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Purpose 

This Climate Assessment Report (CAR) complements the detailed Level-2/Level-3C validation and 
comparisons described in the ESA Cloud_cci Product Validation and Intercomparison Report D-4.1 
by:  
1) Studying the differences between Cloud_cci datasets and datasets of the GEWEX Cloud 
Assessment (CA) database,  
2) Comparing the Cloud_cci datasets to modelled clouds of reanalyses as well as of regional and 
global climate models.  
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Executive Summary 

This Climate Assessment Report (CAR) complements the more detailed Level-2/Level-3C validation 
and comparisons described in the ESA Cloud_cci Product Validation and Intercomparison Report D-
4.1 by (1) studying the differences between Cloud_cci datasets and datasets of the GEWEX Cloud 
Assessment (CA) database and (2) comparing the Cloud_cci datasets to clouds from meteorological 
reanalyses as well as from regional and global climate model simulations. The document describes 
analyses and results using the gridded and time/space averaged and sampled (histograms) Level-3C 
products of ESA Cloud_cci. In addition, (3) summarizes a first steps in using the provided Cloud_cci 
uncertainties in model evaluation. 

(1) ESA Cloud_cci cloud retrievals are based on an Optimal Estimation (OE) technique and use 
similar instruments (AVHRR, MODIS and AATSR), with spectral information ranging from visible to 
infrared during daytime and from near-infrared to infrared during night-time.  
As the Cloud_cci datasets use different spectral information during daytime and night-time, they 
were separately evaluated using appropriate data of the GEWEX Cloud Assessment data base as well 
as data from IR sounders (AIRS, IASI). The latter use the same IR spectral information during daytime 
and night-time and also provide, due to their good spectral resolution, a very reliable cirrus 
identification (down to an IR optical depth of 0.1). Global total cloud amount compares well to the 
reference datasets from other passive remote sensing cloud datasets (0.68±0.03), with a similar 
performance of Cloud_cci AVHRR and MODIS. Cloud amount of AATSR is slightly lower (0.66), and 
the one of MERIS-AATSR is underestimated (0.60). The data show a good coherence of latitudinal 
variation and the seasonal cycle, except for MERIS-AATSR.  
One finding of this assessment is that the performance of the Cloud_cci datasets in identification of 
high-level clouds is worse during daytime than during night-time. This might be explained by the 
fact that VIS information in combination with spectral IR information in passive imager methods may 
lead to a misidentification in the case of thin cirrus overlying low-level clouds (e.g.(Stubenrauch et 
al., 2013)). During daytime the relative amount of high-level clouds (globally averaged to 28%), in 
particular over land, is underestimated. This is lower than the 30% quoted by ISCCP and 40% from 
AIRS/IASI. The latter identify cirrus under all conditions.    
During night-time, when only spectral IR information is available, Cloud_cci relative high-level cloud 
amounts increase to 35-39%, in agreement with AIRS/IASI. However, total cloud amount seems to be 
slightly underestimated, mostly by missing low-level clouds.  
The vertical distribution of cloud pressure which issupposed to be bimodal in the tropics with peaks 
around 250 and 950 hPa, reveal that the height of low-level clouds from the Cloud_CCI data sets 
seems to be slightly overestimated. The peak for high-level clouds, which is located at the right 
height, is smaller than for other other datasets during daytime / night-time. To overcome this 
situation and to improve the performance for high-level clouds, one path might be to adapt the OE 
method using daytime spectral information to the one using night-time spectral information (which 
excludes VIS information). By applying both methods during daytime, keeping the VIS information 
for the cloud mask, one might even get information of multi-layer cloud situations from a 
comparison of VIS optical depth to IR emissivity. 

(2) Comparisons with cloud properties simulated by meteorological reanalyses, regional and global 
climate models show that the current Cloud_cci products are very useful. Based on the comparisons 
with the global climate model, polar regions as well as high altitude snow covered regions became 
visible where passive instrument satellites have in general problems detecting clouds. The 
assessment shows that an evaluation of high-level clouds from climate models with the Cloud_cci 
datasets should be currently done with care, for example by excluding clouds with optical depth less 
than 1 – 2 or by considering night-time observation. 
The use and application of the developed and providedCloud-CCI simulator is essential in setting up 
a direct comparison between model predicted cloud parameters and Cloud_cci based retrievals. An 
application of the Cloud-CCI simulator to 25-km resolved multi-level cloud fields obtained with a 
one month integration in hindcast mode of the regional climate model RACMO2 shows that the 
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simulated fields are consistently (much) closer to the Cloud_cci AVHRR cloud property retrievals 
than the original model fields, the exception being the ice water path field. First results indicates 
that the model produces higher and colder cloud tops and a higher ice water path than the retrieval 
indicates. Nevertheless, the difference between the model and observations remains large. It 
remains very difficult to attribute the differences to one or the other, thus more in depth studies 
are needed to understand the origins of these differences.  
An application of a simplified cloud simulator to COSMO simulations with 12 and 2 km resolution 
during a period with strong convective activity shows with the help of COT/CTP histograms a 
significant reduction in the positive high-level cloud bias from 12 to 2km compared to Cloud_cci 
MODIS data. 
 
(3) Cloud_cci provides in addition to their gridded and averaged data sets information about 
associated uncertainty. As Cloud_cci AVHRR total cloud cover compares well with other existing long 
term AVHRR cloud datasets, a major advantage of the Cloud_cci data are the included pixel based 
uncertainties. They show the user which areas should be carefully treated. To optimize the use of 
the Cloud_cci uncertainties it is recommended to provide more guidance from the data providers of 
how average uncertainties should be calculated as well as to have a closer insight in the derivation 
of L3 uncertainties from L2 data beyond the existing ATBDs. 
 
To improve the usability of Cloud_cci CFC in climate studies, a simple statistical method is proposed 
for correcting CFC by debiasing the AVHRR-PM CFC data using synoptic observations. The method is 
based on geostatistical interpolation of these observations using satellite data as an explanatory 
variable. The method relies on the strong assumption that synoptic observations are accurate and 
homogenous. The corrected (debiased) dataset significantly outperforms the original one in terms of 
accuracy and precision, as well as reveals decreased performance differences among NOAA 
satellites. Therefore, debiasing can implicitly remove the inhomogeneity in CFC time series due to 
changing overpass times and unresolved diurnal cycle. The correction decreased magnitude of 
trends but keeps their signs unchanged (positive trends are less positive, negative trends are less 
negative).  
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1. Introduction 
1.1 The ESA Cloud_cci project 

The ESA Cloud_cci project covers the cloud component in the European Space Agency’s (ESA) 
Climate Change Initiative (CCI) programme (Hollmann et al., 2013). In the ESA Cloud_cci project, 
long-term and coherent cloud property datasets have been generated exploiting the synergic 
capabilities of different Earth observation missions (European and non-European) allowing for 
improved accuracies and enhanced temporal and spatial sampling better than those provided by the 
single sources. 

 

Figure 1-1 Examples of Cloud_cci cloud products. Left: Pixel-based (Level 2), middle: daily 
composite on a  global grid (Level 3U), right: monthly averaged on a global grid (Level 3C) 
 

To make the Cloud_cci datasets improved compared to existing ones, the following two essential 
steps were undertaken: 

1) Revisit the measurement data (Level-1) and corresponding calibration performance and 
development of a carefully inter-calibrated and rigorously quality checked radiance data sets 
for AVHRR, so called Fundamental Climate Data Record (FCDR). Within this effort the 
calibration of AVHRR, MODIS and AATSR was compared and characterized. Please see the 
ATBDv5 for more information about all sensors used and their imaging characteristics. More 
information on the AVHRR FCDR produced and used is available in RAFCDRv1.0.    

2) Development of two state-of-the-art physical retrieval systems that use the optimal estimation 
technique for a simultaneous, spectrally consistent retrieval of cloud properties including pixel-
based uncertainty measures. The first retrieval framework is the Community Cloud retrieval for 
Climate (CC4CL; Sus et al., 2017; McGarragh et al., 2017) which is applied to AVHRR and 
AVHRR-heritage channels (i.e. channels which are available from all sensors) of MODIS and 
AATSR. The second retrieval framework is the Freie Universität Berlin AATSR MERIS Cloud 
retrieval (FAME-C; Carbajal Henken et al., 2014) and is applied to synergistic MERIS and AATSR 
measurements on-board of ENVISAT. 

Based on these developments, six multi-annual, global datasets of cloud properties were generated 
using the passive imager satellite sensors AVHRR, MODIS, (A)ATSR and MERIS. These datasets were 
comprehensively evaluated (1) by using accurate reference observations of ground stations and 
space-based Lidar measurements and (2) by comparisons to existing and well-established global 
cloud property datasets. 

All parts of the datasets generation effort were properly documented with the major components 
being the Algorithm Theoretical Baseline Documents (ATBD; ATBDv5, ATBD-FAME-Cv5, ATBD-
CC4CLv5), the Product Validation and Intercomparisons Report (PVIR; PVIRv4.1) and the Product 
User Guide (PUGv3.1). 

Furthermore, to facilitate the utilization for evaluation of regional and global atmospheric models, 
the development of a satellite simulator package for Cloud_cci datasets were fostered, which is 
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planned to be part of one of the upcoming releases of the CFMIP Observation  Simulator  Package 
(COSP, Bodas-Salcedo et al. 2011). 

1.2 The Cloud_cci datasets 

In Cloud_cci two families of global cloud property datasets have been generated. The first family 
comprises datasets for individual sensor groups such as AVHRR, MODIS, ATSR2/AATSR, for which the 
AVHRR-heritage channels (0.6, 0.8, 1.6/3.7, 10.8, 12.0 μm) were utilized to retrieve cloud 
properties using the CC4CL algorithm. The second family comprises a dataset of cloud properties 
retrieved from simultaneous usage of AATSR and MERIS sensors (both mounted on ENVISAT) by 
applying the FAME-C algorithm. Since MODIS and AVHRR sensors are separated into morning and 
afternoon orbits, 6 distinct Cloud_cci datasets exist, which can be seen in Figure 1-2.  

Table 1-1 summarizes the algorithms, sensors and satellites used for each dataset. The official 
versions of the datasets, as released under the issued Digital Object Identifies (DOIs, see Table 1-2), 
do not contain any diurnal cycle or satellite drift correction. Potential methods for such a drift 
correction were investigated for AVHRR and were documented in RODCv1.0. In Figure 1-3 the local 
observation time of each individual sensor considered are visualized. This information is often 
essential for properly characterizing time series of cloud properties derived from the satellite-based 
climate datasets. Other important aspects are the imaging properties. The sensors differ in terms of 
native footprint resolution (1x1km² for ATSR2, AATSR, MERIS, MODIS; 5x1km² for AVHRR). This, 
together with the sensor swath width, lead to very different observation frequency and spatial 
coverage. While MODIS and AVHRR have a complete global coverage within a day, the AATSR sensor 
needs about 3 days to accomplish this, however, with a higher spatial resolution compared to 
AVHRR.  

 

Figure 1-2 Overview of Cloud_cci datasets and the time periods they cover. 

All datasets contain identical sets of cloud properties: cloud mask/fraction (CMA/CFC), cloud 
phase/liquid cloud fraction (CPH), cloud top pressure/height/temperature (CTP/CTH/CTT), cloud 
effective radius (CER), cloud optical thickness (COT), spectral cloud albedo at two wave lengths 
(CLA) and liquid/ice water path (LWP/IWP). The data are presented at different processing levels 
ranging from pixel-based retrieval products (Level-2), which are additionally projected (sampling – 
no averaging) onto a global Latitude-Longitude grid of 0.05° resolution (global composite, Level-
3U), to monthly data summarizes including averages, standard deviation and histograms - all defined 
on a global Latitude-Longitude grid of 0.5° resolution (Level-3C). See Section 1.3 for more details. 

All cloud properties (except CPH) are accompanied by uncertainty measures at all processing levels, 
which range from optimal estimation based uncertainty on pixel level (Level-2 and Level-3U) to 
propagated uncertainties in the monthly Level-3C products. See Section 1.4 for more information. 

In addition to the passive imager based datasets mentioned so far, in Cloud_cci an IASI-based 
demonstrator dataset has been created, with more details to be found in Feofilov et al. (2017) and 
Stubenrauch et al. (2017). 
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Key strengths of Cloud_cci datasets:  

 The Cloud_cci datasets are based on two newly-developed, state-of-the art retrieval systems 
named CC4CL and FAME-C that use the optimal estimation (OE) technique and are applied to 
passive imager sensors of current and past European and non-European satellite missions. 

 The measurement records of the utilized sensors have been revisited, re-characterized and, in 
case of AVHRR, re-calibrated. 

 Two special features of CC4CL and FAME-C are, among others, their applicability to multiple 
sensors: ATSR2, AATSR, MODIS, AVHRR (CC4CL) and the simultaneous utilization of AATSR and 
MERIS measurements (FAME-C, i.e. utilizing the O2-A band of MERIS) down to spatial footprint 
resolutions of 1km.  

 Radiative consistency of derived cloud parameters is achieved by the OE-based, iterative   
fitting of a physically consistent cloud model (and radiative transfer simulations therefrom) to 
the sensor measurements in the visible and thermal infrared spectral range. 

 Pixel-level uncertainty characterization is facilitated by the OE technique, which is physically 
consistent (1) with the uncertainties of the input data (e.g. measurements, a-priori) and (2) 
among the retrieved variables. These pixel-level uncertainties are further propagated into the 
monthly products using a developed sound mathematical framework. 

 Potential to combine AVHRR-heritage datasets to achieve increased temporal resolution by 
including multiple polar-orbiting satellite instruments, which also allows for mature cloud 
property histograms on 0.5° resolution due to highly increased sampling rate. 

 Comprehensive assessment and documentation of the retrieval schemes and the derived cloud 
property datasets, including possibilities of drift- and diurnal cycle corrections. 

 Availability of a developed Cloud_cci satellite simulator facilitating the applicability of 
Cloud_cci data in regional and global climate models evaluation efforts. 

 All datasets are available in netcdf (v4) format and fulfil high CCI-internal and external data 
standards (e.g. Climate and Forecast – CF conventions).  

 

Table 1-1 Cloud_cci datasets with the algorithms, sensor(s) and satellite(s) used and the time 
periods they cover. The Digital Object Identifiers (DOI) of all datasets are also listed. 

Dataset name Sensor(s) Satellite(s) 
Time 

period 
Algorithm 

Cloud_cci AVHRR-PM AVHRR-2/-3 NOAA-7,-9,-11,-14,-16,-18,-19 1982-2014 CC4CL 

 DOI:10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V002   

Cloud_cci AVHRR-AM AVHRR-2/-3 NOAA-12,-15,-17, Metop-A 1991-2014 CC4CL 

 DOI:10.5676/DWD/ESA_Cloud_cci/AVHRR-AM/V002   

Cloud_cci MODIS-Terra MODIS Terra 2000-2014 CC4CL 

 DOI:10.5676/DWD/ESA_Cloud_cci/MODIS-Terra/V002   

Cloud_cci MODIS-Aqua MODIS Aqua 2002-2014 CC4CL 

 DOI:10.5676/DWD/ESA_Cloud_cci/MODIS-Aqua/V002   

Cloud_cci ATSR2-AATSR ATSR2, AATSR ERS2, ENVISAT 1995-2012 CC4CL 

 DOI:10.5676/DWD/ESA_Cloud_cci/ATSR2-AATSR/V002   

Cloud_cci MERIS+AATSR MERIS, AATSR ENVISAT 2003-2011 FAME-C 

 DOI:10.5676/DWD/ESA_Cloud_cci/MERIS+AATSR/V002   

http://dx.doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-PM/V002
http://dx.doi.org/10.5676/DWD/ESA_Cloud_cci/AVHRR-AM/V002
http://dx.doi.org/10.5676/DWD/ESA_Cloud_cci/MODIS-Terra/V002
http://dx.doi.org/10.5676/DWD/ESA_Cloud_cci/MODIS-Aqua/V002
http://dx.doi.org/10.5676/DWD/ESA_Cloud_cci/ATSR2-AATSR/V002
http://dx.doi.org/10.5676/DWD/ESA_Cloud_cci/MERIS+AATSR/V002
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Figure 1-3 Time periods and local observation times (equator crossing times) of each satellite 
sensor considered in Cloud_cci. Figure is taken from Stengel et al. (2017). 

1.3 Cloud_cci cloud products 

The cloud properties derived on pixel level of each utilized sensor are listed in Table 1-2. It is 
important to note that the properties CLA, LWP, IWP are not directly retrieved, but rather 
determined from retrieved COT and CER in a post processing step. The same applies to CTH and 
CTT, which are inferred from the retrieved CTP. Based on these pixel level retrievals the data is 
further processed into different processing levels as summarized in Table 1-3. Level-3U denotes a 
composite on a global Latitude-Longitude grid (of 0.05° resolution) onto which the Level-2 data is 
sampled (see ATBDv5 for more details on Level-3U sampling).  Level-3C products are also defined on 
Latitude-Longitude grid (here 0.5° resolution) onto which the properties are averaged or their 
frequency collected (histograms). Further separation of cloud properties in Level-3C in e.g. 
day/night, liquid/ice, were made wherever suitable (see Table 1-4). Level-3S products are 
generated merging the Level-3C of all individual sensors. Using Level-3S products requires careful 
consideration of the partly large and time-varying discrepancies between the used sensors. Please 
contact the Cloud_cci team for more information (http://www.esa-cloud-cci.org/?q=support). 

