ESA Climate Change Initiative “Plus” (CCI+)

Product User Guide (PUG) –
TROPOMI/WFMD
for the Essential Climate Variable (ECV)
Greenhouse Gases (GHG)

Version 4 - Final
21 August 2023

Written by:
GHG-CCI group at IUP

Lead author: O. Schneising, IUP, Univ. Bremen, Germany
Change log:

<table>
<thead>
<tr>
<th>Version Nr.</th>
<th>Date</th>
<th>Status</th>
<th>Reason for change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Version 1</td>
<td>23 Oct 2019</td>
<td>Final</td>
<td>New document</td>
</tr>
<tr>
<td>Version 2</td>
<td>30 Oct 2020</td>
<td>Final</td>
<td>Update for CRDP#6</td>
</tr>
<tr>
<td>Version 2.1</td>
<td>08 Jan 2021</td>
<td>Final</td>
<td>Revision according to ESA's review</td>
</tr>
<tr>
<td>Version 3</td>
<td>12 Jul 2021</td>
<td>Final</td>
<td>Update for CRDP#7</td>
</tr>
<tr>
<td>Version 4</td>
<td>21 Aug 2023</td>
<td>Final</td>
<td>Update for CRDP#8</td>
</tr>
</tbody>
</table>
Product User Guide (PUG)

TROPOMI WFM-DOAS (TROPOMI/WFMD) XCH₄₄

Prepared by:
Oliver Schneising

Valid for:
TROPOMI/WFMD

<table>
<thead>
<tr>
<th>Product</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane column-averaged dry air mole fraction (XCH₄₄)</td>
<td>v1.8</td>
</tr>
</tbody>
</table>
Contents

1 Purpose of document 3

2 Introduction 3
 2.1 The TROPOMI instrument on Sentinel-5 Precursor 3
 2.2 The WFM-DOAS retrieval algorithm 4

3 Product description 5
 3.1 Product content and format . 6
 3.2 Data usage . 6
 3.3 Tools for reading the data . 7
 3.4 Known limitations and issues . 7
 3.5 Data file content . 8

References 13
Table 1: Summary of the TROPOMI SWIR spectral bands and their key features (Ludewig, 2021).

1 Purpose of document

This document describes the TROPOMI WFM-DOAS (TROPOMI/WFMD) XCH₄ data product and illustrates how to use it.

2 Introduction

2.1 The TROPOMI instrument on Sentinel-5 Precursor

The TROPOspheric Monitoring Instrument (TROPOMI) is a spaceborne nadir viewing spectrometer with bands in the ultraviolet and visible (270-495 nm), the near infrared (675-775 nm) and the shortwave infrared (2305-2385 nm) (Veefkind et al., 2012). TROPOMI combines daily global coverage with a high spatial resolution in order to focus on the troposphere where concentrations of trace gas and aerosol species rapidly change. Light from different wavelength bands is measured by TROPOMI to generate various data products. Some of the species measured by TROPOMI include ozone, nitrogen dioxide, methane, and carbon monoxide.

Sentinel-5P was launched in October 2017 into a sun-synchronous orbit with an equator crossing time of 13:30. TROPOMI’s observations of overtone absorptions in the shortwave infrared (SWIR) solar backscattered spectrum yield the vertical columns of CH₄ with high sensitivity down to the Earth's surface (Schneising et al., 2019). The instrument has a wide swath of 2600 km consisting of single measurements with a horizontal resolution of typically 5.5 × 7 km² in the SWIR bands (7 × 7 km² before 6 August 2019). The characteristics of the TROPOMI SWIR bands are summarised in Table 1.
2.2 The WFM-DOAS retrieval algorithm

The Weighting Function Modified Differential Optical Absorption Spectroscopy (WFM-DOAS) algorithm (Buchwitz et al., 2005a,b; Schneising et al., 2008, 2009, 2011, 2012; Heymann et al., 2012a,b; Schneising et al., 2013, 2014a,b, 2019, 2020a,b, 2023) is a least-squares method based on scaling (or shifting) pre-selected atmospheric vertical profiles. The column-averaged dry air mole fractions of methane (denoted XCH$_4$) are derived from the vertical column amounts of CH$_4$ by normalising with the dry air column, which is obtained from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanalysis. The corresponding vertical columns of CH$_4$ are retrieved from the measured sun-normalised radiance using spectral fitting windows in the SWIR spectral region (2311-2315.5 nm and 2320-2338 nm).

