CNRM-RCSM5 model was 
integrated from May to July 2006 with application of a spectral nudging towards the ERA-Interim 
reanalysis (hereafter referred to as SN simulation). In addition to the surface pressure, the 
atmospheric temperature, wind vorticity and divergence, and specific humidity are nudged above 
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the 700 hPa level (relaxation zone between 850 hPa and 700 hPa). An additional simulation with 
the same model but no spectral nudging (hereafter referred to as NSN simulation) and covering 
the period 1992-2010, is used to infer the model climatology.  
 
In order to analyse the development of the 2006 heat wave both with satellite-derived observations 
and with the model outputs, we calculate for different climate variables the differences between 
their July and June monthly means. We first reproduce in Figure 63 these differences for the SST. 
It reveals that, with SST differences of 4 to 7°C in the western part of the basin, the year 2006 
appears to be singular compared to the 1992-2010 climatology that exhibits differences of only 
about 3.5 degree in this region. It also shows the fairly good agreement between the simulated SST 
and the CCI-SST (version v02.0) as well for the NSN 1992-2010 climatology (spatial correlation 
coefficient of about 0.76) as for the 2006 SN simulation (correlation coefficient of about 0.9). This 
shows that the application of the spectral nudging method in our simulation allows reproducing 
the effect of the 2006 heat wave event on the Mediterranean surface temperature with a proper 
chronology. 
 

Figure 63: Climatological differences between July and June over the 1992-2006 period for CCI 
SST (top left) and for CNRM-RCSM5 NSN SST (top right); differences between July and June 2006 
for CCI SST (bottom left) and for CNRM-RCSM5 SN SST (bottom right). 
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Afterwards the consistency between the simulated and the CCI aerosol optical depth (AOD) is 
examined. Three algorithms are available to infer the CCI long-term total column AOD datasets 
from European Earth Observation sensors: the Oxford RAL Aerosol and Cloud retrieval (ORAC), 
the Swansea University AATSR retrieval (SU) and the AATSR dual-view (ADV). The spatial 
correlation coefficients between the SN AOD and the satellite-derived AOD (CCI, MODIS and 
AMSR) over the whole Euro-Mediterranean area (see the domain in Figure 46), at the daily and 
monthly time scale for June and July 2006, are presented in Table 7. The satellite product giving 
the highest correlations with the simulation is the CCI AOD determined through the Swansea 
University (SU) algorithm. This is consistent with Holzer-Popp et al. (2003) showing better results 
for this algorithm over northern Africa and the Mediterranean region. 
 
Table 7: Spatial correlation coefficient between SN simulated aerosol optical depth and different 
satellite products. 

Satellite product/Algorithm CCI/ADV CCI/ORAC CCI/SU MODIS MISR 
 July July June July June July June July June July 
Daily 0.48 0.36 0.76 0.74 0.85 0.83     

Monthly 0.19 0.23 0.65 0.74 0.84 0.82 0.81 0.78 0.56 0.67 
 
We thus choose this product to illustrate the development of the 2006 heat wave on the AOD 
(Figure 64). Compared with the CCI climatology over the 1992-2010 period, the observed 
distribution of AOD change between the two months shows specificities for 2006 that are fairly 
well simulated by the model. A further investigation of geopotential and wind at 850 hPa from 
ERA-Interim reanalysis corroborates an impact of the circulation change, associated to an increase 
of geopotential over Maghreb, on the transport of dust from the African continent towards Western 
Europe. The same circulation change between June and July 2006 also appears to be partly at the 
origin of the cloud change pattern over Western Europe (not shown) that is trapped by the model 
simulation with a spatial correlation of about 0.9 between the SN and the CCI total cloud changes. 
It is worth noting that this high correlation is obtained in spite of a negative bias of the simulated 
cloud having no impact on the correlation.  
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Figure 64: Climatological differences between July and June over the 1992-2006 period for CCI 
AOD (top left); differences between July and June 2006 for CCI SU AOD (bottom left) and for 
CNRM-RCSM5 SN AOD (bottom right).  
 
In addition, the analysis of the CCI soil moisture shows that 2006 is also much drier in July than 
in June compared to the 1992-2010 climatology (not shown). This is particularly the case in North-
Western Europe and this is also well trapped by the SN soil moisture with a correlation coefficient 
of about 0.8 between the modelled and the CCI ECV changes. This drying is an expected impact 
of the heat wave amplification between June and July, a mechanism that has been identified in 
previous studies. Reversely, the heat wave development has no clear impact on the sea level change 
that is dominated by an internal dynamical variability at the scale of the oceanic mesoscale eddies 
(10 to 100km).  
 
As a conclusion, the application of the spectral nudging method at the mid and upper atmospheric 
levels towards the ERA-Interim reanalysis allows to simulate the right chronology of the 2006 heat 
wave. For all the ECVs considered except sea level, the correlations between the model and the 
satellite-derived observations are very high showing the ability of the model at reproducing the 
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patterns of change. As shown by an analysis of complementary simulated atmospheric fields, the 
development of the heat wave is consistent with a circulation change that likely impacts the aerosol 
and cloud distribution changes. The drying of the upper surface is moreover an expected effect of 
the heat wave development that is simulated by the model. The agreement between the model and 
the satellite-derived observations during the 2006 heat wave thus allows concluding in the 
consistency between the different analysed ECVs over the region for this specific event. An 
additional learning is the significant effect of the choice of the algorithm that is used to infer the 
AOD satellite product, revealed by the comparison to the modelled field. The choice of the best 
algorithm is however regionally dependent. 
 
Quality relevant outcomes 
 
Some key outcomes of the CMUG research activity on this topic are that: 

• The CCI ECVs considered in this study (Seal level, SST, aerosol, soil moisture, cloud) are 
adequate to assess the performance of the state of the art regional climate models over the 
Mediterranean basin. 

• There is a significant positive impact of the assimilation of the CCI Sea Level ECV in the 
ocean reanalyses that are used for the Atlantic lateral boundary conditions of the 
Mediterranean regional climate models. 

• The new uncertainty estimate on the Sea Level ECV local trends seems now to be 
consistent with the models results. 

• The analysis of the consistency between the simulated model aerosol optical depth and the 
corresponding ECV products reveals the importance of the choice of the algorithm used to 
infer this variable from the satellite observations. 

• The analysis of a climate specific event simulated by a RCSM reveals the consistency 
between several ECVs over the Mediterranean domain. 
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3.13 Assessment of sea ice concentration observational uncertainty 
from a data assimilation point of view [WPO3.11] 

 
Sea ice concentration (SIC) is arguably one of the longest remotely-sensed and most essential 
climate variables (ECV) at high latitudes. Global SIC records date back to the late 1970s (Cavalieri 
et al, 1996), which makes them crucial for climate studies. In addition, SIC is an essential term in 
the sea ice mass budget and is the primary information on which the skill of contemporary climate 
models is estimated in polar regions (e.g. Guemas et al, 2014). However, satellites do not measure 
SIC directly. Rather, they sense sea surface brightness temperature; since water and ice have 
different passive microwave signatures at a certain frequency, it is possible to estimate the relative 
amount of sea ice in a grid cell (that is, sea ice concentration) given the brightness temperature 
information. This conversion between brightness temperature and SIC is associated with a number 
of assumptions which, added to the instrumental uncertainty, make SIC products intrinsically 
uncertain. The comprehensive review by Ivanova et al. (2016) documents advantages and pitfalls 
of different algorithms for SIC retrieval and discusses these issues in detail. 
 