 

Table 1-2 List of generated cloud properties. CMA/CFC and CPH are derived in a pre-processing 
step. In the next step, COT, CER and CTP are retrieved simultaneously by fitting a physically 
consistent cloud/atmosphere/surface model to the satellite observations using optimal estimation 
(OE). Moreover, LWP and IWP are obtained from COT and CER. In addition, spectral cloud albedo 
(CLA) for two visible channels are derived. 

Variable Abbrev. Definition 

Cloud mask / 
Cloud fraction 

CMA/ 
CFC 

A binary cloud mask per pixel (L2, L3U) and therefrom 
derived monthly total cloud fractional coverage (L3C, L3S) 
and separation into 3 vertical classes (high, mid-level, low 
clouds) following ISCCP classification (Rossow and Schiffer, 
1999). 

Cloud phase CPH The thermodynamic phase of the retrieved cloud (binary: 

http://www.esa-cloud-cci.org/?q=support
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Variable Abbrev. Definition 

liquid or ice; in L2, L3U) and the therefrom derived 
monthly liquid cloud fraction (L3C, L3S). 

Cloud optical thickness COT The line integral of the absorption coefficient and the 
scattering coefficient (at 0.55μm wavelength) along the 
vertical in cloudy pixels. 

Cloud effective radius CER The area-weighted radius of the cloud drop and crystal 
particles, respectively. 

Cloud top pressure/ 
height/ 
temperature 

CTP/ 
CTH/ 
CTT 

The air pressure [hPa] /height [m] /temperature [K] of the 
uppermost cloud layer that could be identified by the 
retrieval system. 

Cloud Liquid water path/ 
Ice water path 

LWP/ 
IWP 

The vertical integrated liquid/ice water content of existing 
cloud layers; derived from CER and COT. LWP and IWP 
together represent the cloud water path (CWP) 

Joint cloud property 
histogram 

JCH This product is a spatially resolved two-dimensional 
histogram of combinations of COT and CTP for each spatial 
grid box. 

Spectral cloud albedo CLA The blacksky cloud albedo derived for channel 1 (0.67 µm) 
and 2 (0.87 µm), respectively (experimental product) 

  

 

Table 1-3 Processing levels of Cloud_cci data products. Level-3U, Level-3C and Level-3S are each 
directly derived from Level-2. 

Processing 
level 

Spatial 
resolution 

Description 

Level-2 
(L2) 

MODIS: 1km 
AATSR: 1km 
AVHRR: 5 km 
MERIS+ AATSR: 1km 

Retrieved cloud variables at satellite sensor pixel level, thus 
with the same resolution and location as the sensor 
measurements (Level-1) 

Level-3U 
(L3U) 

Latitude-Longitude 
grid at 0.05° res. 
(MODIS-Europe: 
0.02°) 

Cloud properties of Level-2 orbits projected onto a global space 
grid without combining any observations of overlapping orbits. 
Only subsampling is done. Common notation for this processing 
level is also L2b. Temporal coverage is 24 hours (0-23:59 UTC). 

Level-3C 
(L3C) 

Latitude-Longitude 
grid at 0.5° res. 

Cloud properties of Level-2 orbits of one single sensor combined 
(averaged / sampled for histograms) on a global space grid. 
Temporal coverage of this product is 1 month. 

Level-3S 
(L3S) 

Latitude-Longitude 
grid at 0.5° res. 

Cloud properties of Level-2 orbits of all available single sensors 
combined (averaged / sampled for histograms) on a global space 
grid. Temporal coverage of this product is 1 month.  
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Table 1-4 Cloud_cci product features incl. day and night separation, liquid water and ice as well as 
histogram representation. Level-3U refers to the non averaged, pixel-based cloud retrievals 
sampled onto a global Latitude-Longitude (lat/lon) grid. ¹CMA in Level-2 and Level-3U is a binary 
cloud mask. All products listed exist in each dataset listed above. 

 Level 2 
swath based 

1km/5km 

Level-3U 
daily sampled 

global 
0.05° lat/lon grid 

Level-3C 
monthly averages 

global 
0.5° lat/lon grid 

Level-3C 
monthly histograms 

global 
0.5° lat/lon grid 

CMA/CFC  as CMA¹   as CMA¹  day/night/high/mid/low - 

CTP, CTH, CTT     liquid/ice 

CPH    day/night - 

COT    liquid/ice  liquid/ice 

CER    liquid/ice  liquid/ice 

LWP 

 as CWP  as CWP 

 

 as CWP 

IWP  

CLA  0.6/0.8µm  0.6/0.8µm   0.6/0.8µm  0.6/0.8µm/liquid/ice 

JCH - - -  liquid/ice 

 

1.4 Uncertainties 

The retrieved cloud properties CMA, CTP, CTT, CTH, COT, CER, LWP and IWP (for CC4CL also CLA) 
are accompanied by pixel-based (Level-2) uncertainties, which are output of the OE technique and 
represent a rigorous propagation of the uncertainties in the input data, e.g. a-priori information, 
measurements, radiative transfer. These uncertainty values represent the 68% confidence interval 
of the true value being within the retrieved value ± uncertainty. These Level-2 uncertainties are 
also given in Level3U and further propagated into Level-3C. For this a sound mathematical 
framework has been developed and implemented taking into account the retrieval uncertainties but 
also the uncertainty correlations. The framework allows an estimation of both the real variability of 
the observed property and the uncertainty of the calculated mean. Determine and utilizing the 
uncertainty correlation is a particular key point for an appropriate propagation of Level-2 
uncertainties into higher-level products (e.g. Level-3C). Please see the Comprehensive Error 
Characterization Report (CECRv3) and Stengel et al. (2017) for further details on the uncertainty 
measures provided. 
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2. Assessment of Cloud_cci Level-3 data using the GEWEX Cloud 
Assessment database 

2.1 Cloud products participating in the assessment 

2.1.1 Data from the GEWEX Cloud Assessment data base 

The GEWEX Cloud Assessment cloud products (Stubenrauch et al., 2013) were retrieved from the 
following satellite instruments and missions: ISCCP (International Satellite Cloud Climatology 
Project), AVHRR (Advanced Very High Resolution Radiometer) multi-spectral imager aboard NOAA, 
ATSR (Along-Track Scanning Radiometer) aboard the European Space Agency (ESA) platform ERS-2, 
HIRS (High resolution Infrared Radiation Sounder) multi-channel radiometer aboard NOAA, AIRS 
(Atmospheric Infrared Sounder) aboard Aqua, TOVS (TIROS Operational Vertical Sounder) aboard 
NOAA, MODIS (MODerate resolution Imaging Spectroradiometer) aboard Aqua and Terra, POLDER 
(POLarization and Directionality of the Earth’s Reflectances) multi-angle multi-spectral imager 
aboard PARASOL, MISR (Multiangle Imaging SpectroRadiometer) aboard Terra, and CALIPSO (Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observations). A detailed description of the GEWEX 
Cloud Assessment products can be found in (Stubenrauch et al., 2012). See also the appendix for a 
short description of the different instrument types. Here a brief overview of the datasets 
participating in the ESA Cloud_cci intercomparison is provided: 

 ISCCP (Rossow and Schiffer, 1999) emphasizes temporal resolution (eight observations per day) 
over spectral resolution. For a better comparison with the other datasets in the assessment, 
the eight-times-daily ISCCP results have been averaged to four specific local observation times: 
3:00 AM, 9:00  AM, 3:00  PM and 9:00  PM. Cloud top temperature (CT) is retrieved from the IR 
radiances. Cloud optical depth (COD) is obtained from the VIS radiances assuming effective 
particle radii for liquid and ice clouds. ISCCP data are available in the GEWEX Cloud Assessment 
data base only until 2007. 

 PATMOS-x (Pathfinder Atmospheres Extended) developed by NOAA utilizes the data from the 5-
channel AVHRR imager. Cloud detection is based on Bayesian classifiers derived from CALIPSO 
(Heidinger et al., 2012), and the retrieval is based on an optimal estimation approach. First 
cloud pressure (CP) and cloud emissivity (CEM) are retrieved using two IR channels at all times 
of day. Then COD and CRE are obtained from solar channels during daytime (Walther et al., 
2012). 

 The ATSR-GRAPE cloud products (CP, COD) are retrieved only during day, using an optimal 
estimation approach on the five available VIS / NIR / IR channels (Sayer et al., 2011).  

 The AIRS-LMD (Stubenrauch et al., 2010, Guignard et al., 2012) cloud pressure and emissivity 

(CP, CEM) were retrieved by applying a weighted 2 method using CO2 absorbing channels 
sounding throughout the whole atmosphere. Cloud temperature (CT) and height (CZ) are 
obtained from CP using retrieved temperature profiles. 

 The MODIS-ST and MODIS-CE cloud products are retrieved the MODIS Science Team and the 
MODIS CERES science team, respectively. The former uses spectral testing to determine cloud 
amount (Frey et al., 2008), the “CO2 slicing” to determine CP and CEM (Menzel et al., 2008), 
and a LUT approach using solar reflectance channels to retrieve COD (Platnick et al., 2003). 
MODIS-CE determines CT and CEM from IR radiances. For the daytime observations, they 
retrieve COD using a reflectance-based LUT approach (Minnis et al., 2008, 2011).  

 The active lidar measurements of the CALIPSO mission are analyzed by two teams. The CALIPSO 
Science Team (CALIPSO-ST) determines cloud top height from VIS backscatter and identifies 
cloud ice from depolarization (Winker et al., 2009). Noise is reduced by horizontal averaging. 
The GCM-Oriented CALIPSO Cloud Products (CALIPSO-GOCCP) reduce noise by vertical 
averaging (Chepfer et al., 2010). Both datasets are available in the GEWEX Cloud Assessment 
data base for 2007 and 2008. 
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Monthly L3 data of the GEWEX Cloud Assessment data base have been produced in the following 
way:  in a first step, averages were made per observation over 1° x 1° grid boxes, and in a second 
step these cloud properties were averaged over the month. The assessed ESA Cloud_cci data have 
been prepared in the same manner. Furthermore, for the assessment of the ESA Cloud_cci datasets, 
ISCCP, AIRS-LMD, MODIS-CE, MODIS-ST, and PATMOSx have been grouped to what is called the 
“GEWEX Cloud Assessment reference product”. These datasets have very similar observation times 
and have similar sampling and detection sensitivities (with AIRS-LMD the most sensitive to thin cirrus 
(Stubenrauch et al., 2010, 2013). For each cloud parameter under consideration an average and a 
root-mean-square (rms) is provided of the variation of this parameter within this reference dataset. 
Since ISCCP data are only available until 2007, it was decided to assess the ESA Cloud_cci data for 
2007. This assessment approach was already developed during CCI phase 1, described in the CAR 
corresponding to D4.2 of Cloud_cci phase 1 (CAR-2013). To show the improvement of the versions 
for Cloud_cci AVHRR, Cloud_cci AATSR and Cloud_cci MERIS-AATSR, it is referred to the CAR report 
of Cloud_cci phase 1. 

2.1.2 Data from IASI 

The retrieval scheme for cloud properties from IR sounder observations developed at LMD 
(Stubenrauch et al., 1999) has been recently updated and adapted so that it can be applied to any 
IR sounder (CIRS) (Feofilov and Stubenrauch 2017). At LMD it has been applied to AIRS (2003-2015) 
and IASI (2008-2015) (Stubenrauch et al. 2017). The CIRS method has been evaluated by making use 
of the A-Train synergy: cloud detection and cloud height from AIRS have been assessed with 
synchronous data from active lidar and radar from the CALIPSO and CloudSat missions. Cloud 
detection agrees with CALIPSO-CloudSat about 84%-85% over ocean, 79-82% over land and 70-73% 
over ice / snow, depending on atmospheric ancillary data. Cloud height corresponds to the height at 
which the cloud reaches an optical depth of about 0.5 (Stubenrauch et al. 2017). Within a 
cooperation with the EUMETSAT Climate Monitoring Satellite Application Facility (CM SAF), the 
retrieval has been adapted to HIRS (Hanschmann et al. 2017). The L3 data are in the same format as 
other data of the GEWEX Cloud Assessment data base. Within the framework of ESA Cloud_cci, one 
year of IASI cloud data (2009) is used to evaluate the ESA Cloud_cci datasets. IASI, developed by 
CNES in collaboration with EUMETSAT, is a Fourier Transform Spectrometer based on a Michelson 
interferometer covering the IR spectral domain from 3.62 to 15.5 μm (Hilton et al., 2012). Two 
instruments were launched so far onboard the European Platforms Metop-A and Metop-B (in 2006 
and 2012, respectively), with measurements of at 9:30 / 21:30 LT and 10:30 / 22:30 LT (local 
equator crossing time). IASI-CIRS cloud data is used for 2009 and AIRS-CIRS cloud data for 2007 (both 
based on ERA-Interim ancillary data) for an additional assessment of the Cloud_cci datasets. 

 

2.2 Analyses and Results 

2.1.2 Total and height-stratified cloud amount 

The first characteristic of the dataset is the total cloud amount (CA), often referred to as cloud 
cover or cloud fraction. CA is defined as the ratio of the number of samples that contain clouds and 
the total number of measurement samples. When addressing the global CA (or any other global 
characteristic), the averaging is area-weighted so that a 1° × 1° grid box on the pole has a smaller 
contribution to the total value than a 1° × 1° grid box on the equator. By using in addition cloud 
pressure (CP), relative contributions of high-level, mid-level and low-level clouds have been 
determined, by dividing these cloud amounts (CAH, CAM, CAL) by CA. The sum of the relative 
contributions, CAHR, CAMR and CALR, should be 1.Pressure limits for high-level/mid-level and mid-
level/low-level cloud separation are 440 hPa and 680 hPa, corresponding to altitudes of about 6 km 
and 3 km, respectively. Relative cloud amount values give an indication of how the detected clouds 
are vertically distributed in the atmosphere. Compared to the absolute values, they are less 
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influenced by differences in cloud detection sensitivity and should be more useful for comparison 
with climate models.  

Figure 2.1 presents global averages of these four variables, separately for observations mostly 
during day (left), corresponding to 1:30 PM (10:30 AM for MERIS, AATSR), and mostly during night 
(right), corresponding to 1:30 AM (10:30 PM for AATSR). In addition, results from IASI-CIRS are shown 
for 2009 (at 9:30 AM and 9:30 PM, respectively). Total cloud amount from the GEWEX Cloud 
Assessment data base is about 0.68±0.03, only CALIPSO-ST providing a cloud amount of 0.72, 
because it includes subvisible cirrus. Cloud_cci MODIS provides a similar global cloud amount and 
Cloud_cci AVHRR is about 0.02 lower, followed by Cloud_cci AATSR. Cloud_cci MERIS-AATSR, only 
available during daytime, is lower than 0.6 and therefore underestimates CA.  

 

Figure 2-1 Top: Global averages of total cloud amount (CA), as well as of fraction of high-level, 
mid-level and low-level cloud amount relative to total cloud amount (CAHR + CAMR + CALR = 1). 
Comparisons of Cloud_cci Data for 2007 with L3 data from the GEWEX Cloud Assessment data base, 
separately for observations mostly during day (left), corresponding to 1:30 PM (10:30 AM for MERIS, 
AATSR), and mostly during night (right), corresponding to 1:30 AM (10:30 PM for AATSR). In 
addition, results from IASI-CIRS are shown for 2009 (at 9:30 AM and 9:30 PM, respectively). Bottom: 
Averages of ocean-land differences for the same parameters. 

During day the CAHR of the reference dataset varies from 0.29 for MODIS-ST to 0.4 of AIRS-LMD, 
AIRS-CIRS and IASI-CIRS, while all ESA Cloud_cci datasets lay at the lower limit of 0.28-0.29. During 
night the Cloud_cci datasets perform better, with CAHR between 0.35 and 0.4, while MODIS-ST and 
ISCCP perform worse. The mid-level clouds of the reference dataset demonstrate a larger spread 
with CAMR varying from 0.12 for MODIS-CE to 0.4/0.5 for ISCCP (day/night). The ratio of low-level 
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clouds has a spread between 0.35 (ISCCP) and 0.53 (MODIS-ST). These spreads can be explained by a 
difference in sensitivity to thin cirrus, linked to instrument and retrieval performance. Cirrus are 
well-identified by IR sounders (AIRS-LMD, AIRS-CIRS, IASI-CIRS) and active lidar (CALIPSO), also in 
the case of lower clouds underneath. In the latter case ISCCP confounds them with mid-level clouds 
(also during night) and MODIS-ST misidentifies these as low-level clouds (Stubenrauch et al., 2012; 
Stubenrauch et al., 2013, and references within). 