The global distribution of the retrieved mole fractions XCH$_4$ for the years 2019 and 2020 is shown in Figure 1. Clearly visible is the interhemispheric gradient with larger methane concentrations on the northern hemisphere, where the majority of sources is located, superimposed by enhancements over prominent source regions like anthropogenic emissions from fossil fuels and rice cultivation in China, India, and Southeast Asia. Other visible source regions include tropical wetlands as well as anthropogenic emissions in California or the Padan Plain in Italy.
Table 2: TCCON sites used in the validation ordered according to latitude from north to south (Not all sites are available for a specific TCCON release).

From the validation with ground-based Fourier Transform Spectroscopy (FTS) measurements of the Total Carbon Column Observing Network (TCCON) (Wunch et al., 2011) at the TCCON sites listed in Table 2, realistic error estimates of the satellite data are provided and summarised in Table 3. For the sake of completeness, the error characteristics of XCO, which is simultaneously retrieved with XCH₄ and also included in the product, are also quoted.

3 Product description

The data product is based on TROPOMI Level 1b V01.00.00 (V02.00.00 since July 2021) files comprising spectra from the nominal operational mode, which started end of April 2018, and reprocessed spectra from the previous six-month commissioning phase.
<table>
<thead>
<tr>
<th></th>
<th>XCH₄ (ppb)</th>
<th>XCO (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global Offset</td>
<td>4.38 (0.80)</td>
<td>-1.04 (6.23)</td>
</tr>
<tr>
<td>Random Error</td>
<td>12.37 (12.42)</td>
<td>5.49 (5.08)</td>
</tr>
<tr>
<td>Systematic Error (spatio-temporal)</td>
<td>5.36 (5.27)</td>
<td>3.23 (2.63)</td>
</tr>
</tbody>
</table>

Table 3: Error characterisation of the WFM-DOAS data products (valid for TROPOMI/WFMD v1.8 XCH₄ and XCO). The figures of merit are derived for the TCCON release GGG2020. The corresponding numbers for GGG2014 with different spatial and temporal coverage are given in brackets.

3.1 Product content and format

The CH₄-TROPOMI-WFMD data products are stored per day in separate NetCDF files (NetCDF-4 classic model). The product files contain the key product, i.e. the retrieved column-averaged dry air mole fractions XCH₄, as well as the column-averaged dry air mole fractions XCO and several other useful parameters (see Section 3.5 for details). Information relevant for the use of the data is also included in the data file, e.g. the averaging kernels.

3.2 Data usage

The column-averaged dry air mole fractions of methane are stored in the variable `xch4` in the NetCDF product files `ESACCI-GHG-L2-CH4-CO-TROPOMI-WFMD-YYYYMMDD-fv3.nc` (see Section 3.5).

If the data are to be compared with other data for which vertical profile information is available (e.g. comparison to models), the column averaging kernels should be applied to the model profiles using the formula

\[X_{\text{mod}} = \sum_l \left(X_{\text{apr}}^l + A_l (X_{\text{mod}}^l - X_{\text{apr}}^l) \right) w_l \]

(1)

where \(l \) is the index of the vertical layer, \(A_l \) the averaging kernel (variables `xch4_averaging_kernel` and `xco_averaging_kernel` in NetCDF product files), \(X_{\text{apr}}^l \) the a-priori mole fraction (variables `ch4_profile_apriori` and `co_profile_apriori` in product files) and \(X_{\text{mod}}^l \) the simulated mole fraction of layer \(l \). \(w_l \) is the layer dependent pressure weight (variable `pressure_weight` in product files).
3.3 Tools for reading the data

The data are stored in NetCDF format (NetCDF-4 classic model) which can be read with standard tools in the common programming languages (Python, IDL, Matlab, Fortran90, C++, etc).

3.4 Known limitations and issues

The file names ESACCI-GHG-L2-CH$_4$-CO-TROPOMI-WFMD-YYYYMDD-fv3.nc deviate slightly from the GHG-CCI file naming convention to take into account that a comprehensive carbon monoxide mole fraction data set is also included in the product.