By contrast, sea ice thickness (SIT) is a very demanding variable to observe in-situ or remotely at 
any scale, although it is thought to carry a significant share of sea ice predictability, at least for the 
summer season. Indeed, thin ice melts more easily, so that SIT anomalies are directly related to 
SIC anomalies a few months later, with possible re-emergence up to a year later (Guemas et al., 
2014). Defining SIT anomalies is not trivial, given the sparsity and intermittency of existing 
records. Efforts from many projects, including ESA-CCI, to make these products routinely 
available are therefore more than welcome, given the valuable information that they represent for 
the climate community. 
 
The quality of observational sea ice products is critical for accurate initialization of climate 
predictions. Within the CMUG Phase 2, the Earth Sciences Department of the Barcelona 
Supercomputing Center (BSC-ES) has implemented a sophisticated method of data assimilation 
for SIC, namely the Ensemble Kalman Filter (EnKF; Evensen, 2003, 2007). The EnKF works in 
two steps: (1) a forecast step, during which an ensemble of N climate simulations is forwarded in 
time, each element (“member”) of the ensemble being subject to a perturbation and (2) an analysis 
step, during which all members are updated based on new information available from observations 
(Figure 55). 
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The EnKF is an advanced data assimilation method which propagates the model updates from 
observed variables to non-observed variables through the error covariance matrix which appears 
in the gain matrix formulation, the latter being used to update the model.  When assimilating 
observational data through the EnKF, partial observations can therefore have a global impact. For 
example, the observation of SIC alone can lead to a substantial correction of SIT but also sea 
surface temperature, salinity or even currents. The other strength of the EnKF is the fact that this 
filter accounts for both model and observational uncertainties. In regions where the model is 
relatively confident (e.g., the interior of the Arctic sea ice pack in winter), updates will be minor; 
while they will be larger in the marginal ice zone where the position of modelled ice edge is usually 
uncertain. At the same time, updates will be large where observations are relatively confident. An 
accurate estimation of SIC uncertainties is therefore essential for an efficient data assimilation with 
the EnKF. 
 
In the previous quarterly report in 2017, we validated our sea ice reanalysis performed with the 
NEMO3.6-LIM3 model assimilating the ESA CCI SIC product through the EnKF at standard 
resolution over the 1993-2009 period. We illustrated the performance of assimilating ESA SIC 
through a comparison with a NEMO3.6-LIM3 free run (i.e. without sea ice data assimilation) and 
OSI-SAF SIC. We showed that the assimilation of ESA CCI SIC improves the representation of 
extreme events (e.g., September 2007 in Arctic) as well as the mean state (especially in the 
Southern Ocean where the free-running model exhibits larger biases than in the Arctic). In this 
final report we illustrate new results about: 

1. Assimilating ESA CCI SIC data in coupled mode at standard resolution (about 1 degree in 
the ocean and 80km in the atmosphere) 

 
Figure 55: Principle of the ensemble Kalman Filter (EnKF). During the forecast step, model 
error is explored by integrating N model versions, each subject to a perturbation. The ensemble 
is then updated during the analysis step. The update is proportional to the misfit of forecasts to 
the observation, and is weighted by the relative uncertainties in observations and forecasts. A 
new forecast cycle is then started using the result of the analysis step as initial conditions for the 
new forecast step. 
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2. Initializing coupled climate predictions from the standard resolution sea ice reanalysis 
produced for the previous quarterly report 

 
 
Key results of CMUG research on SIC assimilation in coupled mode within Ec-
Earth3.2 at standard resolution  
 
We use the EC-Earth3.2.0 coupled climate model in T255L91 (about 80km atmospheric horizontal 
resolution and 91 levels) ORCA1L75 (about 1 degree oceanic horizontal resolution and 75 levels) 
configuration to assimilate the ESA CCI sea ice concentration (SIC) product using the Ensemble 
Kalman Filter (EnKF) with 25 members. The assimilated SIC has a direct impact on the sea ice 
and ocean variables through the EnKF updates at monthly intervals, but not on the atmosphere and 
land variables by construction, because our primary focus is on monthly and longer climate 
timescales. We assume that the atmospheric potential shocks, right after the EnKF updates of the 
ocean and sea ice states which could become inconsistent with the atmospheric variables, are 
statistically indistinguishable from typical weather noise governed primarily by synoptic 
processes. 
 
In the Northern Hemisphere (NH), the assimilation of SIC reduces both the summer minima and 
the winter maxima of sea ice extent (SIE) by more than 1 million square km with respect to a free-
running simulation (Figure 56). In late spring and early summer, the Arctic SIE is also substantially 
reduced. These EnKF corrections are suspected to correspond to a compensation for 
misrepresented surface thermodynamics sea ice processes, such as melt ponds and multi-layer 
snow, which are particularly important during the melting period. 

 
Figure 56: Northern Hemisphere sea ice extent in millions square km. The black (green) line shows 
the NSIDC (ESA CCI) monthly mean observations. The blue (red) lines show a free-running 
(EnKF) ensemble of EC-Earth3.2.0 reconstructions.      
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Figure 57a shows the ensemble mean SIC of a free-running simulation which tends to overestimate 
the NH SIC in the marginal zones during the winter maximum in March 1994 (with respect to 
observed conditions in Figure 57d). The SIC tends to be reduced in these regions when assimilating 
ESA SIC data (Figure 57c). Our EnKF approach uses the SIC and its uncertainty from ESA (Figure 
57b illustrates the SiC uncertainty that was used for the EnKF update on 1 March 1994). The SIC 
reduction is large in regions of low SIC uncertainties such as the Labrador and Irminger seas, but 
comparatively moderate in regions of large SIC uncertainties such as in Fram Strait. 
 
Figure 58 shows the equivalent fields for the summer maximum in September 1994 (including 
Figure 58b that shows the SIC uncertainty that was used for the EnKF update on 1 September 
1994). Overall, these results show some substantial improvements in the NH SIC conditions thanks 
to our data assimilation approach, the EnKF larger corrections matching regions of low SIC 
uncertainty. This is the case for example in the Baffin Bay, in the Chukchi and Beaufort Seas. 
Surprisingly, in some other regions such as along the Euro-Asian continental shelf, the reanalysis 
does not necessarily match better the observations than the free-running simulation despite a low 
SIC uncertainties. A robust correction of the SIC in this region would probably require more 
successive updates.  