In the current version, Cloud_cci AATSR shows a CAHR (0.28), which is comparable with Cloud_cci 
AVHRR, Cloud_cci MERIS-AATSR and ISCCP. The retrieval methodology of Cloud_cci (optimal 
estimation) using more spectral information than ISCCP did not improve the value of CAHR during 
day, while the results for CAHR are better during night-time. This can be explained by the fact that 
when using spectral information only in the IR, cirrus is in general well detected, while including 
visible (VIS) information brings more weight to low-level clouds which then introduces biases, 
especially in the case of thin cirrus overlying low-level clouds. In that case during daytime, IR 
sounders as well as MODIS-CE still provide information on the uppermost cloud (cirrus), while for all 
Cloud_cci datasets the uppermost cloud (thin cirrus) is not identified, but the the low-level clouds. 
The interpretation is then more complicated: instead of always identifying the uppermost cloud in 
the case of multilayer clouds, the Cloud_cci data sets indeed capture the uppermost cloud layer 
during night, while during daytime there is a chance that the uppermost cloud is not detected and 
instead the low-level cloud is detected (like for MODIS-ST).  

Land-ocean differences, also shown in Figure 2-1, first confirm that CA is about 0.15 larger over 
ocean than over land, essentially due to low-level clouds, whereas there are about 0.1 more high-
level and mid-level clouds over land than over ocean. Differences between the datasets tell us 
about their sensitivity to underlying surface parameters: During daytime (when including VIS) 
Cloud_cci AVHRR, Cloud_cci MODIS and Cloud_cci AATSR have a near-zero ocean-land difference for 
CAHR, which lets assume that these Cloud_cci datasets mostly miss thin cirrus over land. During 
night-time (when only using spectral IR) the Cloud_cci datasets agree with the other datasets on the 
ocean-land difference in CAHR, while CAMR and CALR behave more closely to ISCCP (which uses only 
one IR atmospheric window channel). 

 

Figure 2-2 Latitudinal anomalies of total cloud amount (left), relative high cloud amount (middle) 
and relative low cloud amount (right). Comparisons of Cloud_cci data are shown for 2007 with L3 
data from the GEWEX Cloud Assessment data base. 
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Figure 2-2 gives further insight, considering the latitudinal variability of CA, CAHR and CALR, which 
is presented here as a latitudinal anomaly. In general, the latitudinal variation in all three variables 
agrees quite well for all datasets within 60°N and 60°S (except ATSR-GRAPE). This shows an 
improvement of Cloud_cci AATSR compared to ATSR-GRAPE. At higher latitudes, Cloud_cci MERIS-
AATSR is less coherent, but this is possible, since data are only available during daylight. At these 
latitudes snow and ice during winter make passive remote sensing also less reliable.  

A more detailed way of estimating the reliability of cloud amount reproduced by a given dataset 
was described in CAR-2013. For each latitudinal/longitudinal grid box the mean GEWEX cloud 
assessment reference value is estimated as well as the rms of its variability among its datasets. For 
each of the tested Cloud_cci datasets, a deviation from the mean is calculated and expressed it in 
terms of rms values (sigmas).  

The geographical maps of these values, separately for daylight conditions and night-time conditions, 
are shown in Figure 2-3 for Cloud_cci AVHRR, in Figure 2-4 for Cloud_cci MODIS, in Figure 2-5 for 
Cloud_cci AATSR and in Figure 2-6 for Cloud_cci MERIS-AATSR (only daytime).  

When comparing daytime and night-time observations, the sensitivity to high-level clouds, in 
particular over land, is strongly reduced for all Cloud_cci datasets when using VIS information in 
addition to spectral IR information in the Optimal Estimation retrieval method by up to 6 sigmas 
from the reference dataset (as already deduced from Figure 2-1), whereas low-level clouds 
demonstrate a better match during daytime than during night-time.  

 

Figure 2-3 Differences between annual averages of CA (left), high-level cloud amount (CAH, 
middle) and low-level cloud amount (CAL, right) from ESA Cloud_cci AVHRR and from the GEWEX 
Cloud Assessment reference dataset in units of standard deviation (σ), separately for mostly 
daytime conditions (1:30 PM, top) and mostly night-time conditions (1:30 AM, bottom). 
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Figure 2-4 Same as Figure 2-3, but for Cloud_cci MODIS. 

 

Figure 2-5 Same as Figure 2-3, but for Cloud_cci AATSR. 
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Figure 2-6 Same as Figure 2-3, but for Cloud_cci MERIS-AATSR, only daytime data available. 

 

In general results for Cloud_cci AHVRR and Cloud_cci MODIS are similar, with a slightly better 
agreement to the reference dataset for MODIS during daytime. The performance for Cloud_cci 
AATSR is worse, followed by Cloud_cci MERIS-AATSR. 

Figure 2-3 to Figure 2-6 reveal clearly that the Cloud_cci cloud retrievals, based on the optimal 
estimation technique, using spectral information from the VIS to the IR, have great difficulties to 
identify cirrus, especially over land, a fact which was already revealed during the GEWEX Cloud 
Assessment. The method performs better when excluding the VIS information, though at the cost of 
performance for low-level clouds. 

 

2.1.3 Seasonal variations of clouds 

Here, the seasonal variation of cloud amount and cloud temperature (CT) and its correlation 
between the Cloud_cci and reference datasets is studied. A seasonal variation is defined as a 
difference between the monthly averaged parameter in a given latitude/longitude grid box and an 
annual average of the same parameter. Figure 2.7 shows that the seasonal behaviour of CA, CAHR, 
CALR, and CT for the Cloud_cci datasets qualitatively agrees with that of the reference datasets. 
However, Cloud_cci MERIS-AATSR is off in many areas, especially in CT anomaly, which is coherent 
with the differences shown in the other figures and which is associated with cloud pressure mis-
assignment and cloud detection sensitivity of this dataset.  

As in CAR-2013, to investigate the seasonal coherence of the retrieved parameters, Pearson 
product-moment correlation coefficients (r) are estimated, built for each latitude/longitude grid 
box, between the 12 monthly means of the Cloud_cci datasets and of the reference dataset. A high 
correlation coefficient means similar behaviour and coherence in seasonal variability of a given 
parameter even though the absolute values might differ. Large values here mean that the 
combination of measurement, radiance model, and retrieval algorithm produce the picture which 
varies in accordance with reality (represented by the reference dataset and its uncertainties). One 
has to note that a high correlation coefficient does not guarantee the matching of absolute values 
of, let say, cloud radiative properties, but it tells that the retrieval algorithm in combination with 
its ancillary data properly capture all physical variations of atmosphere and corresponding measured 
radiance.  
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Figure 2-7 Seasonal cycle (relative) of CA, CAHR, CALR and CT for NH midlatitudes (30°N-60°N), 
NH tropics (0°-30°N), SH tropics (0°-30°S), and SH midlatitudes (30°S-60°S). Comparisons of 
Cloud_cci Data for 2007, daytime observations, with L3 data from GEWEX Cloud Assessment data 
base. 



 

 Doc: Cloud_cci_D5.1_CAR_v3.1 

Date: 18 September 2017 

Issue:  3 Revision:  1 Page 26 

 

26 

 

 

Figure 2-8 Geographical maps of Pearson product-moment correlation coefficients calculated for 
CA (left), CAH (middle), and CT (right) temporal variation of Cloud_cci AVHRR versus reference. 

 

Figure 2-9 Same as Figure 2-8, but for Cloud_cci MODIS dataset. 

 

Figure 2-10 Same as Figure 2-8, but for Cloud_cci AATSR dataset. 
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Figure 2-11 Same as Figure 2-8, but for Cloud_cci MERIS-AATSR dataset. 

 

Figure 2-8 to Figure 2-11 present geographical maps of these coefficients built for CA, CAH, and CT 
for Cloud_cci AVHRR, Cloud_cci MODIS, Cloud_cci AATSR and Cloud_cci MERIS-AATSR, respectively. 
At present, the correlations between Cloud_cci AVHRR / MODIS and GEWEX are good everywhere 
except for the poles and Greenland, snow and ice covered areas which are known for difficulties in 
the retrievals associated with strong and varying background radiance. In these regions only active 
instruments, like CALIPSO and CloudSat, provide the most reliable information. 

Considering Cloud_cci AATSR (Figure 2-10), even though its average values (Figure 2-1, Figure 2-2, 
Figure 2-7) are in relatively good agreement with the reference dataset, their seasonal behaviours 
are often uncorrelated, especially over the ocean in the Southern hemisphere.  

As for Cloud_cci AATSR, the seasonal variation of high-level clouds of Cloud_cci MERIS-AATSR is 
more coherent with the one of the reference dataset in the tropics and the patterns are similar to 
that of Cloud_cci AATSR.  

Summarizing this section, it is shown that Cloud_cci AVHRR and Cloud_cci MODIS datasets capture 
the seasonal variations well, while Cloud_cci AATSR and Cloud_cci MERIS-AATSR datasets are often 
uncorrelated with the reference dataset. Correspondingly, one should expect that the instantaneous 
radiation fields calculated with these datasets will be sometimes out of phase despite the fact that 
their averages can be coherent with reality. 

 

2.1.4 Cloud-top pressure and temperature 

All passive sensors selected for the study provide a ‘”radiometric height” of the cloud, which 
roughly corresponds to half-way between cloud top and “apparent” cloud base. The latter 
corresponds to the real cloud base when optical depth is smaller than 3. The “radiometric height” 
may lie as much as a few kilometres below the “physical height” of the cloud top, depending on the 
cloud extinction profile and vertical extent. High-level clouds in the tropics generally have 
“diffusive” cloud tops (meaning that the optical depth increases only slowly from cloud top 
downwards), for which retrieved cloud temperature may be as much as 10 K larger than the cloud 
top temperature corresponding to a lidar height. 

Figure 2-12 and Figure 2-13 present probability density functions (PDFs) of CP, while Figure 2-14 
presents PDFs of CT. These can be interpreted as the vertical distribution of the higher-most 
detected clouds in the atmosphere, since passive remote sensing only has access to the highest 
cloud layer in the case of multi-layer cloud situations. The distributions have been built using the 
histograms which are a part of the L3 products. The normalized PDFs have been obtained by dividing 
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the histograms by the number of cloudy samples. It is stressed that it is essential to use histograms 
instead of the averaged values of CP and CT since the same averaged value can be obtained both 
from a bimodal distribution (as expected in the tropics) or from a single-mode distribution centred 
in the middle.  

The strong bimodality in the tropics with strong peaks at 950 hPa and between 250 and 150 hPa 
means that the tropics have few mid-level clouds, in agreement with local observations using 
ground-based radar and with CALIPSO-CloudSat observations. The decrease of bimodality and range 
in CP and CT from tropics towards poles is essentially linked to the decrease of the tropopause 
height and a change in the type of atmospheric storm from convective to baroclinic cyclone. 

Again, the assessment is done separately for observations mostly during daytime and mostly during 
night-time. For 2007, observations are compared around 1:30 PM (10:30 AM for AATSR and MERIS) 
and 1:30 AM (10:30 PM for AATSR), respectively. From Figure 2-12 it can be deduced that the PDFs 
of all four Cloud_cci datasets do not reproduce the bimodality in the tropical and midlatitudes 
during daytime and that the peak of low-level clouds is about 100 hPa lower (overestimation of low-
level cloud height) than for the GEWEX reference dataset. The low-level cloud peak is another 
100 hPa lower for Cloud_cci MERIS-AATSR, except in polar regions where it is higher, here in 
agreement with AIRS-CIRS. During night-time a hint of bimodality appears, but the overestimation of 
low-level cloud height stays the same. The net effect of these differences compared to the 
reference dataset is as follows: if these clouds are used in the radiative transfer calculations, this 
will lead to an overestimate of atmospheric cooling in the long wave.  

In the CT histograms (Figure 2-14) the bimodal distributions are not visible, whereas CALIPSO, the 
GEWEX Cloud Assessment reference and AIRS-CIRS show bimodal distributions in the tropics and 
midlatitudes. This means that the pressure to temperature and L3 conversion in the Cloud_cci 
datasets seems to amplify the problems in the datasets. The difference between CALIPSO and AIRS-
CIRS can be partly explained by the fact that CALIPSO determines the cloud top and the AIRS-CIRS 
cloud height corresponds to a height at which cloud optical depth of about 0.5 is reached and also 
on the difference in sampling, as IR sounders large footprints might include different cloud layers 
(Stubenrauch et al., 2017). The peak corresponding to low-level clouds is more comparable to that 
of the reference datasets, though still slightly colder especially during night-time. The polar 
distributions of Cloud_cci MERIS-AATSR show colder and lower clouds than retrieved by the other 
datasets and CALIPSO.  

In addition, an assessment is presented of Cloud_CCI AVHRR, Cloud_cci MODIS and Cloud_cci AATSR 
at 7:30 AM / 7:30 PM and 10:30 AM and 10:30 PM, respectively, in comparison with IASI-CIRS, 
PATMOSx and MODIS-ST at similar observation times, for the year 2009. While the peak of high-level 
clouds of PATMOSx is much overestimated, IASI and MODIS-ST show similar peaks. Only MODIS-ST 
shows too many low-level clouds, because collection 5 of MODIS-ST misidentifies thin cirrus as low-
level clouds (Stubenrauch et al., 2013). From Figure 2-13 it can deduced again that the PDFs of all 
Cloud_cci datasets do not reproduce the bimodality in the tropical and midlatitudes during daytime 
and that the peak of low-level clouds is about 100 hPa lower (overestimation of low-level cloud 
height) than for the GEWEX reference. While during night-time bimodality appears for Cloud_cci 
AVHRR and Cloud_cci AATSR, the performance of Cloud_cci MODIS on board Terra did not improve 
very much, because it looks like high-level clouds partly appear as mid-level clouds. Again, the 
overestimation of low-level cloud height stays the same.  

Two-dimensional histograms of COD and CP distributions per 1°latitude x 1°longitude grid, available 
in the GEWEX Cloud Assessment data base, provide a basis for a more detailed comparison and are 
largely used for model evaluation. The two-dimensional normalized frequency distributions 
presented in Figure 2-15 show how the clouds of different optical depth and height are distributed 
in the atmosphere. This type of histogram is valuable for climate model evaluation and for 
estimating atmospheric, surface, and top of atmosphere radiative fluxes.  
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Figure 2-12 Cloud pressure histograms, separated into tropical (30°N-30°S), midlatitude (30°-60°) 
and polar (60°-90°) latitude bands. Statistics are shown for 2007, with observation times of 
1:30 PM (10:30 AM for AATSR and MERIS), corresponding mostly to day time (above), and of 1:30 AM 
(10:30 PM for AATSR), corresponding mostly to night time (below). 

 

Figure 2-13 Same as Figure 2-12. Statistics are shown for 2009, with observation times of 7:30 AM 
(PATMOSX, AVHRR), 9:30 AM (IASI-CIRS) and 10:30 AM (MODIS, AATSR), corresponding mostly to day 
time (above), and of 7:30 PM, 9:30 PM and 10:30 PM, corresponding mostly to night time (below). 
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Figure 2-14 Cloud temperature histograms are shown, separated into tropical (30°N-30°S), 
midlatitude (30°-60°) and polar (60°-90°) latitude bands. The statistics is presented for 2007, with 
observation times of 1:30  PM (10:30 AM for AATSR and MERIS), corresponding mostly to day time 
(above), and of 1:30 AM (10:30 PM for AATSR), corresponding mostly to night time (below). 

 

As range of reference two datasets of the GEWEX Cloud Assessment data base are used: AIRS-LMD, 
sensitive to cirrus, and ISCCP, the GEWEX dataset. In the case of AIRS-LMD, retrieved cloud 
emissivity was transformed to COD, and since cloud emissivity saturates at 1, the last COD interval 
has no values. For ISCCP clouds around 100 hPa with very small COD are suspicious. These two 
datasets, presented in the first two rows of Figure 2-15, show tropical distributions which are 
characterized by bimodal pressure distributions discussed above. This structure is also traceable in 
midlatitudes. Current versions of Cloud_cci AVHRR, Cloud_cci MODIS and Cloud_cci AATSR 
demonstrate a bimodal structure, which is consistent with the reference data, but the upper peaks 
are much less pronounced, that corresponds to less frequent (less effective) detection of high-level 
clouds. The Cloud_cci MERIS-AATSR dataset presents a distribution continuing at all pressures 
towards very high and thin clouds.  
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Figure 2-15 Two dimensional histograms of annual COD versus CP for three latitude bands: tropical 
(15S-15N), midlatitude (15S/N-60S/N), and polar (60S/N-90S/N). 
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2.3 Conclusions of Level-3 assessment with GEWEX data base 

Based on the analysis of total and relative cloud amounts, their regional and seasonal behaviour, as 
well as of their distributions in cloud pressure and temperature the following conclusions is drawn 
regarding the ESA Cloud_cci datasets of AVHRR, MODIS, AATSR and MERIS-AATSR: 

While global total cloud amount compares well to reference datasets from other passive remote 
sensing cloud datasets, cloud amount is underestimated over large parts of the ocean, especially for 
AATSR and MERIS-AATSR.  