Data density (and potentially also data quality) is lower in the commissioning phase compared to the nominal operational mode, which started end of April 2018. Therefore, one may consider excluding data from the commissioning phase for sensitive applications.
3.5 Data file content

The structure of the Level2 product files ESACCI-GHG-L2-CH4-CO-TROPOMI-WFMD-YYYYMMDD-fv3.nc is summarised in the following:

```plaintext
netcdf ESACCI-GHG-L2-CH4-CO-TROPOMI-WFMD-YYYYMMDD-fv3 {
  dimensions:
    sounding_dim = 468201 ;
    level_dim = 21 ;
    layer_dim = 20 ;
    corners_dim = 4 ;
  variables:
    double time(sounding_dim) ;
    time:standard_name = "time" ;
    time:long_name = "time" ;
    time:units = "seconds since 1970-01-01 00:00:00" ;
    time:calendar = "standard" ;
    float latitude(sounding_dim) ;
    latitude:standard_name = "latitude" ;
    latitude:long_name = "latitude" ;
    latitude:units = "degree_north" ;
    latitude:valid_range = -90.f, 90.f ;
    latitude:comment = "Center latitude of the measurement" ;
    float longitude(sounding_dim) ;
    longitude:standard_name = "longitude" ;
    longitude:long_name = "longitude" ;
    longitude:units = "degree_east" ;
    longitude:valid_range = -180.f, 180.f ;
    longitude:comment = "Center longitude of the measurement" ;
    float solar_zenith_angle(sounding_dim) ;
    solar_zenith_angle:standard_name = "solar_zenith_angle" ;
    solar_zenith_angle:long_name = "solar_zenith_angle" ;
    solar_zenith_angle:units = "degree" ;
    solar_zenith_angle:comment = "Solar zenith angle is the the angle between the line of sight to the sun and the local vertical." ;
    float sensor_zenith_angle(sounding_dim) ;
    sensor_zenith_angle:standard_name = "sensor_zenith_angle" ;
    sensor_zenith_angle:long_name = "sensor_zenith_angle" ;
    sensor_zenith_angle:units = "degree" ;
    sensor_zenith_angle:comment = "Sensor zenith angle is the the angle between the line of sight to the sensor and the local vertical." ;
    float azimuth_difference(sounding_dim) ;
    azimuth_difference:long_name = "azimuth difference" ;
    azimuth_difference:units = "degree" ;
    azimuth_difference:comment = "Relative azimuth angle between sun and sensor direction." ;
    float xch4(sounding_dim) ;
    xch4:standard_name = "dry_atmosphere_mole_fraction_of_methane" ;
    xch4:long_name = "column-averaged dry air mole fraction of atmospheric methane" ;
    xch4:units = "1e-9" ;
    xch4:comment = "Retrieved column-averaged dry air mole fraction of atmospheric methane (XCH4) in ppb" ;
    float xch4_uncertainty(sounding_dim) ;
    xch4_uncertainty:long_name = "1-sigma uncertainty of the retrieved column-averaged dry air mole fraction of atmospheric methane" ;
    xch4_uncertainty:units = "1e-9" ;
    xch4_uncertainty:comment = "1-sigma uncertainty of the retrieved column-averaged dry air mole fraction of atmospheric methane (XCH4) in ppb" ;
    int xch4_quality_flag(sounding_dim) ;
    xch4_quality_flag:long_name = "quality flag for the retrieved column-averaged" ;
}
```
dry air mole fraction of atmospheric methane";
ch4_quality_flag:flag_values = 0, 1;
ch4_quality_flag:flag_meanings = "good_quality potentially_bad_quality";
ch4_quality_flag:comment = "0=good, 1=bad";
float xco(sounding_dim);
xco:long_name = "column-averaged dry air mole fraction of atmospheric carbon monoxide";
xco:units = "1e-9";
xco:comment = "Retrieved column-averaged dry air mole fraction of atmospheric carbon monoxide (XCO) in ppb";
float xco_uncertainty(sounding_dim);
xco_uncertainty:long_name = "1-sigma uncertainty of the retrieved column-averaged dry air mole fraction of atmospheric carbon monoxide";
xco_uncertainty:units = "1e-9";
xco_uncertainty:comment = "1-sigma uncertainty of the retrieved column-averaged dry air mole fraction of atmospheric carbon monoxide (XCO) in ppb";
int xco_quality_flag(sounding_dim);
xco_quality_flag:long_name = "quality flag for the retrieved column-averaged dry air mole fraction of atmospheric carbon monoxide";
xco_quality_flag:flag_values = 0, 1;
xco_quality_flag:flag_meanings = "good_quality potentially_bad_quality";
xco_quality_flag:comment = "0=good, 1=bad";
float pressure_levels(sounding_dim, level_dim);
pressure_levels:long_name = "pressure levels";
pressure_levels:units = "hPa";
pressure_levels:comment = "Pressure levels define the boundaries of the averaging kernel and a priori profile layers.\n", "Levels are ordered from surface to top of atmosphere.";
float pressure_weight(sounding_dim, level_dim);
pressure_weight:long_name = "pressure weight";
pressure_weight:units = "1";
pressure_weight:comment = "Layer dependent weights needed to apply the averaging kernels.";
float ch4_profile_apriori(sounding_dim, layer_dim);
ch4_profile_apriori:long_name = "a priori dry air mole fraction profile of atmospheric methane";
ch4_profile_apriori:units = "1e-9";
ch4_profile_apriori:comment = "A priori dry-air mole fraction profile of atmospheric methane in ppb.\n", "All values represent layer averages within the corresponding pressure levels.\n", "Profiles are ordered from surface to top of atmosphere.";
float xch4_averaging_kernel(sounding_dim, layer_dim);
xch4_averaging_kernel:long_name = "xch4 averaging kernel";
xch4_averaging_kernel:units = "1";
xch4_averaging_kernel:comment = "Represents the altitude sensitivity of the retrieval as a function of pressure.\n", "All values represent layer averages within the corresponding pressure levels.\n", "Profiles are ordered from surface to top of atmosphere.";
float co_profile_apriori(sounding_dim, layer_dim);
co_profile_apriori:long_name = "a priori dry air mole fraction profile of atmospheric carbon monoxide";
co_profile_apriori:units = "1e-9";
co_profile_apriori:comment = "A priori dry-air mole fraction profile of atmospheric carbon monoxide in ppb.\n", "All values represent layer averages within the corresponding pressure levels.\n", "Profiles are ordered from surface to top of atmosphere.";
float xco_averaging_kernel(sounding_dim, layer_dim);
xco_averaging_kernel:long_name = "xco averaging kernel";
xco_averaging_kernel:units = "1";
xco_averaging_kernel:comment = "Represents the altitude sensitivity of the retrieval as a function of pressure.\n";
All values represent layer averages within the corresponding pressure levels.
profiles are ordered from surface to top of atmosphere.