 
Figure 57: The upper (lower) left panel shows the ensemble-mean SIC of a free-running simulation 
(EnKF analysis) in March 1994. The upper (lower) right panel shows the NH SIC uncertainty on 
28 February 1994 in the ESA-CCI SIC data used for the EnKF update (in March 1994 in NSIDC 
data). The units of SIC and SIC uncertainty are %. 
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Figure 58: The upper (lower) left panel shows the ensemble-mean NH SIC of free-running (EnKF 
analysis) in September 1994. The upper (lower) right panel shows the NH SIC uncertainty on 31 
August 1994 in ESA data used for the EnKF update (in September 1994 in NSIDC data). The units 
of SIC and SIC uncertainty are %. 
  
 
In the Southern Hemisphere (SH), the assimilation of ESA-CCI SIC allows for a substantial 
reduction of the SIE and its ensemble spread so that the simulated SIC becomes statistically 
indistinguishable from the observations (Figure 59). The observed SIC uncertainties tend to be 
confined to narrower zones in the Southern Ocean as illustrated by the comparison between Figures 
60b and 61b with Figures 57b and 58b, and the model ensemble spread tend to be larger in the 
Southern Ocean as illustrated by the comparison between Figures 56 and 59 which both contribute 
to larger EnKF updates toward observational data, the second factor being the dominant one. 
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Figure 59: Southern Hemisphere sea ice extent in millions square km. The black (green) line shows 
the NSIDC (ESA CCI) monthly mean observations. The blue (red) lines show a free-running 
(EnKF) ensemble of EC-Earth3.2.0 reconstructions.      
 
 
The SIC from our reanalysis shows on average in the SH a better agreement with the observations 
than in the NH at the sea ice minimum during the austral summer (March) in most seas around the 
Antarctica (Figure 60). A reasonably good agreement between the reanalysis and satellite data is 
also obtained during the austral winter maximum (Figure 61). A regional comparison of the EnKF 
corrections (Figures 60c and 61c) and the SIC uncertainty from the ESA data (Figures 60b and 
61b) around the Antarctic indicates that the Southern Ocean sea ice cover has not been as 
effectively updated in the regions with relatively higher SIC uncertainty as in the regions with 
lower uncertainty. For example, the EnKF corrections during austral summer in the middle of the 
Ross Sea close to the Ross Ice Shelf could be economically important for the planning of the 
transportation of people and material to numerous nearby research stations.       
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Figure 60: The upper (lower) left panel show the ensemble-mean SH SIC of free-running (EnKF 
analysis) in March 1994. The upper (lower) panel show the SH SIC uncertainty on 28 February 
1994 in ESA data used for EnKF update (in March 1994 in NSIDC data). The units of SIC and 
SIC uncertainty are %. 
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Figure 61: The upper (lower) left panel show the ensemble-mean SH SIC of free-running (EnKF 
analysis) in September 1994. The upper (lower) panel show the SH SIC uncertainty on 31 August 
1994 in ESA data used for EnKF update (in September 1994 in NSIDC data). The units of SIC and 
SIC uncertainty are %.  
 
 
Key results of CMUG research on initializing climate predictions from a reanalysis 
assimilating ESA SIC at standard resolution  
 
Coupled seasonal forecasts were carried out for the period 1993-2008 with the T255L91 
ORCA1L75 configuration of the EC-Earth3.2.2 climate model (about 80km horizontal resolution 
and 91 levels in the atmosphere and about 1 degree horizontal resolution and 75 levels in the 
ocean). The model was initialized on every 1st of May and every 1st of November and integrated 
until seven months into the future. Two identical sets of seasonal forecasts were conducted except 
for their sea ice initial conditions (IC). Each set consists of five ensemble members. For the 
atmospheric IC, we used the ERA-Interim reanalysis, and for the oceanic IC ORAS4 reanalysis, 
the sea ice was initialized from the BSC reconstruction without SIC data assimilation, while the 
other experiment used the EnKF data assimilation of ESA CCI sea ice concentration for the initial 
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conditions. These sources of sea ice initial conditions, i.e. a sea ice reanalysis assimilating ESA 
CCI at standard resolution and a free-run simulation were illustrated in the last quarterly report. 
The 5 members were generated through the introduction of singular vector perturbations in the 
atmosphere and the use of 5 different members of the ORAS4 and sea ice 
reconstructions/reanalysis for the ocean and sea ice respectively. 
 
Figures 62 through 66 display the added value of initializing the SIC with data assimilation (1993-
2008) for the Pan-Arctic sea ice extent and sea ice volume forecasts. All figures display the 
predictive skill evaluated through correlation coefficients (left) and root mean square errors (right) 
against the NSIDC satellite observations.  
 
Predictions initialized in May with SIC assimilation show a decrease in predictive skill during the 
boreal summer months (June to September) in terms of sea ice extent (Fig. 62) compared to 
predictions which did not assimilate ESA CCI data. Sea ice volume skill is slightly improved in 
the autumn (Fig. 63) by SIC assimilation on the other hand.  The root mean square error (RMSE) 
of sea ice extent indicates a better performance of the model initialized without assimilation, but a 
worse performance if sea ice volume is considered.     
 
The SIC assimilation improves to a larger extent the forecast quality when those are initialized in 
November (Figs. 64 and 65). Both sea ice extent and volume are systematically better predicted 
when the forecast system is initialized with assimilated SIC for both correlation coefficient and 
RMSE. Although the ocean is thought to be the main driver of sea ice predictability during the 
freezing season (Chevallier and Salas-Melia, 2012; Guemas et al 2016), these results demonstrate 
that SIC assimilation has a clear added-value for the initialization of seasonal forecast in 
November.  
 

Figure 62: Prediction scores (thick lines with circles) for the Arctic sea ice extent as a function of 
the forecast month for simulations initialized in May. The scores shown are the correlation 
coefficient between the EC-Earth3.2.2 forecast system and NSIDC observations after linearly 
detrending the anomalies (left figure) and the root mean square error (right figure). The 95% 
confidence intervals are shown in thin lines. The red lines show results from simulations initialized 
with ERA-interim reanalysis for the atmosphere, ORAS4 reanalysis for the ocean and BSC 
reconstruction for sea ice. The black lines show results from simulations initialized with ERA-
interim reanalysis for the atmosphere, ORAS4 reanalysis for the ocean and BSC reanalysis for sea 
ice. Root mean square error in millions of square kilometers. 
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Figure 63: Prediction scores (thick lines with circles) for the Arctic sea ice volume as a function 
of the forecast month for simulations initialized in May. The scores shown are the correlation 
coefficient between the EC-Earth3.2.2 forecast system and PIOMAS observations after linearly 
detrending the anomalies (left figure) and the root mean square error (right figure). The 95% 
confidence intervals are shown in thin lines. The red lines show results from simulations initialized 
with ERA-interim reanalysis for the atmosphere, ORAS4 reanalysis for the ocean and BSC 
reconstruction for sea ice. The black lines show results from simulations initialized with ERA-
interim reanalysis for the atmosphere, ORAS4 reanalysis for the ocean and BSC reanalysis for sea 
ice. Root mean square error in thousands of cubic kilometres. 
 