Global relative cloud amounts compare well to the reference cloud datasets during night-time, 
when only IR information is available. However, the amount of high-level clouds, in particular over 
land, is strongly underestimated for all Cloud_cci datasets when using VIS information in 
combination with spectral IR information in the Optimal Estimation retrieval method. This was 
already revealed during the GEWEX Cloud Assessment, with the participation of ATSR-GRAPE. Thin 
cirrus over low-level clouds is then misidentified as mid-level and low-level cloud. 

Low-level clouds demonstrate a better match during daytime than during night-time, since these 
clouds are easier identified using VIS information. One should nevertheless keep in mind that passive 
remote sensing detects low-level clouds only when there is no higher cloud above them. 

Distributions of cloud pressure reveal that the height of low-level clouds seems to be overestimated 
and that even during night the Cloud_cci datasets detect less high-level clouds than IR sounders. 
The latter are most abundant in the tropics. 

The performance of Cloud_cci AVHRR and MODIS are comparable, with a good coherence of the 
seasonal cycle, whereas AATSR has a slightly lower performance and MERIS-AATSR has the worst 
performance. 
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3. Bias removal of CFC L3 using SYNOP 

To be suitable for climate analysis, satellite-derived cloud datasets have to meet the challenging 
requirements including those for accuracy, precision and decadal stability (URDv2). The longest CFC 
dataset of Cloud_cci project (1982-2014) derived from the afternoon NOAA satellites has been 
thoroughly evaluated in the Product Validation and Intercomparison Report (PVIRv4).  
 
The PVIR reveals some inhomogeneities in CFC between sensors (e.g. NOAA-7 and NOAA-9) as well as 
variation of performance within the lifetime of individual sensors. These inaccuracies are related to 
degradation of satellite sensors, radiometric and geometric calibration problems, and satellite 
orbital drift. Some of these aspects have been resolved within the scope of Cloud_cci retrieval 
algorithms (Poulsen et al., 2011; Stengel et al., 2015). However, orbital drift and varying equatorial 
crossing times of consecutive satellites have not been accounted for. This may inhibit the use of the 
original dataset for investigating the cloud variability and change over the last 3 decades. 
 
Several methods exist for correcting satellite-derived cloud cover time series. Foster and Heidinger 
(2013) derived corrected CFC daily means from PATMOS-x dataset by fitting a mean diurnal cycle to 
a sinusoidal function derived over all NOAA’s. An average corrected daily value of cloudiness is then 
interpolated from the fit function using all available ascending, descending, morning, and afternoon 
satellite overpasses. The application of this correction method is inhibited for the Cloud_cci CC4CL 
AVHRR-PM dataset since it only utilizes one satellite at a time. Devasthale et al. (2012) succeeded 
to delineate the signal of orbital drift in the AVHRR-based CFC time series by means of rotated 
empirical orthogonal function (REOF). However, the method is shown to be sensitive to decisions 
which EOF modes do reflect unnatural CFC variability. Therefore, it is necessary to rigorously test 
that the large scale geostatistical features are preserved in the corrected data set. Similar risk of 
removing from original dataset correct spatio-temporal patterns has been pointed out by Norris and 
Evan (2015) while detecting (by least squares best-fit) and then removing the CFC variability linked 
to known artefacts (e.g. orbital drift). 
 

 

Figure 3-1 SYNOP sites used for debiasing and evaluation of CC4CL AVHRR-PM CFC monthly means. 
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In this section, a simple statistical method is proposed for correcting CFC by debiasing the AVHRR-
PM CFC data using synoptic observations. The method is based on interpolation of these 
observations using satellite data as an explanatory variable. In this context, the proposed method 
relies on the strong assumption that synoptic observations are accurate and homogenous. Moreover, 
it is assumed that CFC errors caused by the artefacts such as orbital drift and transition between 
satellites are related to the occurrence and intensity of cloudiness diurnal cycle. Hence, it is 
assumed that these errors are spatially correlated (i.e. can be interpolated). Interpolation can be 
applied to monthly means, i.e. not explicitly resolving the diurnal cycle of cloudiness. 

3.1 Method 

Synoptic observations from the ECMWF archive were used for debiasing and evaluation. The archive 
initially contains data for over 6000 globally distributed sites. From these sites have been selected 
for a geographic range of 30N to 60N and 10W to 45E. In order to ensure the collection of long-term 
homogenous data series, only stations are selected where observations were continuously performed 
in 1982–2014, at least every 6 hours with a maximum break of 30 days. For each site cloud amount is 
used observed with the highest temporal frequency (up to 1 hour) that was reported for the whole 
33-year period. Thus the frequency of observations could vary between sites, but remained stable in 
time for each site. Instantaneous observations were transformed from the okta scale to cloud 
fractional cover, and aggregated to monthly means. Further, sites have been excluded for which the 
Standard Normal Homogeneity Test (SNHT, Alexandersson, 1986, Khaliq and Ouarda, 2007) detected 
any inhomogeneity in a time series of cloud amount monthly anomalies. 
 
Since SYNOP stations are unevenly distributed in geographic space, a regular grid was created. For 
each 2x2 degree geographic grid cell the SYNOP sites with the most valid observations were used. In 
case two or more sites were present within one grid cell, one site was used as training and one as 
validation site. This selection procedure yielded a total of 158 SYNOP sites used for training, and 68 
sites used for validation (Figure 3-1). 
 
Satellite data consisted of 33 years of CFC monthly means derived from NOAA-AVHRR afternoon 
satellites (CC4CL AVHRR L3C). These included data from consecutive afternoon NOAA satellites: 
NOAA-7, NOAA-9, NOAA-11, NOAA-12 (morning satellite due to a gap in data from afternoon 
satellites), NOAA-14, NOAA-16, NOAA-18 and NOAA-19. 
 
Debiasing of satellite-derived CFC employed interpolation of synoptic observations using satellite 
data as an explanatory variable. For each month (i.e. 1982-01, 1982-02, etc.) kriging with external 
drift was applied to SYNOP-based monthly means (at 158 sites). The variogram was fit automatically 
to regression residuals and kriging performed using the R package ‘automap’ (Hiemstra et al., 2009). 
Based on explanatory analysis, the spherical variogram model was chosen and imposed for each 
fitting. The native spatial resolution of 0.05 degree was preserved during interpolation. 
 
To assess the accuracy of debiased satellite CFC, the mean bias error is used, defined as mean 
difference between debiased CFC and reference SYNOP data. To express the precision, the bias-
corrected root mean squared error (bcRMSE) was used. Finally, for a trend analysis linear trends are 
used derived using Theil-Sen estimates (Theil, 1950) and their significance was estimated with the 
Mann-Kendall test (Kendall, 1938; Mann, 1945) and adjusted using Benjamini-Hochberg (Benjamini 
and Hochberg, 1995) method. 
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Table 3-1 Mean bias error (MBE) and bias-corrected root mean square error (bcRMSE) of AVHRR-PM 
uncorrected and corrected (debiased) mean monthly cloud fraction as compared to synoptic 
observations aggregated for NOAA missions. 

 Corrected Uncorrected 

NOAA MBE bcRMSE MBE bcRMSE 

AVHRR-PM -0.68 6.42 4.05 14.90 

7 -0.70 6.57 5.28 14.66 

9 -0.73 6.55 4.25 14.90 

11 -0.91 6.99 3.04 15.17 

12 -0.24 6.97 9.16 15.41 

14 -0.79 6.12 5.77 14.65 

16 -0.80 6.03 3.68 14.08 

18 -0.21 6.27 2.82 15.25 

19 -0.53 6.32 3.25 14.52 

3.2 Results of bias removal 

Averaged over 68 evaluation sites (Table 3-1), the corrected (debiased) dataset (MBE=-0.68%, 
bcRMSE=6.42%) significantly outperforms the original one (MBE=4.05%, bcRMSE=14.90%).  

Figure 3-2 reveals that the performance differs among sites. For the vast majority of them (11 out 
of 68), the original dataset overestimates the reference SYNOP CFC, while after correction 28 sites 
overestimate and 40 underestimate the reference. The are 16 sites for which the correction method 
increased the absolute bias, most of them located at the edges of the interpolation area. 
Concurrently, the bcRMSE decreased for all sites during correction.  

The performance of the debiased dataset (Table 3-1) is stable among NOAA missions (absolute bias < 
1%, and bcRMSE within 6-7%). Compared to the uncorrected data, the correction also decreases the 
performance differences among NOAA satellites. Figure 3-3 displays concurrently lower mean errors 
and lower variability. The errors are also more stable in time. These facts reveal that debiasing can 
implicitly remove the inhomogeneity in CFC time series due to changing overpass times. 

Trends in CFC monthly anomalies are comparable in original and corrected dataset (Figure 3-4).The 
magnitude of trends is mostly smaller, but the correction keeps their signs unchanged (positive 
trends are less positive, negative trends are less negative). More prominent differences can be 
observed over water. It has to be noted however that CFC there was interpolated from inland sites. 
Therefore, the sharp edges between trends on land and water are obscured in debiased data. 
Nevertheless, the similarity of trends over land before and after the correction encourages to 
conclude that observed signal is related to natural changes in the last 30 years. Performance of both 
CFC datasets over water should be further investigated prior any conclusions about potentially 
observed trends. 
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Figure 3-2 Mean bias error (MBE) and bias-corrected root mean square error (bcRMSE) of CC4CL-
AVHRR-PM uncorrected and corrected (debiased) mean monthly cloud fraction as compared to 
synoptic observations. 

 

 

Figure 3-3: Time series of mean bias error (upper panel) and bias-corrected root mean square error 
(lower panel) of CC4CL-AVHRR-PM as compared to synoptic observations. Dashed line reveals 
performance of uncorrected data, thick solid line of corrected (debiased) data. Colours represent 
consecutive satellite missions: NOAA-7 (black), NOAA-9 (red), NOAA-11 (green), NOAA-12 (dark 
blue), NOAA-14 (light blue), NOAA-16 (purple), NOAA-18 (yellow) and NOAA-19 (grey). 
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Figure 3-4 Map of CC4CL-AVHRR-PM Theil-Sen monotonic trend (upper panels) and its statistical 
significance according to the Mann-Kendall test adjusted using Benjamini-Hochberg method (lower 
panels) based on the cloud fraction monthly standardized anomalies in 1982-2014. 
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4. Comparison to reanalysis data 

4.1 ERA-Interim reanalysis 

The ERA-Interim global atmospheric reanalysis (Dee et al., 2011) provided by the European Centre 
for Medium-Range Weather Forecasts (ECMWF) is produced by the Integrated Forecast System (IFS). 
The IFS contains the forecast model, which fully couples the atmospheric, land, and oceanic 
components leading to a physically realistic and consistent model. The data is available starting 
from 1979 and is continuously extended in near-real time.  

In large-scales models only the bulk properties of clouds can be taken into account. Hence, in ERA-
Interim clouds are described by a fully prognostic cloud scheme, which has been developed by 
Tiedtke (1993). Cloud cover and cloud water/ice content are derived from prognostic equations 
following the mass balance equation for cloud water/ice content and cloud air. Source and sink 
terms related to cloud formation (e.g. condensation/sublimation, cumulus convection) and 
destruction (e.g. evaporation, precipitation) processes modify the cloud variables as time evolves in 
the simulation. 

In order to evaluate the representation of clouds in ERA-Interim by means of satellite observations, 
a cloud simulator (described below) is needed to convert the model state into synthetic 
measurements. This diagnostic tool helps to understand and analyze what a satellite would see if 
the atmosphere had the clouds of a climate model. In other words, the simulator provides pseudo-
satellite cloud products, which can be compared to satellite retrieval results so that differences can 
be interpreted as model errors. It is important to note that instrument simulators cannot entirely 
close the gap between models and observations because it is not possible to include everything 
about the observational process (e.g. satellite view angle effects on cloud detection, artifacts 
caused by partially cloudy satellite pixels). However, they are essential for carrying out robust 
inter-comparison studies. 

4.2 Simplistic cloud simulator for ERA-Interim 

The purpose of the SIMplistic cloud simulator For ERA-Interim (SIMFERA) developed in the framework 
of ESA Cloud_cci is to evaluate the cloud parameterization used in the IFS. In general SIMFERA 
consists of three modules: (1) downscaler, which converts the model grid box mean profiles into 
sub-grid profiles considering the mismatch in spatial scale between that of a model and that of a 
satellite pixel; (2) pseudo-retrieval, which emulates the pixel-scale cloud parameters based on the 
sub-grid profiles; and (3) statistical aggregation, which builds the diagnostic output that is 
comparable to the observational dataset (i.e. temporal averages and histograms, see below). 

The general features are: 

 SIMFERA uses the three-dimensional (3D) model fields as input (see details below). The 
simplistic approach in offline mode has the advantage of short computation time (e.g. 33 
years of reanalysis data processed in less than 2 days on a HPC system). 

 Unlike sophisticated simulators, which are using modelled radiances and brightness 
temperatures to retrieve cloud optical parameters based on radiative transfer calculations 
(e.g., COT and CER following Nakajima-King method), SIMFERA stays very close to the 
original model fields. For instance, it uses the ERA-Interim CER parameterization (Martin et 
al. 1994, Sun and Rikus 1999, Sun 2001) along with the original 3D variables to convert the 
model state into comparable synthetic observations. Details are given in Stengel et al. 
(2017c). 

 No satellite overpass is taken into account as ERA-Interim is only available in discrete 
temporal resolution of several hours. However, day and night conditions are considered for 
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the calculation of cloud optical parameters (i.e. COT, CER, CWP) that are only available 
during daytime observations since they are based on visible measurements. 

 SIMFERA provides 2 options about how liquid and ice clouds occurring in the same model grid 
box are treated during the simulations (in the sub-column procedure):  

o mixed phase (i.e. mixed phase clouds if both water/ice contents exists) or  

o no-mixed phase (i.e. considering liquid and ice clouds separately). 

 SIMFERA can be used for other model output evaluation after small modifications since there 
are not instrument/algorithm specifications implemented. 

 

Input: 

 The simulator reads 6-hourly (00, 06, 12, 18 UTC) gridded estimates of 3D meteorological 
upper air parameters on 60 model levels including the following profiles: 

o liquid water content “LWC” [kg/kg], 

o ice water content “IWC” [kg/kg], 

o cloud cover “CC” (0-1), 

o temperature “T” [K], and 

o specific humidity “Q” [kg/kg]. 

 Additionally, the ERA-Interim file comprises for each grid box two-dimensional (2D) arrays of 

o surface geopotential “Z” [m2/s2] and 

o logarithm of surface pressure “LNSP” [Pa]. 

The latter two parameters are required for the computation of vertical pressure and geopotential 
profiles by using the provided “A” and “B” coefficients on model levels along with T and Q profiles. 

 

Output: 

Grid box monthly means are computed averaging first over all sub-columns per grid box and then 
averaging over all diagnostic time steps per month. Histograms are based on sub-column values 
because the downscaled results mimic the spatial resolution of a satellite footprint. 

SIMFERA provides the following monthly mean products:  

 total, high-, mid-, and low-level CFC (0-1),  

 CPH (0-1),  

 LWP and IWP [g/m2], 

 CTP [hPa], CTH [km], and CTT [K], 

 COT and CER [micron] for liquid and ice phase, 

 2D joint cloud property histograms following the ISCCP classification relating the simulated 
height and optical thickness of the clouds, and 

 1D histograms for CTP, CTT, CWP, COT, and CER with the cloud phase as additional 
dimension. 
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4.3 Results of reanalysis comparisons 

In the following subsections the simulated and observed CFC, CPH, and CTP are inter-compared 
based on zonal monthly means (latitudinal distribution) and time series of monthly averages 
(temporal variation). The Cloud_cci AVHRR-PM time series are neither trend- nor orbital drift-
corrected. All averages are latitude weighted means. The time period of all datasets spans 1982/01 
to 2014/12 (33 years), whereby only daytime data been used. 

In the case of CFC and CPH a detection threshold of COT > 0.15 was applied for identifying the 
uppermost cloud layer in the model profile. For CTP a detection threshold of COT > 1.00 was used. 
The different thresholds are based on validation scores for the Cloud_cci AVHRR-PM dataset against 
CALIOP on-board CALIPSO. For the binary cloud mask (clear, cloudy) the vertical placement of the 
cloud does not matter. In the case of a cloudy satellite pixel, the phase is either liquid or ice (binary 
CPH, since the retrieval is not able considering mixed-phase clouds). A passive imager like AVHRR is 
capable to detect clouds having an optical thickness larger than 0.15, especially for daytime 
conditions where more spectral information is available. Since during daytime VIS and IR spectral 
information is used together, cases of thin cirrus and underlying low clouds are misidentified as low-
level clouds. Therefore the number of these cases is being reduced by a applying a threshold of 
COT > 1. 