int orbit_number(sounding_dim);
 orbit_number:long_name = "orbit number";
 orbit_number:units = "1";
 orbit_number:comment = "Orbit number";
int scanline(sounding_dim);
 scanline:long_name = "along track dimension index";
 scanline:units = "1";
 scanline:comment = "This dimension variable defines the indices along track";
int ground_pixel(sounding_dim);
 ground_pixel:long_name = "across track dimension index";
 ground_pixel:units = "1";
 ground_pixel:comment = "This dimension variable defines the indices across track";
float latitude_corners(sounding_dim, corners_dim);
 latitude_corners:long_name = "latitude corners";
 latitude_corners:units = "degree_north";
 latitude_corners:valid_range = -90.f, 90.f;
 latitude_corners:comment = "Corner latitudes of the measurement";
float longitude_corners(sounding_dim, corners_dim);
 longitude_corners:long_name = "longitude corners";
 longitude_corners:units = "degree_east";
 longitude_corners:valid_range = -180.f, 180.f;
 longitude_corners:comment = "Corner longitudes of the measurement";
float altitude(sounding_dim);
 altitude:standard_name = "altitude";
 altitude:long_name = "altitude";
 altitude:units = "m";
 altitude:comment = "Average surface altitude";
float surface_roughness(sounding_dim);
 surface_roughness:long_name = "surface roughness";
 surface_roughness:units = "m";
 surface_roughness:comment = "Surface roughness";
float apparent_albedo(sounding_dim);
 apparent_albedo:long_name = "apparent surface albedo";
 apparent_albedo:units = "1";
 apparent_albedo:comment = "Retrieved surface albedo at 2313nm";
int land_fraction(sounding_dim);
 land_fraction:long_name = "land fraction";
 land_fraction:units = "1e-2";
 land_fraction:valid_range = 0, 100;
 land_fraction:comment = "Land fraction of the observed scene in percent";
float cloud_parameter(sounding_dim);
 cloud_parameter:long_name = "cloud parameter from strong water vapour absorption";
 cloud_parameter:units = "1";
 cloud_parameter:comment = "Ratio of measured to cloud-free reference radiance for selected strong water vapour lines";
float co_column(sounding_dim);
 co_column:long_name = "vertical column of carbon monoxide";
 co_column:units = "mol m-2";
 co_column:multiplication_factor_to_convert_to_molecules_per_cm2 = 6.022141e+19;
 co_column:comment = "Retrieved vertical column amount of carbon monoxide";
float h2o_column(sounding_dim);
 h2o_column:long_name = "vertical column of water vapour";
 h2o_column:units = "g cm-2";
 h2o_column:comment = "Retrieved vertical column amount of water vapour";
float h2o_column_uncertainty(sounding_dim);
 h2o_column_uncertainty:long_name = "1-sigma uncertainty of the retrieved vertical column of atmospheric water vapour";
 h2o_column_uncertainty:units = "g cm-2";
h2o_column_uncertainty:comment = "1-sigma uncertainty of the retrieved vertical column of atmospheric water vapour";
float satellite_altitude(sounding_dim);
satellite_altitude:long_name = "satellite altitude";
satellite_altitude:units = "m";
satellite_altitude:valid_range = 700000.f, 900000.f;
satellite_altitude:comment = "Altitude of the spacecraft relative to the WGS84 reference ellipsoid"
float satellite_latitude(sounding_dim);
satellite_latitude:long_name = "satellite latitude";
satellite_latitude:units = "degrees_north"
_satellite_latitude:valid_range = -90.f, 90.f;
satellite_latitude:comment = "Latitude of the spacecraft sub-satellite point on the WGS84 reference ellipsoid"
float satellite_longitude(sounding_dim);
satellite_longitude:long_name = "satellite longitude";
satellite_longitude:units = "degrees_east";
satellite_longitude:valid_range = -180.f, 180.f;
satellite_longitude:comment = "Longitude of the spacecraft sub-satellite point on the WGS84 reference ellipsoid"