 

Figure 64: Same as Figure 62, but for predictions initialized in November.  
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Figure 65: Same as Figure 63, but for predictions initialized in November.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 66: Added value (as a difference in correlation coefficient) from using ESA SIC data 
assimilation to initialize the model in seasonal predictions. Maps showing scores for the northern 
hemisphere surface temperature for simulations initialized in November (top) and May (bottom). 
Red means more skilful model, blue less skilful. Stippling indicates statistical significance at the 
95% confidence. Model comparison against HadCRUT_V4. 
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Figure 66 displays the added value of initializing the forecast system with SIC data assimilation 
for predicting the mean seasonal surface temperature in the northern hemisphere mid- to high-
latitudes. There is a general increase in predictive performance for the boreal winter (DJF) over 
Siberia and the North Atlantic and spring (MAM) seasons over Europe. Results are mitigated for 
the summer (JJA) and autumn (SON) seasons in predictions initialized in May, in agreement with 
the mitigated added-value of SIC assimilation for the sea ice conditions. 
 
Figure 67 displays the added value of initializing the forecast system with SIC data assimilation 
for predicting mean seasonal surface precipitation in the northern hemisphere mid- to high-
latitudes. Only boreal winter (DJF) precipitation skill shows significant improvement over parts 
of North-eastern Eurasia and Western Europe. This together with the improvement in temperature 
skill suggests that improved sea ice initialization leads to better climate representation during 
boreal winter at Eurasian mid-latitudes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 67: Added value (as a difference in correlation coefficient) from using sea ice data 
assimilation to initialize the model in seasonal prediction. Maps showing scores for the northern 
hemisphere surface precipitation for simulations initialized in November (top) and May (bottom). 
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Red means more skilful model, blue less skilful. Stippling indicates statistical significance at the 
95% confidence. Model comparison against GPCP V2. 
 
Summary of work 
 
The assimilation of ESA-CCI SIC data within a coupled climate reconstruction performed with 
EC-Earth3.2 leads to large improvements of the sea ice condition representation at high latitudes 
in both hemispheres with respect to the free-running model. In particular, the SIE is substantially 
reduced in the Northern Hemisphere during both the summer and winter seasons. The largest 
corrections induced by the EnKF correspond in general to regions of low SIC uncertainties as 
provided by the ESA-CCI product. A puzzling feature is the relatively small update obtained in 
summer along the Euro-Asian continental shelf in spite of low SIC uncertainties as given by ESA 
and prescribed into the EnKF. Longer experiments should be carried out to investigate whether 
successive EnKF updates correct this feature. In the SH, the EnKF corrections are comparatively 
larger than in the NH, mainly due to the larger model uncertainties (large model spread). The SIE 
ensemble after the EnKF updates becomes statistically indistinguishable from the observations. 
This study illustrates the substantial added-value of the ESA-CCI product as an observational 
reference for data assimilation since this product comes with an associated uncertainty which can 
be prescribed. Future lines of investigation include the exploration of the sea ice thickness and 
snow cover over ice products as additional sources of information to generate sea ice reanalyses. 
Indeed, both variables have been suggested to play a key role in the sea ice variability and 
predictability (Chevallier and Salas-Melia, 2012) 
 
The assimilation of ESA-CCI sea ice concentration into the initial conditions of the EC-Earth 
forecast system improves the seasonal prediction capability in the northern hemisphere, 
particularly during the boreal winter. The model predictive capability for pan-Arctic sea ice extent 
and volume, surface temperature and precipitation increases in the predictions starting in 
November. For predictions starting in May the performance is mitigated. This result is puzzling 
given that sea ice predictability is thought to originate mostly from initial sea ice conditions in 
summer and initial ocean conditions in winter (Chevallier and Salas-Melia, 2012; Guemas et al, 
2015; Guemas et al 2016).  
 
Quality relevant outcomes 
 
The SIC uncertainties which come with the ESA product makes it an optimal product for 
assimilation purposes where these uncertainties can be directly prescribed into the assimilation 
algorithm and balanced with the model uncertainties to compute an optimal model update. These 
uncertainties need however to be translated into the spatio-temporal timescales of the model to be 
adequately used. Refining techniques for this spatio-temporal adaptation of ESA product 
uncertainties will be one of the objectives of WP4 of the next ESA CMUG project. An unsuitable 
adaptation of these SIC uncertainties could explain the mismatch between the SIC after 
assimilation and in the observations along the Euro-Asian continental shelf. Information about 
how observational uncertainties are correlated in space and time, i.e. the off-diagonal terms of the 
covariance matrix could also be beneficial to the SIC assimilation. Another explanation for the 
Euro-Asian continental shelf mismatch would be that more successive updates or a higher 
resolution would be necessary to reach a better model-observation agreement. This last hypothesis 
will be tested within the WP3 of the next ESA CMUG project.  
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The decrease in sea ice extent forecast quality when assimilating the ESA-CCI SIC product into 
the initial conditions of the EC-Earth forecast system whereas the sea ice volume forecast quality 
increases highlights forecast errors confined to the sea ice edge. These forecast errors could 
originate from different sources: 1. a misspecification of the observational errors at the sea ice 
edge which would reduce the quality of the reanalysis sea ice extent and therefore the prediction 
skill for sea ice extent (but not necessarily for sea ice volume dominated essentially by the central 
Arctic contribution), 2. an initial shock at the initialisation time due to the use of a sea ice reanalysis 
which is not fully consistent with the atmosphere initial state, 3. an inaccuracy of the forecast error 
estimate themselves at the sea ice edge because they do not account for observational uncertainty. 
The first explanation should be tested though the comparison of the observational error provided 
with the ESA-CCI SIC product with observational uncertainties obtained through other techniques 
(Bellprat et al 2017), which is one of the objectives of WP4 of the next ESA CMUG project. The 
second explanation should be tested through the initialisation of climate predictions from the EC-
Earth simulation assimilating ESA-CCI SIC product in coupled mode which is validated above in 
this report, this activity being one of the objectives of WP3 of the next ESA CMUG project. The 
third explanation should be tested through the development of forecast quality estimates 
accounting for observational errors, which is one of the objectives of WP4 of the next ESA CMUG 
project.  
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3.14 Assessment of Antarctic ice sheet ECVs for modelling [WP3.12] 

 

Aims 
 
We assess the consistency of an Antarctic ice sheet ECV within the framework of an Antarctic ice 
sheet model. This type of model simultaneously handles the simulation of both the grounded ice 
sheet and its downstream extension, the floating ice shelf that is in contact with the ocean, along 
with their mutual interactions. More specifically, from a modelling point of view, we assess the 
quality of the ECV IV (Ice Velocity, product that is not officially available yet in the CCI) through 
its possible use for initialising ice sheet models. This is applied to the Amundsen sea sector, where 
currently the most rapid ice-dynamical changes of the West Antarctic ice sheet are observed, with 
significant contribution to current sea level rise (Shepherd et al., 2012). 
 
We discuss the assets of this product compared to the equivalent data that are currently being used 
by the ice sheet modelling community. We highlight some of the difficulties and give a series of 
recommendations on how this product could be improved for ice-sheet modelling purposes. 
 