The investigation of one-dimensional (1D) histograms of CTP [hPa] based on detection threshold 
larger than 0.15 and 1.00, respectively, confirms the AVHRR validation study using lidar 
measurements. Figure 4-1 shows the 1D CTP histograms of ice clouds averaged over 33 years 
excluding the Polar Regions (i.e. ± 60 latitude) for Cloud_cci AVHRR-PM satellite retrievals and both 
SIMFERA runs (0.15, 1.00). The larger detection threshold applied in SIMFERA leads to a better 
agreement with observations. The 1D histogram for liquid clouds (not shown here) is very similar for 
these threshold values because the uppermost clouds are in general ice clouds. 

For carrying out a fair inter-comparison between ERA-Interim reanalysis data and AVHRR-based 
observations, these different detection capabilities have to be addressed in the cloud simulator by 
applying the appropriate detection threshold values. Otherwise the assessment of the cloud 
parameterization in the model by means of space-borne data is not reasonable.  

 

 

Tropics & Mid-latitudes: 1982 - 2014 

 low mid high 

AVHRR-PM 6.9 % 23.42 % 69.67 % 

SIMFERA 0.15 10.87 % 13.34 % 75.78 % 

SIMFERA 1.00 9.20 % 22.15 % 68.65 % 
 

Figure 4-1 Left: One-dimensional (1D) histogram of cloud top pressure [hPa] for ice clouds 
averaged over 33 years (1982 – 2014) excluding the Polar Regions (± 60 latitude). The black line 
shows the Cloud_cci AVHRR-PM ice cloud distribution, while the red solid and dashed lines show the 
simulator results for COT-THV equal 0.15 and 1.00, respectively. Right: table showing the relative 
occurrences in numbers for low-, mid-, and high-level clouds based on the ISCCP cloud classification 
scheme. 
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4.3.1 Cloud Fraction 

Figure 4-2 compares the zonal mean CFC obtained from the cloud simulator applying two different 
COT thresholds (rose: 0.15, green: 1.00) with AVHRR-PM retrieval results from Cloud_cci (pale blue), 
PATMOS-x (dark cyan), and CLARA-A2 (olive). It is obvious that ERA-Interim underestimates CFC in 
the tropics and mid-latitudes, while overestimates in the Polar Regions, especially at the North 
Pole. It is a known problem that general climate models (GCMs) and reanalysis data underestimate 
the cloud amount, especially they provide too few mid-level clouds (Kay et al., 2012).  

 

Figure 4-2 Zonal mean cloud fraction derived from SIMFERA using different detection thresholds 
(COT-THV = 0.15 / 1.00) and three satellite-based cloud climatologies using AVHRR afternoon (PM) 
data: Cloud_cci, PATMOS-x, and CLARA-A2. The values are averaged over all monthly means from 
January 1982 to December 2014. 

 

Figure 4-3 Time series of monthly mean cloud fraction derived from SIMFERA (black; COT-
THV=0.15) and Cloud_cci AVHRR-PM satellite retrievals (red) excluding the Polar Regions. Thin lines 
show monthly averages, while thick lines are running averages. The right y-axis (grey) shows the 
bias corrected root-mean-square difference (BD-RMSD) between the simulated and observed 
monthly means. 

In the Polar Regions the space-borne cloud climatologies significantly deviate from each other, with 
PATMOS-x providing the largest CFC compared to the others. That is why the inter-comparison of 
the CFC time series between Cloud_cci and SIMFERA (COT-THV > 0.15) is carried out for the mid-
latitudes (± 60 lat.) only (see Figure 4-3). Moreover, the AVHRR-PM v2.0 data have some known 
issues in the Polar Regions, which are already solved for the upcoming v3.0 release. Additionally, at 
high latitudes the retrieval conditions are difficult for passive imagers due to spectral limitations. 
Like every model, a simulator is imperfect too and cannot entirely close the gap between simulation 
and observation and thus, tricky scenarios should be excluded for a robust inter-comparison. 

Figure 4-3 also demonstrates that ERA-Interim underestimates CFC by about 10 % compared to 
AVHRR-PM satellite retrievals. The smaller variability in the simulated CFC is mainly due to the fact 
that SIMFERA does not account for satellite overpasses. Hence, the number of pseudo-satellite 
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results used for building the diagnostic output is different compared to that used for the 
observational dataset. 

4.3.2 Liquid Cloud Fraction 

Figure 4-4 (left) shows the simulated and observed zonal mean CPH. SIMFERA results based on COT 
threshold of 0.15 agrees very well with the AVHRR-PM satellite retrievals in the tropics and sub-
tropics. Beyond ± 40 degree latitude ERA-Interim has more ice clouds compared to the observations, 
which might be caused by the lack of cloud liquid water in the model, especially in the upper 
troposphere (Forbes et al., Winter 2015/2016). Pseudo-satellite zonal mean CPH applying a 
detection threshold of 1.00 leads to a better agreement with space-borne measurements in the high 
latitudes but worse agreement in tropics and sub-tropics because of “undetected” high and optical 
thinner ice clouds. 

Figure 4-4 (right) inter-compares the time series of monthly mean CPH obtained from SIMFERA and 
AVHRR Cloud_cci AVHRR-PM satellite retrievals considering only the mid-latitudes. The simulated 
and observed CPH is in very good agreement for NOAA-16, NOAA-18, and NOAA-19, i.e. reduced 
orbital drift impact (see Figure 4-4). Between 1982 and 2001 the equatorial crossing time of the 
NOAA platforms changes significantly in value over time due to orbit degradation, which of course 
has an influence on the computation of monthly mean CPH. Overall, the global mean of simulated 
(0.52) CPH corresponds quite well with the observed (0.55) CPH. 

 

  

Figure 4-4 left: Zonal mean cloud phase derived from SIMFERA and satellite-based cloud 
climatologies using AVHRR-PM data. Right: Time series of monthly mean cloud phase derived from 
SIMFERA and Cloud_cci AVHRR-PM satellite retrievals for mid-latitudes 

 

 

Figure 4-5 Equatorial crossing times of the ascending nodes of NOAA afternoon (PM) satellites 
carrying an Advanced Very High Resolution Radiometer (AVHRR). 
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4.3.3 Cloud Top Pressure 

Figure 4-6 (left) presents the zonal mean CTP derived from the cloud simulator and well-known 
satellite climatologies. SIMFERA results based on COT threshold of 0.15 coincides quite well with 
observations; however, these should not be used for the model evaluation (see Figure 4-1 for 
explanation). The simulated CTP based on detection threshold 1.00 points out that the clouds in 
ERA-Interim are lower compared to satellite measurements. Figure 4-6 (right) inter-compares the 
time series of monthly mean CTP derived from SIMFERA and Cloud_cci AVHRR-PM for the mid-
latitudes. The global mean standard deviation between the simulated and observed CTP is 92.4 hPa 
indicating that in the model the clouds are on averaged lower than what satellites observe from 
space.  

From mean values of CTP it is very difficult to conclude on an evaluation. As the histograms in Fig. 
2.13 have shown, the difference might also originate from the fact that CTP of low-level clouds in 
the Cloud_cci datasets is slightly overestimated.  

  

Figure 4-6 left: Zonal mean cloud top pressure [hPa] derived from SIMFERA satellite-based cloud 
climatologies using AVHRR-PM data. Right: Time series of monthly mean cloud top pressure [hPa] 
derived from SIMFERA and Cloud_cci for mid-latitudes. 
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5. Comparisons with climate models 

Clouds strongly affect the Earth's radiative balance and temperature but are difficult to accurately 
model and observe, leading to major uncertainties in understanding climate variability and change. 
Further model development and evaluation using long consistent observational data records can 
increase both the understanding of the present climate and the confidence in climate model 
scenarios. Modelled and observed clouds are different, as on one hand the observed clouds are 
determined by the satellite instrument sensitivity, the temporal and spatial sampling and the 
vertical overlap of the cloud layers, while climate model clouds are assumed to be plane-parallel 
and are of coarse horizontal and vertical resolution. Ideally, a satellite simulator should be used 
(e.g. Bodas-Salcedo et al., 2011) on the model data to mimic the satellite view and sampling.  

However, since many CMIP5 climate models historical and scenario simulations have been run 
without a simulator, cloud observations are directly compared with models. Total cloud cover is the 
model cloud parameter that most readily can be compared directly to the satellite derived cloud 
fraction without a simulator, even though models can have substantial cloud cover but very little 
cloud condensate making those clouds too optically thin to be detected by the satellite instrument. 

Therefore, in this section Cloud_cci data is compared with regional and global climate models with 
and without simulators. Comparisons are presented using simulators for a kilometre-scale forecast 
model in section 5.1, a regional climate model in section 5.2, a global climate model in section 5.3, 
and finally direct comparisons with CMIP5 models in section 5.4.  

 

5.1 Regional case study: kilometre-scale 

In this sub section a comparison is presented of Cloud_cci level 3 data (L3U) with a kilometer-scale 
weather forecast model during a convective period. 

5.1.1 The regional weather forecast and climate model COSMO 

The non-hydrostatic model COSMO is operationally used for weather forecast at MeteoSwiss and 
other national weather services, mainly in Europe. In climate mode and referred to as COSMO-CLM, 
the model has been used to contribute to the CORDEX project (e.g. Kotlarski et al. 2014). 

In this study, COSMO is used with Version 4.25, in climate mode, and at kilometre-scale resolution 
(Baldauf et al. 2011). The setup follows previous studies (e.g. Ban et al., 2014; Keller et al., 2016) 
and convection-resolving simulations in numerical weather prediction mode at MeteoSwiss (e.g. 
Weusthoff et al., 2010). A radiative transfer scheme based on the δ-two-stream approach (Ritter 
and Geleyn, 1992), a convection scheme for shallow and deep convection (Tiedtke, 1989), or 
alternatively a convection scheme only for shallow convection (Tiedtke, 1989; Theunert and Seifert, 
2006), a one-moment bulk cloud-microphysics parameterization (1M) (Reinhardt and Seifert, 2006), 
or alternatively a two-moment bulk cloud-microphysics parameterization (2M), which includes ice 
sedimentation, (Seifert and Beheng, 2006) are used. 

5.1.2 The COSMO simulator 

The cloud simulator, which was used in Keller et al. (2016) and for the CAR, was built to compare 
ESA Cloud_cci L3U data (cloud optical thickness (COT) and cloud top pressure (CTP)) with the 
COSMO model when no official cloud simulator for this data was available. The calculation of COT is 
implemented in the radiation code of the COSMO model (Ritter and Geleyn, 1992). It is calculated 
from direct solar radiation at ToA (I0) and at certain atmospheric layers (IL) with COTL = − ln(IL/I0). 
COT over the full atmospheric column is calculated as COT = COT lowest level. Between ToA and the 
atmospheric layers, direct solar radiation is reduced considering absorption and scattering due to 
cloud water and cloud ice at 0.24 μm to 0.7 μm. Water vapor, aerosols, or Rayleigh scattering are 
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not considered, which differs from the standard radiation calculations in the code. Radiation 
through subgrid clouds is calculated with the maximum random overlap assumption (Geleyn and 
Hollingsworth, 1979). Compared to COSP, one major difference is that for this cloud simulator no 
sub-columns are used. 

Since COT is calculated inside the simulations, input for COT is taken directly from there. CTP is 
calculated with an NCL (NCAR command language) script, which needs COT and pressure at every 
level as input. CTP is defined at the pressure level where COTL =0.3. While calculating COT does not 
lead to a considerably longer run time of the model, the script to calculate CTP and the COT/CTP 
histograms needs several minutes per data input (for 500x500x60 grid points). If this cloud simulator 
would be used further in the future, it would be worth to also implement the CTP calculation into 
the radiation code of the model or to improve the performance of the script. But this cloud 
simulator is intended to be replaced by the official cloud simulator. A more detailed explanation on 
how COT is calculated can be found in Appendix B of Keller (2016). 

 

5.1.3 Experimental framework 

Three simulations are undertaken. The first has 12 km spatial resolution, a parameterization for 
deep convection, uses 1M and is called 12km1M. The other two simulations have 2.2 km resolution, 
a parameterization only for shallow convection, use 1M or 2M (see 5.1.1), and are called 2km1M or 
2km2M, respectively. 12km1M is driven by ERA interim, and the 2 km simulations by 12km1M.  

The level 3 data (L3U) from the MODIS instrument on the Aqua platform is used from the Cloud_cci 
project. The data is masked to be equal to the analysis domain (Figure 5-1). For the observations, 
clouds are excluded which have a cloud mask uncertainty larger than 35%. The uncertainty threshold 
is chosen at 35 % where a minimum is found between two maxima in the cloud mask uncertainty 
histogram over Europe for June 2007. The excluded clouds are discussed at the end of the results. 
For the model, CTP and COT are calculated at 13 UTC to match the overpass time of 1:30 PM local 
time of the Aqua satellite. The histograms are calculated and normalized over all data points 
(including cloud-free points). Comparisons are carried out for 11 days in June 2007, a period with a 
strong diurnal cycle of deep convection, to highlight differences between simulations with 
parameterized (12km1M) and explicit (2km1M, 2km2M) deep convection. 

5.1.4 Results for regional case studies on kilometre scale 

In Figure 5-1 CTP is shown over the model domain at 5 June 2007. Compared to observations, 
12km1M has a large overestimation of high clouds (< 400 hPa), which is improved with 2km1M and 
further with 2km2M. This is confirmed by the COT/CTP histograms over all 11 days. 

The improvement in high clouds from 12km1M to 2km1M shows the added value of the higher 
resolution without parameterization for deep convection, during a period with frequent deep 
convection. The further reduction of high clouds with 2km2M demonstrates the added value of ice 
sedimentation in association with the two-moment cloud-microphysics. Despite the differences in 
clouds, the impact of the two-moment cloud-microphysics on area averaged accumulated 
precipitation (not shown) is small with less than 1 mm for this period. 

If including clouds with cloud mask uncertainties > 35%, mainly low clouds with CTP > 800 hPa 
appear (not shown). A lot of these clouds are isolated (surrounded by cloud-free areas), which 
indicates that these clouds are shallow cumulus clouds. Further investigation of the model grid 
points, which cause the maxima in the COT/CTP histograms of the 2 km simulations, show that the 
model simulates shallow cumulus clouds as parameterized subgrid clouds. These subgrid clouds are 
treated as very thin grid-scale clouds in the cloud simulator instead of as partly cloudy and partly 
cloud-free. Therefore, in the observations and also in the cloud simulator, small low-level clouds, 
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which represent probably shallow cumulus clouds, are treated with some uncertainty and therefore 
their comparison is difficult. 

5.1.5 Conclusions for regional case studies on kilometre scale 

The use of the Cloud_cci data to evaluate the model demonstrates the importance of increasing the 
spatial resolution to avoid parameterization of deep convection. Further, the possibility to consider 
uncertainty (e.g. for cloud mask) helps to decide which cloud types are important for model 
evaluation and which should be treated with care. 

 

Figure 5-1 Cloud top pressure on 5 June 2007 from the ascend node of Aqua and at 13 UTC in the 
simulations 12km1M, 2km1M, and 2km2M over Central Europe. 
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Figure 5-2 Two-dimensional histograms of cloud optical thickness (COT) and cloud top pressure 
(CTP) as averages over the period of 3 to 13 June 2007. For observations, the average is over local 
time of the ascending node of the Aqua satellite (approx. 13:30 PM), for the simulations, it is at 
13 UTC. Fractional cloud cover (defined by COT > 0.3) is indicated in the right upper corner of all 
panels. 

 

5.2 Regional case studies 

In this sub section simulations applied to model output from a regional climate model operated at 
25 km horizontal resolution are compared with Cloud_cci level 3 data (L3U). 

5.2.1 The regional climate model KNMI-RACMO 

The hydrostatic regional climate model (RCM) RACMO2 is originally built from the parameterization 
package of physical processes employed in the ECMWF physics merged with the dynamical kernel of 
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the High Resolution Limited Area Model (HIRLAM; Undén et al., 2002) NWP. RACMO2.3 used in this 
study is based on ECMWF cycle 33r2 (ECMWF-IFS, 2009), which constitutes large overlaps with the 
ECMWF physics of cy36r1 used in EC-EARTH3.2. Its predecessor RACMO2.2 (van Meijgaard et al., 
2012) was to a large extent based on ECMWF physics of cy31r2, also used in the ERA-Interim 
reanalysis (Dee et al., 2011) and EC-EARTH2.3 (based on Hazeleger et al., 2012). Differences 
between RACMO2.3 and 2.2 primarily constitute the substitution of the short wave radiation scheme 
by a rapid radiation transfer module (RRTM; short wave radiation Clough et al., 2005; long wave 
radiation, Mlawer et al., 1997) and the introduction of the independent column approximation (ICA; 
Morcrette et al., 2007) to better represent the effect of clouds on radiation at the sub-grid scale. 
Other physics components include a TKE driven eddy-diffusivity mass-flux scheme (Siebesma et al., 
2007; Lenderink and Holtslag, 2004) for mixing and cloud processes in the boundary layer, a scheme 
for deep convection (originated by Tiedtke, 1989), a prognostic cloud scheme (Tiedtke, 1993; 
Tompkins et al., 2007), the land surface/soil scheme HTESSEL (Balsano et al., 2009). 