// global attributes:
:title = "TROPOMI/WFMD XCH4 and XCO";
institution = "University of Bremen";
source = "TROPOMI L1B version 01.00.00";
history = "2022 - product generated with WFMD";
:tracking_id = "e283f690-043f-480d-af8a-682ce9eeb060";
:Conventions = "CF-1.6";
:product_version = "v1.8";
:summary = "Weighting Function Modified DOAS (WFMD) was adjusted to simultaneously retrieve column-averaged dry air mole fractions of atmospheric methane and carbon monoxide from the shortwave-infrared (SWIR) nadir spectra of the TROPOMI instrument onboard Sentinel-5 Precursor.";
:keywords = "satellite, Sentinel-5 Precursor, TROPOMI, atmosphere, methane, carbon monoxide";
:id = "ESACCI-GHG-L2-CH4-CO-TROPOMI-WFMD-20200701-fv3.nc";
:naming_authority = "iup.uni-bremen.de";
:keywords_vocabulary = "NASA Global Change Master Directory (GCMD)"
:cdm_data_type = "point"
:comment = "These data were produced at the University of Bremen in the framework of the ESA GHG-CCI project"
:date_created = "20220613T122550Z"
:creator_name = "University of Bremen, IUP, Oliver Schneising"
:creator_email = "schneising@iup.physik.uni-bremen.de"
:project = "Climate Change Initiative - European Space Agency"
:geospatial_lat_min = -90;
:geospatial_lat_max = 90;
:geospatial_lat_units = "degree_north"
:geospatial_lon_min = -180
:geospatial_lon_max = 180
:geospatial_lon_units = "degree_east"
:geospatial_vertical_min = 0
:geospatial_vertical_max = 100000
:time_coverage_start = "20200701T000000Z"
:time_coverage_end = "20200701T235959Z"
:time_coverage_duration = "P1D"
:time_coverage_resolution = "P1D"
:standard_name_vocabulary = "NetCDF Climate and Forecast (CF) Metadata Conventions Version 1.6"
:license = "ESA CCI Data Policy: free and open access"
:platform = "Sentinel-5 Precursor"
sensor = "TROPOMI";
spatial_resolution = "5.5km x 7km at nadir (typically)";
References

Hase, F., Herkommer, B., Groß, J., Blumenstock, T., Kiel, M., and Dohe, S.: TCCON data from Karlsruhe (DE), Release GGG2020.R0. TCCON data archive,

Sherlock, V., Connor, B., Robinson, J., Shiona, H., Smale, D., and Pollard, D. F.: TCCON data from Lauder (NZ), 125HR, Release GGG2014.R0. TC-

Wennberg, P. O., Wunch, D., Roehl, C. M., Blavier, J.-F., Toon, G. C., and Allen, N. T.: TCCON data from Lamont (US), Release GGG2014.R1. TCCON data archive,