Changes with respect to the original deliverable 
Our initial goal (starting in June 2016) was to apply an Antarctic wide model and a regional model 
to a part of Dronning Maud Land in East Antarctica, to (i) initialise the model using the ECV IV 
for different years over the satellite era (the last three decades), (ii) hindcast the evolution of the 
ice sheet, starting from the older initial state until today, in order to compare the model results to 
the ECV SEC (Surface Elevation change) and the GMB (Grace Mass Balance) and (iii) perform 
future predictions starting from the different initial states. The most important phase is the 
initialisation of the ice sheet, which highly determines the quality of further predictions. 
 
The IV data for the 1990s and the 2000s appeared to be either too sparse or lacking, respectively, 
to enable both Antarctic wide and regional (for Dronning Maud Land) initialisations. The last 
decade (or the 2010s) IV data processed from the Sentinel 1 satellites by the ENVEO team were 
also lacking some crucial areas for initialisation purposes. For instance, the presence of data gaps 
(means no data at all for various reasons: proximity to the grounding line, signal coherence...) near 
major ice streams, such as the Jutulstraumen ice stream, did not enable to initialise the regional 
model with sufficient accuracy. Also, for the global model to be applied to the last decade IV, the 
merge that is to be made with more ancient data where lies the so-called “polar hole” (that the 
Sentinel 1 satellites cannot survey) is troublesome. 



CMUG Phase 2 Deliverable  
Reference:  D3.1: Quality Assessment Report 
Due date:   June 2017 
Submission date:  21 December 2017 
Version:  4 
 

148 of 174 

The initialisation part being the key point in predicting future sea level contribution from 
Antarctica to sea level rise, we decided to investigate the Amundsen sea sector with the regional 
model. The main reason for this choice is, because the of the rapidly changing glaciers there, the 
international glaciological community has had a wide opened eye over this region for the last three 
decades, and the amount of data available is much higher (even though not perfect) than in 
Dronning Maud Land, not only spatially but also temporally, meaning that older ice velocity data 
are available for initialisation and hindcast purposes. However, these changes did allow to reach 
our initial goals, i.e., to test the validity of IV data for model initialization.  

Key results of CMUG research 
 
The pattern of the initial state, composed of basal friction for grounded ice and stiffening factor, 
mostly for floating part, obtained from the IV processed from the Sentinel 1 satellites, is 
qualitatively consistent with analogous results obtained from previous ice velocity datasets. 
 
The glaciers feeding the Amundsen sea sector have accelerated since the beginning of the 1990s, 
which is confirmed for the 2015-2017 period acquired by the Sentinel 1 satellites. The successive 
initial states obtained by the model show a clear decrease in basal friction between the bottom of 
the grounded ice sheet and the bed. However, partly because of poor initialisation and missing 
model physics (the bed beneath the Antarctic is barely known), this is so far not clear whether 
these changes arise from the decrease in ice-shelf buttressing, induced by an increased sub-shelf 
melting due to a warming ocean, or from physical changes that could occur beneath the grounded 
ice sheet (e.g., subglacial drainage changes). The inverse model shows also an inland propagation 
of shear margins of the Pine Island glacier ice shelf, which is the sign of ice shelf weakening and 
may indicate a disconnection of the central trunk (the main ice stream) from the ice sheet. 
 
The 2 years period of acquisition from the Sentinel 1 satellites seems to be enough to produce an 
initial state, which is a major and crucial difference as opposed to the almost 20 years long mosaic 
that was used before (and currently) by ice-sheet modellers. For rapidly changing glaciers such as 
in this place of study, this is (and will be) improving the results of the ice-sheet models in the sense 
that they will be much closer to the actual state of the ice sheet. 
 

Summary of work 
 
Introduction. 
A key aspect in projecting future Antarctic mass loss using ice-sheet models relies on the accuracy 
of the model initial state. Data assimilation methods enable to produce this initial state by keeping 
the initial ice-sheet geometry and surface velocity as close as possible to observations, which is 
done by optimising other unknown data, typically the basal friction coefficient (C) and ice 
stiffening factor (Φ) spatial fields. 
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Until recently, the amount of data needed for initialisation (ice surface velocity and geometry 
fields) where too few and the ice-sheet modellers had to - and still - use data mosaics spanning the 
last 20 years. Although this might be sufficient for a steady state ice sheet, the Antarctic ice sheet, 
and especially its West Antarctic part, is losing mass and is thus not in steady state since at least 
the 1990s. Therefore, for the region of interest, data need to be collected over shorter time scales 
to reflect the correct state of the ice sheet for a short period of time. Acquiring the IV over the 
whole Antarctic ice sheet (apart from the polar hole) is now made possible by the Sentinel 1 
satellites in about 2 years, which reflects more the time scales of changes that are currently 
occurring in West Antarctica. 
 
Ice-sheet modelling. 
We use the adaptive mesh finite-volume ice-sheet model BISICLES (http://BISICLES.lbl.gov). 
The model solves the shallow shelf approximation (SSA) and includes vertical shearing in the 
effective strain rate (Cornford et al., 2015), which makes the ice softer than the traditional Shallow 
Shelf Approximation approach at the grounding line, and induces similar ice sheet behaviour 
compared to non-approximated full-Stokes models (Pattyn and Durand, 2013), provided that sub-
kilometric resolution is used at the grounding line when performing future predictions. The model 
can be used either to infer the initial state from data assimilation using a fixed geometry, or to 
perform transient simulations for future projections, for which the ice geometry can evolve. Here, 
we only used the former type of model, which is an “inverse model”. 
 
Methodology. 
The scientific purpose is to assess the temporal evolution of the Pine Island and Thwaites glaciers 
(Figure 1A) initial states (friction coefficient and stiffening factor) over the satellite era, covering 
25 years of satellites observations. To do so, we use non-CCI and CCI data (Table 1). The most 
recent data of Ice Velocity are processed by ENVEO from the Sentinel 1 satellites and cover the 
2015-2017 period. To produce an initial state, we also need the geometry of the ice sheet, which 
we reconstructed from various sources of data. Ice surface and bed elevation, firn air content and 
the geoïd where combined to reconstruct the ice thickness for a close temporal period. We also 
used older datasets to produce older initial states. The purpose has an obvious scientific interest, 
because it can give a physical meaning to the recent acceleration of these giant glaciers, but it also 
enables to evaluate the consistency of the Ice Velocity data acquired and processed from the 
Sentinel 1 satellites. 
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Datasets 

Datasets 2015-2017 2007-2009 1995-1996 

Bed topography Fretwell et al., 2013 Fretwell et al., 2013 Fretwell et al., 2013 

Ice thickness Combination of Fretwell et al., 2013 Fretwell et al., 2013 

 Chuter and Bamber, 
2015 

  

 Helm et al., 2014   

 Ligtenberg et al., 2014   

 Forste et al. 2014   

Ice temperature (for 
ice viscosity) 

Pattyn, 2010 Pattyn, 2010 Pattyn, 2010 

Ice surface velocity Sentinel 1a-b Mouginot et al., 2017 ERS1&2 

 (2015-2017)  (2007-2009) (1995-1996) 

Table 1: Summary of datasets used for the different periods of time. 