In the past five years, RACMO2.2 has been frequently used in transient climate simulations with 
different GCM drivers (EC-EARTH, HadGEM2-ES) in the framework of CORDEX (Giorgi et al., 2009) 
(European scale at 50 and 12km resolution) and in preparation of the KNMI’14 climate scenarios for 
The Netherlands (van den Hurk et al., 2014). 

 

5.2.2 Experimental setup 

Integrations with RACMO in the framework of this study are carried out at 25km horizontal 
resolution and with 40 model levels using a hybrid vertical coordinate. The model domain, 
configured by employing a rotated pole coordinate, roughly encompasses the region between 30oW 
and 50o E, and between 30o and 70o N (see Figure 5-1). The integrations are driven by ERA-Interim 
atmospheric fields at the lateral boundaries and temperature and sea-ice extent at the sea surface. 
Integrations are carried out in hindcast mode (instead of climate mode) implying short-term runs of 
36 hours. In the chosen set up runs are re-initialized daily at 12 UTC from ERA-Interim including the 
land surface state. To avoid effects from spin up, in particular in the cloud fields, the first 12 hours 
of each run are not considered in the further processing. In this way a quasi-continuous long-term 
time series of non-overlapping model output is constructed. The benefit of employing hindcast 
mode rather than climate mode is that the model atmospheric state stays close to the quasi-
observed large-scale flow imposed by ERA-Interim, facilitating the comparison of the simulated 
cloud parameters with those inferred from satellite observations. Multi-level output, including cloud 
parameters like instantaneous cloud fraction, cloud liquid water content and cloud ice content is 
archived in 3-hourly resolved files. 

The direct (or native) model output is subsequently used to drive the cloud simulator. Here the 
Cloud_cci simulator (version 1.3) is utilizied which has been specifically developed in the framework 
of this project (as described in the next sub section 5.3.2). The purpose of applying the cloud 
simulator is to mimic the response of the AVHRR instrument on board the respective NOAA satellites 
in viewing a model atmospheric state instead of a real atmosphere. Settings are chosen such that 
the simulated response is collocating and synchronous to ascending AVHRR nodes, allowing a once-
daily direct comparison with retrievals of observed cloud parameters. 

Prior to comparison, the L3U data retrieved from the NOAA-AVHRR measurements and composited 
from all ascending nodes in daily images on a nominal 5 km spatial resolution have been aggregated 
to 25 km resolution in order to match the model resolution. Observed ice cloud fraction and liquid 
water cloud fraction is calculated from the number of 5 km pixels indicating ice and liquid water 
clouds, respectively, in the designated 25 km cell. The aggregation of remaining cloud parameters 
(ice/liquid water path; ice/liquid water effective particle size, ice/liquid water cloud top height, 
etc.) is carried out accordingly. All cloud parameters are defined as all-sky (rather than cloudy-sky) 
averages. 
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5.2.3 Qualitative comparison for a single month 

Here first results are presented regarding the comparison of direct model output, simulated model 
output, and retrievals. It is focused on a single month, i.e. September 1986, when the AVHRR on 
NOAA-9 was active. 

 

Figure 5-3 Total cloud fraction: native model (left), simulated (middle), retrieval (right) for 
September 1986. The (faintly visible) square rectangle in the right panel indicates the limits of the 
modelling domain. 

 

Figure 5-4 Like Figure 5-3, but for ice cloud fraction. 

 

Figure 5-5 As Figure 5-3 but for liquid water cloud fraction. 

The Figure 5-3 to Figure 5-5 show the monthly mean total cloud fraction (Figure 5-3), the monthly 
mean ice cloud fraction (Figure 5-4), and the monthly mean liquid water cloud fraction (Figure 5-5) 
derived from direct model output (left), after applying the cloud simulator (centre), and the 
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retrieval (right). For total cloud fraction, the simulator and direct model output appear very similar. 
In fact the simulated amount is slightly smaller because the simulator removes all model total cloud 
amounts representing clouds with an optical thickness less than 0.2. The overall spatial structure in 
simulated total cloud fraction resembles that of the retrieval, yet there is a tendency in the model 
to overestimate total cloud fraction over the Atlantic Ocean. On the other hand, for the separate 
cloud phase applying the cloud simulator results in a distinct increase of ice cloud amount at the 
expense of liquid water cloud amount. The reason is that while mixed-phase profiles are abundantly 
present in the direct model output, the simulator labels many of these clouds as pure ice clouds 
once the phase at cloud top is identified as ice. For example, after sub-column decomposition of a 
mixed-phase cloud profile topped by a unity fraction ice cloud layer with optical thickness larger 
than the threshold, the clouds in all sub-columns will be interpreted as ice clouds. 

Evidently, the simulator has a substantial and beneficial effect on the cloud fractions derived from 
the direct model output for both phases, yet the retrieval indicates that ice water cloud amount is 
still underestimated by the model, while liquid water cloud amount is still overestimated, the latter 
in particular over the ocean. 

 

Figure 5-6 As Figure 5-1 but for all-sky ice water path. 

 

Figure 5-7 As Figure 5-1 but for all-sky liquid water path. 

The Figure 5-4 to Figure 5-5 show ice water path (Figure 5-4) and liquid water path in the same 
sequence as for the cloud fraction parameters. For ice water path the simulated amounts 
substantially overestimate the retrieved amounts in a large part of the domain, while the direct 
model ice water path is much smaller than the retrieved amounts, consistent with the ice cloud 
fraction. There are two reasons for the high simulated ice water path values: (i) the large simulated 
ice cloud fraction as discussed before, and (ii) the relatively larger simulated particle effective 
radius, which resembles the (ice) particle effective radius near the top of the clouds, compared to 
the model effective radius, which is on average closer to that of the liquid phase often occurring in 
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the lower part of the clouds. In contrast to ice water path, simulated and native model liquid water 
path values are very similar, which is a compensating effect between simulated liquid water cloud 
fraction being smaller than native model output and simulated cloud droplet effective radius being 
larger than the native model value (not shown). The simulated liquid water path tends to be larger 
than the retrieved values over ocean, but smaller over land. 

 

5.2.4 Qualitative comparison for a single day 

As mentioned before, owing to the experimental setup the large-scale flow in the model 
integrations is very close to the observed state which allows a direct comparison between simulated 
cloud fields and retrieved cloud fields on a daily basis. Bearing in mind one image is a daily 
composite of a sequence of overpasses, it is interesting to see how well large-scale weather 
patterns, in particular low pressure systems and associated frontal bands can be recognized in the 
images in Figure 5-8: 

 

 

 

 

Figure 5-8 Top row: simulated and retrieved ice cloud fraction, and simulated and retrieved ice 
water path (from left to tight), all derived for a single day: 30 September 1986. Middle row: same 
as upper row but for liquid water. Bottom row: simulated and retrieved cloud top height (left two 
panels), and simulated and retrieved cloud top temperature (right two panels). Retrieved 
parameters are inferred from AVHRR-NOAA9 measurements and aggregated to 0.25 degree. 
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In particular, the cyclonic disturbance in the western part of the Mediterranean with abundant ice 
clouds according to the retrievals is nicely captured by the model fields processed with the cloud 
simulator, although the model produces higher and colder cloud tops in this region and a higher ice 
water path than the retrieval indicates. Another feature worth mentioning is the presence of a large 
region in the south-western part of the model domain with warm boundary-layer clouds according to 
the model which is only seen to a limited extent in the retrieved fields. As a more general remark it 
is noted that the retrieved fields look somewhat less coherent than the simulated fields. 

5.2.5 Conclusion and outlook for regional case studies 

The Cloud_cci simulator has successfully been applied to 25 km resolved multi-level cloud fields 
obtained with integration in hindcast mode of the regional climate model RACMO2. Simulated cloud 
fields have been compared with CC4CL L3U-based retrievals, aggregated at 25 km resolution. 
Simulated fields are consistently (much) closer to the retrievals than the original model fields, the 
exception being the ice water path field. It is shown that driving the RCM with information from a 
reanalysis like ERA-Interim, and integrating the model in hindcast mode allows a one-to-one 
comparison on a daily basis. 

This work is still in progress and a quantitative analysis of a comparison for a longer period (3-5 
years) is ongoing. 

 

5.3 Global climate studies with the Cloud_cci simulator 

In this sub section Cloud_cci L3 data is compared with simulations using the Cloud_cci simulator 
applied to model output from a global climate model operated at 125km and 60km horizontal 
resolutions. 

5.3.1 The EC-Earth model and experimental set-up 

The climate model used in this study is the global coupled climate model EC-Earth. The Integrated 
Forecast System (IFS) of the European Centre for Medium Range Weather Forecasts (ECMWF) 
constitutes the atmosphere component, which also includes the HTESSEL land-surface model 
(Balsamo et al., 2009; Boussetta et al., 2013). Here, two model versions are used, EC-Earth2.3 
(Hazeleger et al., 2012) and EC-Earth3.2beta (Bousetta et al 2016). Version 2.3 is based on IFS cycle 
31r1, but also includes some improvements from later cycles. The most important improvements are 
the convection scheme by Bechtold et al. (2008), the land surface scheme H-TESSEL (Balsamo et al. 
2009), and a new snow scheme (Dutra et al. 2010). EC-Earth 3.2beta is based on CY36R4 release of 
the IFS in addition to few important physical adjustments mainly related to the non-orographic 
gravity wave drag parameterization (latitudinal and resolution dependency of the launch momentum 
flux) and the diurnal cycle of convection (Bechtold et al. 2014).  

To reproduce present day climate variability the model was run with prescribed observed SST and 
Sea-Ice using ERA-Interim monthly data as the lower boundary condition. The two model versions 
were run for the time period 1979-2015 with 125km horizontal resolution and 60 vertical levels and 
60km with 91 vertical levels, respectively. The simulator will be installed in the model but for these 
experiments the full model vertical fields were stored and the model parametrisation formula for 
Reff and overlap were used to reproduce the in-model variables needed for the simulator as 
described in the next sub-section 5.3.2.  

5.3.2 The Cloud_cci simulator 

The Cloud_cci simulator emulates the Cloud_cci observational cloud dataset using atmospheric 
variables from model output. One main component of the satellite simulator is to create sub-
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columns in order to make smaller grids, more comparable with the satellite measurement surface 
“footprint”, and to ensure the models cloud properties can be properly represented according to 
the models’ cloud overlap assumptions. Neglecting this step and only mapping the grid-average 
cloud properties to the sub column causes a miss-representation of the model atmosphere, and 
make it very hard to take the satellite cloud sensitivity into account in a meaningful way. A “cloud 
sensitivity”-filter is applied to the sub-columns so that they are comparable to observations. This is 
done by treating all sub-columns that have an optical depth less the 0.2 as cloud free. For 
consistency, the simulator uses the same lookup tables used in CC4CL to translate layer effective 
radius, optical depth, and solar zenith angle to single scattering albedo, effective radius and water 
path. 

The simulator takes into account the solar zenith angle to ensure that retrievals only during daytime 
conditions are simulated. The simulator samples the model atmosphere to be consistent with the 
local measurement time of the observations. Since each satellite has different equatorial overpass 
times and most “drift” over time (in terms of equatorial overpass time), the simulator makes use of 
look up tables of monthly average overpass times for each satellite to ensure a temporal sampling 
consistent with observations. The simulator calculates a variable number of sub-columns, which 
decrease in number as a function of absolute latitude, in order to keep the “footprint area” 
consistent with observations. The time the simulator takes depends heavily on the settings and the 
resolution of the model. Important factors are 

• The model resolution 

• The satellite overpass time, which affects the number if illuminated grids cells to work on (note1) 

• The assumed footprint size, which directly affects the number of sub-columns calculated per 
model grid. 

• Whether or not to interpolate sampled model data so that longitude has exactly the same 
equatorial overpass time as that of the satellite. The interpolating between time steps adds up to 
10% extra computational time, but interpolation will not be needed if the simulator is integrated 
into the model via COSP. 

Table 5-1 shows how long it takes to simulate one day of model data (4 time steps), timed using 
Fortran’s CPU TIME(), which does not include IO. 

The Cloud_cci simulator produces daily NETCDF files containing the following output on the native 
model resolution: 

• cloud fraction, (ice, liquid, all) 

• optical depth (ice, liquid, all) 

• cloud albedo 

• cloud top height, pressure, temperature 

• corrected cloud top height, pressure, temperature 

• cloud effective radius (ice, liquid) 

• cloud water path (ice, liquid) 

• cloud top pressure–cloud optical thickness 2D histograms 

Notes: 

1: For example in 2007, noaa18 has an EOT around 13:30, and noaa17 has an EOT of around 17:30, 
and therefore noaa18 will take considerably longer to run in this year 

2: These times are dependent on the computer environment and may differ if run in other 
environments. 
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Table 5-1: CPU time spent simulating 4 time steps. 

Model resolution Footprint (#grids at equator) Time [s] 

320x160x61 25 km (25) 14 

320x160x61 5 km (617) 176 

512x256x91 25 km (10) 44 

512x256x91 5 km (242) 342 

 

5.3.3 Results for global climate studies with the cloud simulator 

To demonstrate the simulator, EC Earth-based Cloud_cci simulations are compared to the Cloud_cci 
dataset. Figure 5-9 shows the impact the simulators have on the comparison to observations. Based 
on data from 1982, the top row in this figure compares the model cloud cover (TCC) directly to the 
observations without any temporal sampling or steps to take satellite measurement sensitivity to 
clouds into account. The second row shows when the model is sampled so that the local time in the 
model matches the satellite equatorial overpass time. The third row shows the comparison of EC 
Earth to Cloud_cci using the full Cloud_cci simulator. Comparing row 1 to row 3 it is clear that the 
simulated cloud fraction is much closer to the observations compared to directly comparing the 
‘native’ model cloud fraction to observations. The difference between row 1 and 2 demonstrates 
that sampling the model by local time consistent with observations, has a strong impact too. In fact, 
judging from these results, about half of difference between the simulated cloud fraction and the 
total cloud cover directly from the model, comes from correctly temporal sampling alone. 
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Figure 5-9 Cloud fraction compared to observations. The top row shows the cloud cover directly 
from the model (TCC) (left) and model TCC minus Cloud_cci cloud cover (right). The second row 
shows the same as above, but using model data sampled to match the satellite overpass time. The 
third row shows the full Cloud_cci simulator (left) and the difference to observations (right). The 
equatorial overpass time of the satellite using in 1982, NOAA-7, is close to 15:00 local time. The 
values are the average cloud fraction in 1982. 

 

Figure 5-10 Left: Zonal mean cloud fraction derived from the Cloud_cci simulator based on an EC 
Earth model atmosphere and the Cloud_cci climatology using AVHRR afternoon (PM) data. The 
values are the average retrievals from 1982–2012. Right: The spatial distribution of the difference 
in cloud fraction between EC Earth and Cloud_cci. The values are the average retrievals from 1982–
2012. 
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Figure 5-10 (left) shows using zonal averages that EC Earth has consistently less cloud cover than 
indicated by observations, although the general patterns appear quite similar. However, the spatial 
distribution of the difference in cloud amount shown in Figure 5-10 (right part) tells more of a story, 
for instance that EC Earth appears to have considerably more clouds over continental land, whilst 
the reverse is true over Ocean.  

In terms of cloud effective radius, the differences are substantial. Figure 5-11 shows that there is a 
general and large offset between EC Earth and Cloud_cci in terms of effective radius for ice clouds, 
and disturbingly a somewhat opposite behaviour in some regions. For instance the Sahara is a local 
minimum in the observations, whilst the opposite relationship exists at high latitudes. These results 
are preliminary and need further investigation into the causes, and fidelity of the results. Figure 
5-11 shows the effective radius of liquid clouds. Here the differences are also large, and especially 
due to the very distinct land-sea relationship in the model effective radius. This difference is 
probably explained by the parameterization used for the model effective radius which depends 
heavily on the land sea mask. However, the differences can also be due to problems for Cloud_cci 
retrieved effective radius during daytime, since thin cirrus clouds overlying low-level clouds could 
be misidentified as low-level cloud.  

 

 

Figure 5-11 Effective radius for ice clouds. The values are the average retrievals from 1982–2012. 
Left: Cloud_cci simulator based on an EC Earth model atmosphere. Right: Cloud_cci climatology 
using AVHRR afternoon (PM) data. 

 

 

Figure 5-12 As Figure 5-11, but for Effective radius for liquid clouds.  
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The cloud albedo shown in Figure 5-13 shows some common patterns between the model and 
observations, such as a decreased cloud albedo over China and Northern Europe, yet the datasets 
completely disagree at the high latitudes and desert regions. These differences naturally require 
more investigation than presented here. 

 

 

 

Figure 5-13 As Figure 5-11, but for Cloud albedo.  