 
 

 
 
Figure 1: Ice velocity datasets from A) the Sentinel 1a-b satellites (ECV IV) for the 2015-2017 
period of time, B) the ERS 1-2 satellites for the year 1995-1996 (Processed by Anders Kusk from 
DTU space), and C) a combination of different satellite sources (Mouginot et al, 2017). B) and C) 
are shown as absolute differences with A). In A) is shown the location of Pine Island glacier (PIG) 
and Thwaites glacier (TG). The white areas are for the ocean or for data not available. 
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Figure 2: A) Ice thickness dataset reconstructed from the Cryosat 2 surface elevation for the 2011-
2014 period (Chuter and Bamber, 2015 for the floating ice shelf and Helm et al., 2014 for the 
grounded ice sheet), the Firn air content (Ligtenberg et al., 2014) and the EIGEN-6C4 geoïd 
(Forste et al., 2014) and the Bedmap2 bed elevation (Fretwell et al., 2013). B) Absolute difference 
between the older Bedmap2 ice thickness and the one shown in A). The orange and the yellow solid 
lines in A) and B) represent the limit between grounded and floating ice, the grounding line. C)  
Map representing the location of the Amundsen sea sector represented in the other panels. 
 
 
The Sentinel 1 Ice Velocity dataset is clearly consistent and in line with the signal observed since 
the 1990s (Figure 1). In particular, the Pine Island (PIG) and Thwaites glaciers (TG) have 
constantly sped up and increased their cumulative contribution to sea level rise. The speed increase 
at the grounding line (that separates the grounded ice sheet from its floating ice shelf) is almost 
1000 km/a since the 1990s and about 200 m/a for PIG and 500 m/a for TG. For TG, the speed-up 
at the grounding line is not uniform due to a nonlinear response to a partial unpinning from a 
submarine topographic high of the Eastern ice shelf (Rignot et al., 2014). 
The ice thickness has decreased since the 1990s (Figure 2) because of both enhanced sub-shelf 
melting and its consequence: the loss of ice shelf buttressing that induced an upstream speed up of 
the ice and further thinning. 
 
Results: initial states obtained from the inverse model 
The initial state inferred by assimilating the recent data is shown in Figure 3A and Figure 4A for 
the friction coefficient and the stiffening factor, respectively. The results are in line with previous 
studies (Cornford et al., 2015) using a different set of data (ice surface velocity from Rignot et al., 
2011 and ice geometry from Fretwell et al., 2013). The friction is relatively lower in the main 
trunks of the PIG and TG ice streams, and also in their tributaries, while it is very high for low 
velocity areas. Finally, the ice is made much softer in the areas where the ice is known to be 
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fractured, which cannot be accounted for by the ice viscosity only, such as for instance the shear 
margins on both sides of the PIG central ice stream. 
As shown by Figure 3 for the friction coefficient and Figure 4 for the stiffening factor, both 
resulting from the inverse model, the physical state of PIG and TG has evolved over the last two 
decades. The basal boundary has been more slippery during the 2015-2017 period than it was 
during the 2007-2009 period and even much more than it was during the 1995-1996 period. The 
central trunk of PIG and TG are known to slide over wet and loose sediments, which probably 
makes the relationship between ice velocity and the bed plastic. On the other hand, the ice shelves 
of PIG and TG have been thinning because of significant sub-shelf melting, which has decreased 
ice-shelf buttressing against the upstream ice. The consequence is to increase and transfer 
longitudinal stretching far upstream of the grounding line which, in the presence of a deformable 
plastic bed, increases the relative velocity between the ice sheet base and the bed, thus increasing 
basal slipperiness. 
It seems that some shear margins areas, such as for instance the two located on both sides of the 
main ice stream of PIG, are currently extending inland, while some others, such as one separating 
the Eastern from the Western ice shelf of TG, are migrating sidewards. In the former case, this 
may be the sign of drastic weakening of the ice shelf, of which the central trunk may be even more 
disconnected from the sidewards inland ice. The latter case is more complicated insofar as the 
Eastern ice shelf of TG is pinned from beneath by a relatively higher topographic high (Rignot et 
al., 2014), and that the recent acceleration and sub-shelf melting of the TG may lead to a non-
steady ice shelf unpinning, difficult to survey with accuracy. 
 

 
 
Figure 3: Friction coefficients inferred from the three datasets detailed in Table 1: A) shows the 
results obtained with the Sentinel 1 velocities, while B) and C) show the relative difference between 
these latter results and the one obtained from the other datasets detailed in Table 1. The blue 
colour in B) and C) thus shows that the base of the ice sheet is more slippery compared to older 
datasets. The white areas are for the ocean or for data not available. 
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Figure 4: Stiffening factors (Φ) inferred from the three datasets shown in Table 1. A) shows the 
results obtained with the Sentinel 1 velocities, while B) and C) shows the results for older data. 
The ice is made softer by the inverse model when ice viscosity is not a sufficient parameter to 
describe the ice stiffness. We only authorize softening, the more red the softer the ice. For instance, 
the shear margins such as the two observed in Pine Island glacier ice shelf cannot be described 
by ice viscosity only and are thus made much softer by the inverse model. The white areas are for 
the ocean or for data not available. 
 

Quality relevant outcomes 
The IV product is not yet publicly available so the (minor) difficulties that we have been facing in 
its use may only reflect the fact that this is ongoing work.  
 
Yet, the product appears to be quite robust in the sense that most of the IV products mapped are 
consistent. The spatial resolution is 200 m, which is at least 5 times better than the resolution of 
datasets currently used in ice sheet modelling. A major asset of this dataset is the temporal range 
of its acquisition to cover a substantial percentage of the Antarctic ice sheet. Two years of 
acquisition seem to allow consistent results obtained from our inverse model. The ice velocity 
dataset currently used by the ice sheet modelling community is a mosaïc spanning an almost 20 
years range. This may be fine for part of the ice sheet in steady state, but not at all for changing 
parts such as the glaciers feeding the Amundsen Sea embayment. Thus for studying the latter, this 
product is obviously a significant improvement. 
 
This study was made in close collaboration with the scientific teams in charge of processing the 
data (ENVEO, DTU space and Leeds University), which enabled us to benefit from up-to-date 
data over the one year project. One of the main point when using data is how far we can trust those. 
This can be quantified by error maps but also by making available relevant information such as 
the DEM or the size of the track windows that were used, among others. All those information are 
crucial for ice-sheet modelling because they enable to be put in perspective with older data 
processed from other groups, and from which we can have a comprehensive view of ice sheet 
states over the satellite era. During our study, the IV product that we used was quite satisfying in 
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the sense that the data look consistent with what was observed before. However, only the error 
maps and the different processing information can allow us to quantify the changes between 
different periods of time. For instance, looking at the evolution of the shear margins, it seems that 
those were moving sideways in some places, which may be interpreted as ice-sheet drastic changes, 
but could also be an artefact of different ways of processing the observations. 
 
 
  



CMUG Phase 2 Deliverable  
Reference:  D3.1: Quality Assessment Report 
Due date:   June 2017 
Submission date:  21 December 2017 
Version:  4 
 

155 of 174 

 
 

3.15 Assessment of Greenland ice sheet ECVs for modelling 
[WP3.13] 

 

Aims 
We perform an integrated quality assessment of Greenland ice-sheet ECVs to assess their 
consistency within the VUB Greenland ice sheet model (GISM-VUB). An evaluation is made of 
their use to initialise the ice-sheet model to the current state as a prior step for future Greenland 
mass change and sea-level projections within ISMIP6 (CMIP6/ IPCC AR6). 
 
The following scientific questions are addressed: 
 

• Are the ice sheet ECVs good enough for assimilation purposes? 
• What are the changes made to the analyses by assimilating the CCI data? 
• Are the SEC and GMB products consistent with the modelled evolution of ice thickness 
 and bed elevation? 

• Are the uncertainties provided useful to assign observation errors to the measurements? 
• Are the IV, SEC, and GMB ECVs mutually consistent from an ice-sheet assimilation 
 point of view? 

 
 
Key results of CMUG research 
 

• Assimilation of Greenland ice sheet CCI IV surface velocity data significantly improves 
the representation of ice flow in the GISM-VUB ice sheet model. Missing values in the 
satellite products can be substituted with balance velocities, however unrealistic striping in 
the interior limits the use for slowly moving ice frozen to bedrock. We recommend a multi-
annual averaged IV product be made available over the same time period as the SEC and 
GMB products for a more appropriate cross-ECV assessment. 

• The SEC surface elevation change products appear as accurate and mature products for 
comparison with GISM-VUB output provided surface density and surface mass balance 
can be prescribed over the same time period. Temporal coverage is excellent, however 
radar altimetry data are not available along the steep margin of the Greenland ice sheet, 
where values are expected to be largest. 

• The GMB gravimetric mass balance products have an excellent temporal and spatial 
coverage and appear as mature products. Incorporation of GMB products into an ice sheet 
modelling framework however requires to filter GISM-VUB output towards a GRACE-
like spatial resolution. 

 
 

Summary of work 
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Work on the Greenland ice sheet ECVs started in October 2016 using the GISM-VUB model (Fürst 
et al., 2013). GISM-VUB is a higher-order 3-D thermomechanical ice flow model that freely 
simulates the size and shape of the Greenland ice sheet in response to changes in climate 
conditions. At the heart of the model is the solution of the time-dependent continuity equation for 
ice thickness H: 
 
��

��
� ��. ��̅���  ! � �   (1) 

 
where " is the time, �̅� is the vertically averaged horizontal velocity, ! is the surface mass balance 
and � is the basal melting rate. The Greenland ice sheet CCI portal provides gridded datasets 
spanning various time periods on surface velocity (IV), surface elevation change from radar 
altimetry (SEC) and mass change trends from GRACE (GMB). These products all provide 
constraints on different terms in the continuity equation and can therefore be assessed within 
GISM-VUB. Prior to the analysis the CCI ECVs were first remapped from their original resolution 
(250 m and 500 m for IV, 5 km for SEC, and 40 km for GMB) to the native 5 km grid of GISM-
VUB using the CDO (Climate Data Operators) bilinear interpolation tool. The experiments were 
performed on the ice sheet mask of GISM-VUB, thus excluding the peripheral glaciers and ice 
caps that surround the Greenland ice sheet. 
 
Most of the work focused on the assimilation of observed ice velocity by a nudging procedure. 
The process involves adjusting the basal sliding coefficient in Weertman’s basal sliding law in 
areas at the pressure melting point. This allows the modelled surface velocity to match the observed 
one. A similar procedure to adjust also the rate factor in Glen’s flow law for interior regions frozen 
to bedrock is straightforward to implement, but was not attempted as the IV products at hand were 
deemed of insufficient quality in those regions, as discussed further below. Our assimilation 
procedure puts forward a steady state and assumes that a target field is available for every grid 
point. Missing pixels in the observations therefore needed to be filled in with balance velocities 
(e.g. Bamber et al., 2000; Huybrechts et al., 2000). The balance velocity corresponds to the depth 
averaged ice velocity that is required to discharge a fixed surface mass balance field given a steady 
state surface elevation and ice thickness. The calculated velocity values were converted into 
surface velocities using a multiplier corresponding to the ratio between surface velocity and 
vertically averaged velocity magnitude in a precursor initialisation experiment with GISM-VUB 
(Goelzer et al., 2013). In accordance with theory, the surface elevation field had been smoothed 
over a distance between 10 and 20 times the ice thickness H before being included in the balance 
velocity calculation. The result that provided the best fit with the observations at the overlapping 
pixels surrounding the missing pixels was adopted. In the assimilation procedure we used the IV 
product from Sentinel-1 from 2015-10-01 to 2016-10-31 added in March 2017 to the CCI data 
portal, as this was the dataset spanning the longest period with the least missing pixels on the 5 km 
grid of GISM-VUB (243 missing out of a total of 64716, or only 0.4%). In all experiments the 
geometric input (surface elevation, bedrock elevation and ice thickness) was taken from the 
Bamber et al. (2013) data set and the ice temperature was prescribed from a paleo-spin-up over 
several glacial-interglacial cycles, with some slight adjustments for our specific model 
requirements (Goelzer et al., 2013). 
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Resulting surface velocity fields are shown in Fig. 70. The nudging was performed over 10000 
years until a stationary solution was obtained with a relaxation timestep equal to 50 years for 
optimal results. To avoid unwanted behaviour observed velocities were only assimilated where 
they were larger than 5 m yr-1 and the adjustment of the basal sliding parameter was limited to a 
factor between 5 and 0.2. As expected, the modelled surface velocity is in better agreement with 
the observations in a simulation with data assimilation compared to a simulation without data 
assimilation. The improvement is particularly obvious for the NEGIS (Northeast Greenland Ice 
Stream). The root mean square of the normalized difference between the modelled and observed 
surface velocity decreases from 0.45 to 0.40 using IV. The correlation coefficient between the 
observed and the modelled surface velocity magnitude also displays an improvement from 0.61 
for the simulation without data assimilation to 0.84 for the simulation with data assimilation. 
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Figure 70: Surface velocity magnitude from models and observations as discussed in the text. 
Black spots in the Sentinel-1 data denote missing values in the best product available on the 
Greenland Ice Sheet CCI data portal. 
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The price to pay when nudging ice velocity is that ice thickness after the process will deviate from 
the observations, as shown in Fig. 71. Ice-sheet wide metrics such as the root mean square of 
normalized differences and correlation coefficients between modelled and observed ice thickness 
are similar in simulations with and without data assimilation, however the fit is improved in crucial 
areas after nudging. An optimal assimilation procedure should in fact include both ice velocity and 
ice thickness in a way to minimize the compounded error on both variables, which is a subject of 
future research. 
 

 

Figure 71: Difference between modelled and observed ice thickness for simulations with and 
without data assimilation over 10000 years. Observed ice thickness is derived from the Bamber et 
al. (2013) data set. 