 

The corrected Cloud Top Height (CTH) is simulated by finding the altitude where the model cloud 
exceeds a visible optical depth of 0.3 integrated from the model cloud top, and the “non-corrected” 
CTH is found at a cloud optical depth is 1.0 from the model cloud top. The “non-corrected” cloud 
top is actually exactly the same simulation as made by the MODIS simulator in COSP. The corrected 
CTH is shown in Figure 5-14, and overall the model generally underestimates the CTH compared to 
Cloud_cci. Notably, the cloud top is considerably higher in the central Pacific in the observations 
than in the model. Very large differences are also seen in the high altitude regions of the Tibetan 
plateau, Greenland, and Antarctica. However, over a large region in North Africa and Arabia the 
clouds in the model are instead higher to much higher in EC Earth compared to the Cloud_cci 
retrievals. 
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Figure 5-14 Cloud Top Height-corrected. The values are the average retrievals from 1982-2012. 
The top left panel shows the simulated corrected CTH based on the EC Earth atmosphere, the top 
right panel shows the corrected CTH retrievals from Cloud_cci, and the bottom panel shows the 
difference EC Earth – Cloud_cci. 

 

5.3.4 Conclusions for global climate studies with the cloud simulator 

A Cloud_cci satellite simulator has been developed that can be run for future CMIP simulations. It 
can be used to study many cloud variables in addition to the total cloud cover e.g. cloud top 
pressure, optical thickness, effective radius, albedo and liquid/ice water path. 
 
The main mechanisms behind bringing the cloudiness from the observations and climate model 
closer together are due to a  correct temporal sampling of the model data and the removal of thin 
clouds from the model. Using one year of data, 1982, the impact of the simulator on cloudiness 
comparisons is shown by contrasting observations-to-model output directly, compared to using the 
cloud_cci simulator inbetween. For this year at least, the difference in cloudiness between EC Earth 
and Cloud_cci reduces considerably, by up to 20%  when using the simuator.  
 
Overall for the period of 1982—2012, EC Earth has 10—20% less clouds at mid-latitudes over Ocean, 
and higher total cloud cover over land in general. The highest  values are seen in Eastern Africa, 
Eastern South America, Eastern Australia, and Southern Asia. For the cloud top height variables, EC 
Earth appears to have lower cloud tops in the Tropics compared to Cloud_cci, but much higher 
clouds over the Sahara. Outside the tropics, except for over ice-capped regions, the EC Earth’s 
cloudiness matches the observations fairly closely.  
 
In terms of the microphysical variables, effective radius, water path, and cloud albedo, the 
difference between the model and observations is large. It is very difficult to attribute the 
differences to one or the other, thus more in depth studies are needed to understand the origins of 
these differences. 
 
The Cloud_cci simulator is shown to be a valuable tool for model inter-comparisons, and will be 
included in COSP version 2 so that other climate models can have easier access to Cloud_cci’s 
satellite simulator. 
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5.4 CMIP5 Global climate studies 

To ensure the Cloud_cci data will be used by a larger community the data have been included into 
the Earth System Model Evaluation Tool (ESMValTool, Eyring et al., 2016), which is a community 
diagnostics and performance metrics tool for the systematic evaluation of Earth system models 
(ESMs). ESMvaltool is used for routine evaluation the Coupled Model Intercomparions Project (CMIP 
ref) models. Here CMIP5 models are compared with Cloud_cci and other satellite data sets (Lauer et 
al., 2017). 

5.4.1 The CMIP5 models 

In this study output from 24 global climate models is used that participated in CMIP5 (Taylor et al. 
2012). The model data were obtained from the World Climate Research Programme’s (WCRP) CMIP5 
data archive made available through the Earth System Grid Federation. The concentration driven 
CMIP5 historical simulations have been analyzed which are available until 2005. For the time period 
from 2005 to 2014 results have been used from simulations extended in time with forcing under the 
Representative Concentration Pathways (RCP) 4.5. RCP4.5 is a scenario applied within CMIP5 
prescribing future greenhouse gas concentrations and resulting in a radiative forcing of 4.5 W m-2 in 
the year 2100 relative to pre-industrial values (Clarke et al., 2007).  

5.4.2 The Cloud_cci data  

Monthly mean cloud fraction data (inferred from Level 3C data product with 0.5° resolution on a 
latitude-longitude grid) have been used for comparison with the CMIP5 model results. Total Cloud 
fraction (clt) represents the monthly summary of the results of Community Cloud retrieval for 
CLimate (CC4CL) cloud detection scheme (Sus et al., 2017; McGarragh et al., 2017). The monthly 
mean cloud detection uncertainty, cltu, is also inferred from Level 3C products. The cloud mask 
uncertainty is based on hit rate scores against measurements from the Cloud-Aerosol Lidar with 
Orthogonal Polarization,(CALIOP). All pixel level uncertainties are propagated in a mathematically 
consistent way into the Level 3C products (Stengel et al., 2017). 

As shown in the PVIRv2, CC4CL cloud detection results have been validated against CALIOP space-
based lidar measurements, with a global Hanssen-Kuiper skill score of 0.66 and a global hit rate of 
81 % demonstrating the high quality of the cloud detection in the AVHRR-PM v2.0 data set. It needs 
to be noted, that the Cloud_cci AVHRR-PM data set has a few limitations of which particularly the 
underrepresentation of optically very thin clouds (with optical thicknesses of below 0.15) and the 
sparse temporal sampling (twice a day for non-polar regions) is of relevance when using this data set 
for model evaluation. Particularly difficult conditions for cloud detection are polar night periods, 
for which the detection scores decrease significantly in the current version of the data set. 
Furthermore, the monthly cloud fraction data and the corresponding uncertainties of the Cloud_cci 
AVHRR-PM data set used in this study have not undergone any further processing such as satellite 
drift correction. 

5.4.3 Results of CMIP5 global climate studies 

The ESMvaltool basic statistics (mean, bias and variability) are used to compare Cloud_cci AVHRR-PM 
(CCI hereafter) total cloud cover to CMIP5 models and to other AVHRR satellite-based cloud datasets 
PATMOS-x (Heidinger et al., 2014) and CLARA-A2 (Karlsson et al., 2013) and the MODIS cloud dataset 
(Platnick et al., 2003). The 1982-2014 annual mean cloud cover for all CMIP5 models, ERA-Interim 
and satellite data sets are shown in Figure 5-15. The cloudiness of most CMIP5 models compare well 
with CCI clt and the alternative reference datasets on a global scale, but there are geographical 
differences. The CMIP5 models deviating mostly CCSM4, CESM1-BGC, HadCM3, MIROC-ESM and 
MIROC-ESM-CHEM, underestimate cloud amount on a global scale. The CMIP5 model mean bias 
compared to CCI (Figure 5-16) show an underestimation of cloud amount especially for the 
subtropical stratocumulus regions off the west coasts of North and South America as well as off the 
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coast of Australia as known from many previous studies (e.g. Nam et al 2012). In contrast, the CMIP5 
model mean and most individual models overestimate cloud amounts by 20 % over the sub-tropical 
high pressure cloud minima regions. These biases remain but are smaller (10-15 %) if the models 
instead are compared to PATMOS-x and CLARA-A2, since their cloud cover are larger than for CCI for 
these regions. 
 
  

 

Figure 5-15 The top 6th rows show all the 24 CMIP5 model mean clt, the 7th row show ERAINT, 
CLARA-A2, PATMOS-X clt, and CCI cltu and the bottom row show CCI clt and the 24 model clt mean 
for the years 1982-2014. The CCI uncertainty is shown in second last bottom row, 4th column.  
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Figure 5-16 shows CCI total cloud cover in boreal winter and summer and the associated 
uncertainties. The inherent AVHRR difficulties in detecting clouds for polar night and high altitude 
snow covered areas (North Canada, North East Asia and Himalayas) give CCI uncertainties of more 
than 20 % for these regions. Comparing CCI zonal mean cloudiness to other AVHRR cloud datasets 
PATMOS-x and CLARA-A2 and the MODIS cloud dataset also show the largest observational spread 
(40-50 %) for high latitudes in the winter hemisphere. The zonal uncertainty in Figure 5-16 is a 
simple area weighted average, which overestimate the uncertainty. How the zonal mean 
uncertainties should be calculated as well as how L3 uncertainty is derived from L2 uncertainty 
warrant further work in CCI+ also for CCI ECV's in general. The largest model spread (60 %) occurs 
for high latitudes in polar winter, where also the observational datasets have their largest 
uncertainties as seen in the zonal mean plots in Figure 5-16. For these cold conditions the amount of 
cloud condensate is small and the model clouds are often thinner than the satellites can detect, 
using a simulator removes part of these model clouds. The CCI uncertainties are also high with up to 
20 % for the subtropical high pressure dry zones.  
 

 

Figure 5-16 Maps of the multi-year seasonal mean of total cloud cover and 1-sigma uncertainty 
from ESA CCI cloud for a) December-January-February (DJF) and b) June-July-August (JJA) 1982-
2014. The figure also shows the differences between the ESA CCI data and the CMIP5 multi-model 
mean as well as zonal means. The zonal mean panels show averages from ESA CCI (red), PATMOS-x 
(blue), CLARA-A2 (cyan), MODIS (green), ERA-Interim (orange), and the CMIP5 multi-model mean 
(black). The individual CMIP5 models are shown as thin grey lines and the observational 
uncertainties of the ESA CCI data (±1-sigma) are shaded in light red. The MODIS data are only 
available for the years 2003-2014. 

 

Figure 5-17 shows the interannual variability for the satellite datasets and the CMIP5 model mean 
and for ERA-Interim. All the AVHRR datasets have their largest variability (30-40%) for the dry 
tropical high pressure regions over the oceans, over North Africa, south Africa and Australia, 
reflecting the annual shift of the ITCZ and the El Niño/ Southern Oscillation (ENSO). MODIS tropical 
Pacific Ocean variability is smaller than for the AVHRR datasets, since MODIS data is available only 
for 2003-2014, years that do not include the major El Nino's in the 1980 and 1990'ties, which 
illustrates the importance of using long term observational records when evaluating ENSO. CCI has 
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larger variability over the tropical Pacific Ocean than the other AVHRR satellite datasets. Time 
series (Figure 5-18) reveal that Cloud_cci clt is of similar magnitude to PATMOS-x and CLARA-A2 for 
El Niño years when the cloud cover is maximum, while CCI has less cloud amount (5-15%) for La Niña 
years when the cloud cover has its minima, resulting in larger CCI variability which needs further 
understanding. PATMOS-x has less variability and higher cloud amount over Antarctic than CCI and 
CLARA-A2.  
 

 

Figure 5-17 The top 6th rows show all the 24 CMIP5 model clt interannual variability, the 7th row 
show ERAINT, CLARA-A2, PATMOS variability, and CCI cltu and the bottom row show CCI clt and the 
24 model mean. 
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Figure 5-18 The time series of clt for the Nino3.4 area (5ºS-5ºN, 190ºE-240ºE) for ERAINT (black), 
PATMOS-X (cyan), CLARA-A2 (blue), MODIS (green), CCI clt (red) and CCI cltu (red hatched). 

 
The CMIP5 model means show less variability than the observations, especially over the sub-tropical 
high pressure regions, where most of the individual CMIP5 models overestimate the total cloud 
cover. Contrary the models that underestimate clt for the dry regions (CCSM4, CESM1-BGC, HadCM3, 
MIROC-ESM, MIROC-ESM-CHEM) have larger variability. The tropical high pressure regions also show 
the largest difference between Cloud_cci clt compared to other AVHRR datasets (Figure 5-19). 
 

  

Figure 5-19 The annual clt difference between Cloud_cci and CLARA (left side) and between 
Cloud_cci  and PATMOS (right side). 

5.4.4 Conclusions of CMIP5 global climate studies 

The Cloud_cci AVHRR-PM total cloud cover compares well with other existing long term AVHRR cloud 
datasets. The Cloud_cci pixel based uncertainties show the user which areas should be carefully 
treated, e.g. polar and high altitude snow covered regions where the passive satellites have 
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problems detecting clouds. Cloud_cci has lower cloud minima than the other AVHRR datasets for the 
tropical Pacific, which should be investigated. The other Cloud_cci datasets with shorter time 
records, MODIS, ATSR-2, AATSR and MERIS can be used for process studies and for narrowing the 
observational uncertainties. The CMIP5 models cloud cover show typical error patterns compared to 
CCI and the other satellite datasets, underestimating clouds in the stratocumulus regions and 
overestimating clouds in the subtropical dry regions. More detailed analysis of the individual models 
and the interaction with radiation are needed to understand these biases. 
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6. Analysis of tropical cloud properties 

In this section we report and discuss the response of cloud properties to changes in atmospheric 
water vaour and sea surface temperature in the Tropics. 
 

6.1 Background 

It is well known that total columnar water vapour (TCWV) over ice free ocean shows a quantitatively 
positive feedback to the changes in sea surface temperature (SST) (e.g. Stephens, 1990). This 
response follows well theoretical considerations. 

In contrast to the SST-TCWV link, the relation between TCWV and cloud properties is, due to the 
variety of cloud processes, less obvious. One common hypothesis is that moist atmospheres have 
more and deeper clouds while dry atmospheres have fewer and thinner clouds. However, due to the 
complexity of the development of clouds in different dynamical regimes this hypothesis is difficult 
to be assessed. 

For an investigation of the TCWV-cloud relation on global scales satellite measurements are 
exclusively suited due to the near-global coverage of related remote sensing applications. A recent 
study of Forsythe et al. (2012) used the TCWV product of NOAA based on blending of different 
sources and related the TCWV anomalies to vertical occurrence profiles of CloudSat-CALIPSO. For 
the three investigated regions they found different relations between TCWV and clouds depending 
on cloud type, season and region. 

Besides the Forsythe et al. (2012) study, the TCWV – clouds relation has only been investigated to a 
limited extent in the past. One reason for that is the unavailability of global, long-term and high-
quality cloud property datasets which are stable enough for this type of analysis. This topic, 
however, is very important in particular in the light of the found, varying trends over ocean (Figure 
3-1), which corresponds to changes in SST. 
 

6.2 Data used 

6.2.1 Observations 

In this study we used the Cloud_cci AVHRR-PM datasets (See Section 1.2), i.e. the cloud fraction and 
high cloud fraction. TCWV data is taken from the from HOAPS dataset (Schröder et al., 2013) which 
was be procured from EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF). 
HOAPS data also contain observational datasets of SST. 

6.2.2 Models 

Enhancing the link to the climate modelling and reanalysis community, ERA-Interim fields of clouds, 
water vapour and SST are used. In terms of cloud properties, cloud fraction and high cloud fraction 
were used which were generated using the simplistic simulator documented in Section 4.2. It needs 
to be noted that for ERA-Interim water vapour and SST significant contributions from observations 
are assimilated. On the other hand, no direct cloud observations is assimilated, making the ERA-
Interim clouds being based on model diagnostics exclusively. 

6.3 Methodology 

For all datasets a common period was defined 1988-2008. Monthly mean properties were used 
exclusively and  all data over land were removed. All data fields were brought onto a common 
latitude/longitude grid with 1°x1° resolution. The tropical area was defined to be within 30°S to 
30°N. 
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6.4 Results 

6.4.1 Trends in the Tropics 

Figure 6-1 shows the linear trends of SST and TCWV for the tropical ocean for 1988 – 2008 from both 
obervations and ERA-Interim. Generally, very similar patterns are found between the observation 
and ERA-Interim, also reflecting the assimilated satellite information in ERA-Interim. Although, the 
observational datasets have a tendency to more positive trends. Quite some agreement is also found 
between the spatial patterns of SST trends and TCWV trends in both the observation and ERA-
Interim highlighting the natural connection that higher SST values lead to higher TCWV in many 
regions cases. However, for some regions TCWV and SST trends have different signs. Although with 
relatively small trend values. 

 

Sea surface temperature 

 

 

 

Total column water vapour 

 

 

 

Figure 6-1 Maps of decadal trends of sea surface temperature (SST) and total column water vapour 
(TCWV) taken from HOAPS (SST/TCWV) and ERA-Interim (eSST and eTCWV). Figure from Stengel et 
al. (2017b). 

 

Figure 6-2 shows the trends for total cloud fraction and for fraction of high clouds for Cloud_cci and 
ERA-Interim. Unlike TCWV and SST, the ERA-Interim cloud information comes excluvively from 
model diagnostics and not from assimilation of clouds observations. For total cloud fraction, both 
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regions with agreement and disagreement are found between model and observations. Looking at 
the trend of the fraction of high clouds, a surprisingly good agreement is found. Some spatially 
limited regions are found with diffferences, e.g. near the coast of South America, where ERA-
Interim exhibits a large positive trend in fraction of high clouds, which is not seen in Cloud_cci. For 
more detailed comparisons, one needs to consider maps of the significance of these trends or, look 
more closely into the trends, as in the next section. 

In the next section the Tropics are broken down into three selected regions where the temporal 
variability of SST, TCWV and CFChigh and the correlation among them are investigated. 

 

Total cloud fraction 

 

 
 

Fraction of high clouds 

 

 

 

Figure 6-2 Maps of decadal trends of total cloud fraxtion (CFC) and high cloud fraction (CFChigh) 
taken from Cloud_cci (CFC, CFChigh) and ERA-Interim (eCFC, eCFChigh). Figure from Stengel et al. 
(2017b). 