 
In principle it is also possible to include the observed imbalance in a data assimilation procedure 
to improve model initialisation. The Greenland ECVs of SEC and GMB are however not directly 
useable in GISM-VUB. SEC measures the real elevation change but this quantity also contains a 
component from bedrock elevation change and surface density change. GISM-VUB calculates 
mass changes in ice-equivalent meters. To be comparable with SEC these would need to be 
corrected for surface density. To first approximation a firn density equal to 50% of the ice density 
could be taken for the accumulation area. A firm assessment within an ice-sheet modelling 
framework would nevertheless require a well-validated surface density model. The GMB product, 
on the other hand, measures mass changes directly but suffers from a low spatial resolution to be 
directly comparable with GISM-VUB. As such GMB can only be usefully compared with an ice 
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sheet model on an ice-sheet wide or basin-to-basin scale. An alternative approach would be to filter 
the GISM-VUB model output towards a GRACE-like spatial resolution to compare to the 
observations at the low resolution of GRACE. To assess the mutual consistence of IV, SEC, and 
GMB from an ice-sheet point of view it is important to realize that the flux divergence term in the 
continuity equation (Eq. 1) depends on slowly varying quantities, except adjacent to the ice sheet 
margin, but that the imbalance and surface mass balance terms have a large interannual variability. 
These latter terms are moreover expected to show a high mutual correlation. Hence a cross-ECV 
assessment requires the incorporation of the temporal evolution of the surface mass balance term 
M over the same time interval than the observations, as could be provided by e.g. a Regional 
Climate Model. Given the limitations on data availability and working time within CMUG CCI 
Phase 2, a more comprehensive cross-ECV assessment was not performed. 
 

Quality relevant outcomes 
 
Surface velocity 
The IV data appear as a generally accurate and mature product that is useful for assimilation 
purposes in an ice sheet model. The spatial resolution of 250 to 500 m is excellent and superior to 
the 5 km resolution of GISM-VUB. There are however issues with the spatial and temporal 
coverage of at least 3 of the 4 Sentinel-1 SAR data sets available on the GIS CCI website. Either 
missing values comprise up to 6% of the Greenland ice sheet (3739 missing pixels out of 64716 
for IV 20141101_20151201 and 3548 out of 64716 for IV 20151223_20160331), or the data cover 
less than 1 year, which is insufficient to average out any seasonal cycle. A common artefact to all 
CCI IV products are the stripes in the interior, which are not realistic. The stripes are due to 
ionospheric disturbances and are aligned approximately perpendicular to the satellite flight 
direction. These artefacts could be efficiently reduced by merging velocity data of multiple tracks 
(Nagler et al., 2015). Errors are not provided with the IV data, but these would be useful in more 
sophisticated assimilation procedures such as variational methods, Ensemble Kalman filtering, or 
particle filtering methods to estimate the standard deviation that weighs the importance of the 
observations at different locations. Errors may also be useful in the nudging approach to identify 
areas with stripes and to avoid assimilating these unrealistic data. For the purpose of data 
assimilation and cross-ECV assessment, we recommend a best covering multi-annually averaged 
product with reduced striping be made available over the same interval than the SEC or GMB 
products (3 to 5 year’s average). 
 
Surface elevation change 
The SEC products are provided as 2, 4, or 5-year moving averages for the period between 1992 
and 2016, which is very appropriate for comparison with GISM-VUB output. The data are given 
on a 5 km grid that is however slightly rotated from the 5 km grid of GISM-VUB. Errors are 
provided for all datasets on the website, and are usually an order of magnitude smaller than the 
signal itself. The products appear as an accurate and very mature product. There is however an 
issue with missing values towards the ice sheet margin all around the ice sheet. This is because the 
radar altimeter on board the ERS-1, ERS-2, Envisat, and Cryosat-2 satellites does not work on the 
steep terrain commonly found near the edge of an ice sheet. Unfortunately the largest surface 
elevation changes are expected to occur at the margin. The amount of missing values depends on 
the instrument, and ranges from 9.7%-11.7% of the total ice sheet area for ERS-1, ERS-2, and 
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Envisat products to 3.6%-5.8% of the total ice sheet area for the more recent Cryosat-2 products. 
Fig. 72 illustrates the issue with the missing values around the margin of the Greenland ice sheet. 
The SEC product would only be useable in a formal assimilation procedure provided surface 
elevation changes can be transformed into ice-equivalent ice thickness changes and missing values 
can be filled in, for instance by extrapolation. 
 
Gravimetric mass balance 
The GMB products are provided as 5-year running averages since 2003 consistent with the SEC 
products, which is good. The GMB solutions are based on spherical harmonic functions and are 
presented as disks with a diameter of approximately 40 km on an icosahedron-based grid. There is 
no issue with spatial coverage as the entire Greenland ice sheet is represented. The GMB fields 
appear as mature products, however with the caveat that they represent a spatially smoothed field 
of mass change, and cannot be compared with GISM-VUB output directly on a pixel-by-pixel 
basis. 
 

 
Figure 72: Examples of the SEC products available on the Greenland Ice Sheet CCI data portal. 
Orange values around the ice sheet margin denote missing values on the 5 km ice sheet mask of 
GISM-VUB. 
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Appendix 1: Status of WP research reported on in this deliverable 
 
WP Name Lead partner Status 
3.1 Assessment of Marine ECVs in FOAM 

Ocean Model 
Met Office New results presented in 

this report. 
O3.1 Integrated assessment of Marine ECVs in 

the ORA system 
ECMWF New results presented in 

this report. 
3.2 Assimilation of several L2 ozone products 

in the ERA system 
ECMWF Work completed in 

2016, no update. 
3.3 Integrated assessment of the CCI Aerosols, 

GHG, and Ozone datasets 
ECMWF New results presented in 

this report. 
3.4 Integrated assessment of CCI terrestrial 

ECVs impact in the MPI-ESM 
MPI-M New results presented in 

this report. 
O3.4 Cross assessment of clouds, water vapour, 

aerosols, ozone, GHG, SST, radiation and 
soil moisture impact on global climate 
variability and trends 

SMHI New results presented in 
this report. 

3.5 Coupled climate model assessment IPSL New results presented in 
this report. 

3.6 Improved process understanding from 
Arctic and Antarctic cross ECV assessment 

MPI-M New results presented in 
this report. 

3.7 Cross-Assessment of Aerosols, Cloud and 
Radiation CCI ECVs 

DLR Work completed in 
2016, no update. 

3.8 Cross assessments of clouds, water vapour, 
radiation, soil moisture for regional climate 
models 

SMHI Work completed in 
2016, subsequent 
research in this area was 
redirected to WP3.14. 

3.9 Cross assessments of ESA CCI glacier, 
land cover and sea level data for 
hydrological modelling of the Arctic 
Ocean drainage basin 

SMHI New results presented in 
this report. 

3.10 Cross-assessment of CCI-ECVs over the 
Mediterranean domain 

Meteo 
France 

New results presented in 
this report. 

O3.11 Assessment of sea ice concentration 
observational uncertainty from a data 
assimilation point of view 

BSC New results presented in 
this report. 

3.12 Assessment of Antarctic ice sheet ECVs 
for modelling 

ULB New results presented in 
this report. 

3.13 Assessment of Greenland ice sheet ECVs 
for modelling 

VUB New results presented in 
this report. 

 