 

6.4.2 Regional studies 

Figure 6-3 shows the location of the three selected regions under consideration in this section. 
Region 1 representes the warm pool region around Indonesia, Region 2 a region in the centre Pacific 
also offen refered to as ENSO region, and Region 3 - a small Pacific region off the west coast of 
Middle America. All three regions are characterized by a more or less significant trend in fraction of 
high clouds. 
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Figure 6-3 Repeating map of decadal trends of Cloud_cci high cloud fraction (CFChigh) from Figure 
6-2 now overlaid with locations of the three regions of interest. Figure from Stengel et al. (2017b). 

 

Region 1

 
Region 2

 
Region 3 

 

Figure 6-4 Left column : Time series of fraction of Cloud_cci high clouds (CFC high), HOAPS TCWV 
and HOAPS SST for regions 1 to 3. Right column: As left column but for ERA-Interim data. Figure 
from Stengel et al. (2017b). 

 

Figure 6-4 reports the time series of monthly SST, TCWV and CFChigh anomalies for the three tropical 
regions under considerations for both observations and reanalysis data. For all regions and data 
sources we find a strong correlation between the SST and TCWV anomalies, but also between the 
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TCWV and CFChigh. The latter are also reported in Table 6-1. While the tropical trend maps (Figures 
Figure 6-1 and Figure 6-2) already indicated that there is a lot in common between the observations 
and ERA-Interim, the time series plots confirm this also for the monthly anomalies in all three 
regions. In addition, the signs of the trends of TCWV and CFChigh agree for observations and ERA-
Interim: with positive trends for TCWV and CFChigh in Region 1 and negative trend in Region 2, 
fostering the indication that more water vapour also leads to more high clouds on average. The only 
aspect in which this is not supported are ERA-Interim trends of TCWV and CFChigh, which are of  
opposite sign. It remains to be investigated what the main reasons for the findings are.  

 

Table 6-1 Slope of linear trend per year for monthly fraction of high clouds (CFChigh) and total 
column water vapour (TCWV) as well as the correlation betwwen the monthly data of both soruce 
for the period 1888 and 2008 for three selected tropical regionsindicated in Figure 6-3. Table from 
Stengel et al. (2017b). 

Region1 CFC
high

 slope [%/year] WV slope [%/year] Correlation CFC
high

/WV 

Region1 

Cloud_cci/HOAPS 0.15 0.14 0.7362 

ERA-Interim 0.11 0.08 0.7324 

Region2 

Cloud_cci/HOAPS -0.20 -0.04 0.8980 

ERA-Interim -0.21 -0.08 0.8984 

Region3 

Cloud_cci/HOAPS 0.08 0.09 0.7144 

ERA-Interim -0.05 0.03 0.7136 
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7. Conclusions 

Here the main findings from the different assessments are summarized, providing examples of 
application and a basis for the ready-to-use of the Cloud_cci data sets. In addition to the Product 
and Validation report this document provides remarks on issues that can be investigated in further 
re-processing events or projects.  

ESA Cloud_cci cloud retrievals are based on an Optimal Estimation technique and use similar 
instruments (AVHRR, MODIS and AATSR), with spectral information ranging from visible to infrared. 
Key characteristics of the Cloud_cci cloud datasets are as follows: 

 Spectral consistency of derived parameters, which is achieved by an optimal estimation (OE) 
approach based on fitting a physically consistent cloud model to satellite observations 
simultaneously from the visible to the mid-infrared. 

 Uncertainty characterization, which is inferred from OE theory on pixel level, physically 
consistent (1) with the uncertainties of the input data (e.g. measurements, a-priori) and (2) 
among the retrieved variables. These pixel-level uncertainties are further propagated into 
the monthly products using a developed mathematical framework. 

 Potential to combine AVHRR-heritage datasets to achieve increased temporal resolution by 
including multiple polar-orbiting satellite instruments, which also allows for cloud property 
histograms on 0.5° resolution due to highly increased sampling rate. 

 Comprehensive assessment and documentation of the retrieval schemes and the derived 
cloud property datasets including the exploitation of applicability for evaluation of climate 
models and reanalyses. 

Based on the comparison with the GEWEX Cloud Assessment data base it can be summarized that 
the total cloud amount (0.68±0.03) compares well to the reference datasets from other passive 
remote sensing cloud datasets, with a similar good performance of Cloud_cci AVHRR and MODIS.  

Cloud amount of AATSR is slightly lower (0.66), and the one of MERIS-AATSR (only during tay-time 
available) is underestimated (0.60). The data show a good coherence of latitudinal variation and the 
seasonal cycle, except for MERIS-AATSR. Overall it can be observed that total cloud amount is 
underestimated over parts of the ocean, especially for AATSR and MERIS-AATSR.  

Furthermore, the comparison shows that the identification of high-level clouds is worse during 
daytime than during night-time. During daytime the amount of high-level clouds, in particular over 
land, is underestimated for all Cloud_cci datasets. This might be explained by the fact that VIS 
information in combination with spectral IR information in the Optimal Estimation retrieval method 
leads to a misidentification in case of multi-level clouds. During night-time, when only spectral IR 
information is available, Cloud_cci relative high-level cloud amounts compare well to IR sounders, 
though total cloud amount seems to be slightly underestimated mostly by missing low-level clouds.  

The vertical distribution of cloud pressure which is supposed to be bimodal in the tropics with peaks 
around 250 and 950 hPa, reveal that the height of low-level clouds from the Cloud_CCI data sets 
seems to be slightly overestimated. The peak for high-level clouds, which is located at the right 
height, is smaller than for other other datasets during daytime / night-time.  

To overcome this situation and to improve the performance for high-level clouds, one path might be 
to adapt the OE method using daytime spectral information to the one using night-time spectral 
information (which excludes VIS information). By applying both methods during daytime, keeping 
the VIS information for the cloud mask, one could even get information of multi-layer cloud 
situations from a comparison of VIS optical depth to IR emissivity. 
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Cloud_cci data sets have been applied in the evaluation of (a) the ERA-Interim Reanalyses, (b) 
regional climate models, (c) EC-Earth global climate model and (d) for CMIP-5 models. 

Based on the comparisons on the regional scale, the use and application of the Cloud-CCI simulator 
is essential in setting up a direct comparison between model predicted cloud parameters and 
Cloud_cci based retrievals. Without the simulator, quantitative comparison of model cloud liquid 
water and cloud ice parameters with the corresponding values inferred from the retrievals is 
meaningless. An application of the Cloud-CCI simulator to 25-km resolved multi-level cloud fields 
obtained with a one month integration in hindcast mode of the regional climate model RACMO2 
shows that the simulated fields are consistently (much) closer to the Cloud_cci AVHRR cloud 
property retrievals than the original model fields, the exception being the ice water path field. 

When the regional atmospheric (climate) model is driven by large-scale (re-)analyses at the lateral 
boundaries and operated in quasi-NWP mode, a direct comparison between simulated model output 
and retrievals is feasible on the basis of a daily composite, allowing the evaluation of model cloud 
parameters corresponding to individual weather systems. First results indicates that the model 
produces higher and colder cloud tops and a higher ice water path than the retrieval indicates. 

The conducted comparison yield that the possibility to consider the provided uncertainty for cloud 
mask and other variables helps to decide which cloud types are more important for model 
evaluation and which should be treated with care. Here, based on the comparison with the global 
climate model, polar regions as well as high altitude snow covered regions became visible where 
passive instrument satellites have in general problems detecting clouds. However, to optimize the 
use of the Cloud_cci uncertainties it would be useful to have more guidance from the data providers 
of how average uncertainties should be calculated and compared to model estimates and to have 
insight in the derivation of L3 uncertainties from L2 data.  

Also the comparisons show that Cloud_cci has lower cloud minima than the other AVHRR datasets 
for the tropical Pacific, which need further investigation. This could be related to underestimation 
of low level clouds as found in the GEWEX study. 
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8.  Acronyms 

Acronym Explanation 

1M One-moment bulk cloud-microphysics parameterization 

2M  Two-moment bulk cloud-microphysics 

AATSR Advanced Along Track Scanning Radiometer 

AIRS Atmospheric Infrared Sounder 

ANN Artificial Neural Network 

ATSR Along-Track Scanning Radiometer 

AVHRR Advanced Very High Resolution Radiometer 

bcRMSE Bias-corrected Root Mean Square Error 

BRDF Bi-directional Reflectance Distribution Function 

CA Cloud Amount, Cloud Assessment (depends on the context) 

CAH High Cloud Amount 

CAHR Relative High Cloud Amount 

CAL Low Cloud Amount 

CALIPSO Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 

CALR Relative Low Cloud Amount 

CAM Middle Cloud Amount 

CAMR Relative Middle Cloud Amount 

CC4CL Community optimal estimation Cloud retrieval For CLimate 

CC CM SAF cloud, albedo and radiation dataset –AVHRR based Version 1 

CCI Climate Change Initiative 

CDO Climate Data Operators  

CEM Cloud Emissivity  

CIWP Cloud Ice Water Path 

CLWP Cloud Liquid Water Path 

CM Cloud Mask 

COD Cloud Optical Depth 

CODI Cloud Optical Depth for Ice clouds 

CODW Cloud Optical Depth for Water clouds 

COT Cloud Optical Thickness (equivalent to COD, Cloud Optical Depth) 

CP Cloud Pressure 

CPS Cloud Particle Size 

CRE Effective Radius of Cloud particles 

CT Cloud top temperature 
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Acronym Explanation 

CTH Cloud-Top Height 

CTP Cloud-Top Pressure (equivalent to CP, Cloud Pressure) 

CWP Cloud Water Path  

CZ Cloud Height 

DCOMP Daytime Cloud Optical and Microphysical Properties algorithm 

ECMWF European Centre for Medium-Range Weather Forecasts 

EnviSat Environmental Satellite 

ERA ECMWF Re-analysis 

ESA European Space Agency 

FAME-C Freie Universität Berlin AATSR-MERIS Cloud retrieval algorithm 

GCM General Circulation Model 

GDAP GEWEX Data and Assessment Panel 

GEWEX Global Energy and Water EXchanges project 

GMAO Global Modeling and Assimilation Office 

HIRS High resolution Infrared Radiation Sounder 

HTESSEL Hydrology-TESSEL 

IFS Integrated Forecast System 

IR Infrared 

ISCCP International Satellite Cloud Climatology Project  

ITCZ Intertropical Convergence Zone 

IWP Ice Water Path 

LMD Laboratory of Dynamic Meteorology 

LUT Look-Up Table 

LWP Liquid Water Path 

LWRTM Longwave Radiative Transfer Model 

MBE Mean bias error 

MERIS Medium Resolution Imaging Spectrometer 

MISR Multi-angle Imaging SpectroRadiometer 

MODIS Moderate Resolution Imaging Spectroradiometer 

MOMO Matrix Operator Model 

NCEP National Centers for Environmental Prediction 

NEMO Nucleus for European Modelling of the Ocean model 

NH Northern Hemisphere 

NIR Near Infrared 

NOAA National Oceanic and Atmospheric Administration 
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Acronym Explanation 

NWP Numerical Weather Prediction 

OASIS Coupling software, https://verc.enes.org/oasis 

ORAC Oxford RAL retrieval of Aerosol and Cloud 

PARASOL Polarization and Anisotropy of Reflectances for Atmospheric science coupled with 
Observations from a Lidar 

PATMOS-x, 
PATMOSX 

Pathfinder Atmospheres Extended 

PDF Probability density function 

POLDER POLarization and Directionality of the Earth’s Reflectances 

REF Effective radius 

RMSE Root-Mean-Square Error 

RTM Radiative Transfer Model 

RTTOV Radiative Transfer for TOVS 

SH Southern Hemisphere 

SMHI Swedish Meteorological and Hydrological Institute 

SNHT Standard Normal Homogeneity Test 

SST Sea Surface Temperature 

STDD STanDard Deviation 

SWIR Short-Wave Infrared 

SWRTM Shortwave Radiative Transfer Model 

TCC Total Cloud Cover 

TESSEL Tiled ECMWF Scheme for Surface Exchanges over Land 

TOA Top of atmosphere 

TOC Top of cloud 

TOVS TIROS Operational Vertical Sounder 

VIS Visible 
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Annex A 

In this section we provide a comparison between the output of the simplistic satellite simulator 
(SIMFERA, see Section 4.2) and the Cloud_cci satellite simulator as described in Section 5.3.2. For 
this purpose both simulator were applied to the same model data: EC-Earth (Section 5.3.1) output 
for January 2007. A brief summary on the approach of both simulators (for each core cloud variable) 
is given in Table A-1. 

Figures Figure A-1 and Figure A-2 present the monthly mean maps and monthly zonal means for 
both simulator versions for the core cloud properties. There seems a generally good agreement for 
cloud fraction (total and low/mid/high layers) and cloud phase. While also CTP still shows a 
reasonable agreement the differences are found increased for the other variables CER, COT, LWP 
and IWP. 

 

Table A-1 Summary of the simulator approach for each core cloud variable for SIMFERA and the 
Cloud_cci satellite simulator. 

 SIMFERA Cloud_cci satellite simulator 

CFC 
(total, 
low/mid/high) 

Removing all columns with  

COT < COTthresh (COTthresh=0.2 in this 
case) 

As SIMFERA 

CPH Each column gets one phase assigned 
(liq or ice) based on LWC <> IWC of the 
uppermost cloud layer. 

Top cloud layers with COT< COTthresh 
are removed breforehand. 

Liquid or ice phase is determined from 
the uppermost cloud/s down to 1 optical 
depth. The phase is decided based on the 
ratio of liquid and ice optical depth.  

Compared to SIMFERA, all clouds in the 
column above the COT=1-altitude are 
taken into account. 

CTP Each column gets one cloud top 
pressure assigned based on layer top 
pressure of the uppermost cloud layer.  

Top cloud layers with COT< COTthresh 
are removed breforehand. 

The cloud top is determined from the 
attitude where COT=1 from space.  

All clouds in the column above the 
COT=1-altitude are taken into account. 

CER (liq/ice) Each column is assigned a liquid CER or 
ice CER depending on phase 
assignment. The CER is calculated as in 
ERA-Interim radiation: 

Liquid clouds: CER is calculated 
fowollowing the method of Martin et al. 
(1994) as a function of LWC of the 
uppermost cloud layer in the column. In 
addition the number of cloud 
condensation nuclei (over land: 300; 
over sea: 100) is used 

Ice clouds: ice crystal effective radius 
is calculated as a function of 

CER is derived from the best fit to the 
estimated model TOA reflectivity. 

1) The simulated reflectivity in each 
column is estimated based on the 
model effective radius and optical 
depth vertical profiles from the 
model. It is estimated by the two 
stream reflectance approach 
calculated using the single scattering 
albedo (SSA), and asymmetry 
parameter (ω0) read from CC4CL-
LUTs as a function of CER for liquid 
and ice.  
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temperature and IWC of the uppermost 
cloud layer in the column based on Sun 
and Rikus (1999), which has been 
revised by Sun (2001). 

Top cloud layers with COT< COTthresh 
are removed breforehand. 

2) From these LUTs of SSA and ω0, a 
corresponding table of reflectivity as 
a function of CER is calculated.  

3) The simulated CER is found by 
minimizing the reflectivity calculated 
in (1) against the tabled reflectivity 
from (2) for the simulated CPH. 

This is exactly the same CER-simulation- 
approach as used by the MODIS simulator 
in COSP  

COT (liq/ice) 
The cloud optical thickness (COT) per 
layer is obtained by the method of Han 
et al. (1994) 

  
where CWP is the sum of LWP and IWP. 
Qext denotes the extinction coefficient, 
which is assumed to be 2 for water and 
2.1 for ice. The density is set to 1 g/m3

 

for water and 0.9167 g/m3
  for ice. The 

COT per column is then the sum of the 
layer COTs. 

Top cloud layers with COT< COTthresh 
are removed breforehand. 

The same as SIMFERA except the no 
clouds are excluded from the column.  

LWP Entire CWP of a column becomes LWP 
when cloud top phase in that the 
column is liquid. 

Top cloud layers with COT< COTthresh 
are removed breforehand. 

The same as SIMFERA except the no 
clouds are excluded from the column. 

IWP Entire CWP of a column becomes IWP 
when cloud top phase of the column is 
ice. 

Top cloud layers with COT< COTthresh 
are removed breforehand. 

The same as SIMFERA except the no 
clouds are excluded from the column. 
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Figure A-1 Monthly mean values for (rows from top to bottom): total cloud fraction (CFC), cloud 
fraction of low/mid/high clouds (CFC-low, CFC-mid, CFC-high) and cloud phase (CPH). Data shown 
is for January 2007. Left column: SIMFERA output, centre column: Cloud_cci simulator output, 
right column znoal mean plots of both. 
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Figure A-2 Monthly mean values for (rows from top to bottom): cloud top pressure (CTP), cloud 
optical thickness for liquid/ice clouds (COT-liq/COT-ice), cloud effective radius for liquid/ice 
clouds (CER-liq/CER-ice), in-cloud liquid water path (LWP-incloud) and in-cloud ice water path 
(IWP-incloud). Data shown is for January 2007. Left column: SIMFERA output, centre column: 
Cloud_cci simulator output, right column znoal mean plots of both. 


