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Summary 
 
The workshop was held at the Met Office, Exeter, UK, on the 18th – 20th November 2014. Forty 
participants attended, spanning a range of interests, including climate research, numerical 
weather prediction, physical ocean modelling, ecological analysis, Earth system model 
evaluation and producers of SST datasets for both the satellite and historical eras. In line with 
the aim of the workshop for two-way dialogue, the event was structured with scene-setting 
presentations, a poster session, practical exercises applying uncertainty information, and 
break-out group discussions leading to plenary feedback and debate.  
 
The need for such a workshop was identified in general terms in the community white paper 
of the EarthTemp network (Merchant et al., 2013), and was organised within the auspices of 
the European Space Agency’s Climate Change Initiative (Hollman et al., 2013) project on sea 
surface temperature (SST CCI). The SST CCI project is working to generate new climate data 
records for SST from satellite observations (Merchant et al., 2014) with a number of 
characteristics: independence from in situ observations, harmonisation across satellite 
sensors to maximise stability, the potential to link to historical in-situ based datasets and 
provision of realistic context-sensitive uncertainty estimates for every SST at all spatio-
temporal scales. Ensuring that this latter objective is achieved in a way that is useful to SST 
users was the major motivation for the project to run this workshop. 
 
There are significant parallels between the priorities of a developer of a climate data record 
(CDR) and the priorities of a metrologist (metrology being the science of measurement and its 
uncertainty): both want measurements that are stable over time, insensitive to particular 
sensors and measurement methods, and are of uniform calibration and quality worldwide. 
Links were identified between Earth observation and metrology in day 1 of the workshop, via 
presentation and discussion. Good practice in tracing the uncertainty budget through satellite 
processing levels from instrumental measurement to geophysical product can be based on 
metrological norms encapsulated in documents such as the Guide to the expression of 
Uncertainty in Measurement (GUM; BIPM, 2008). In communicating about uncertainty, careful 
adherence to standard vocabulary can reduce ambiguity and increase understanding. In 
particular, it is useful to preserve the distinction between error (‘mistaken-ness’) and 
uncertainty (‘doubt’). Uncertainty is typically quantified as the standard deviation of an 
estimated error distribution. In the case of Earth observation, uncertainty cannot be 
estimated from the dispersion of replicate measurements, as in a laboratory. Uncertainty 
modelling for EO relies heavily on understanding the instruments and retrieval processes, 
supporting error propagation by simulation and/or analytic techniques (Merchant and 
Embury, 2014). The metrological discipline of creating an uncertainty budget that is traceable 
(complete and defensible at each link the in the chain) can be used as a precedent for 
establishing the rigour and credibility of CDRs from EO. 
 
The effects leading to errors in SST measurements of all sorts were reviewed in the workshop, 
it being clear that errors from different effects have very different correlations in space and 



time. Instrumental noise is usually modelled as independent random error between each SST 
measurement. Calibration drift over time, as an instrument ages, produces error that is highly 
correlated over global scales and years. EO datasets will usually also include errors on 
intermediate scales between these extremes, which may be termed locally systematic. In the 
case of SST, these effects are generally related to ambiguity arising from atmospheric 
variability, and therefore the errors correlate on synoptic scales. The current SST CCI 
approach is to specify components of uncertainty from random, locally systematic and 
systematic effects separately, and using these requires the user to engage with these concepts. 
In deriving uncertainty estimates for SSTs across the full range of scales needed by users, 
these different components of uncertainty need to be tracked and propagated separately, 
appropriate to their correlation structure.  
 
Participants recommended that full characterisation and clear documentation of the error 
model was needed and either that these uncertainty components should be provided together 
with correlation information, or that their complex behaviour should be encapsulated in an 
ensemble as currently done by some providers of centennial-scale SST data sets. Since error 
covariance matrices can be large and difficult to use, it was recommended that these be 
parameterised to allow easy communication. It was therefore apparent in the workshop 
discussions that there is no simple answer to delivering uncertainty information to users, and 
that different users, for legitimate reasons, have different preferences amongst these options. 
The Climate Forecasting (CF) conventions require extension to accommodate more nuanced 
uncertainty information, in which effects and correlation structure can be specified. 
Participants recommended that use of uncertainty information would be facilitated by the 
provision of tools, for appropriate error propagation, ensemble selection or to create user-
defined flags. 
 
Even when provided with data producers’ uncertainty estimates, users do not necessarily use 
these at face value. A discussion was held about what is required for SST users to trust 
uncertainty estimates attached to data as being realistic, and directly usable within their 
applications. Uncertainty validation and verification was welcomed, but more reference data 
is needed. The other two major influences were the scientific reputation of the data 
producers, established through the norms of peer reviewed publication, etc, and precedents 
where uncertainty information have been successfully exploited in applications. Formal 
mechanisms, such as publishing uncertainty traceability chains, were judged as less 
influential. However, this does not undermine the need for data producers to engage with 
uncertainty estimation in a rigorous, defensible manner, since this is part of building the 
necessary scientific credibility, as well as being good science practice. 
 
Since precedent is persuasive to users, data producers can actively promote uptake of their 
products and the uncertainty information by engaging with trail-blazer users of their 
improved uncertainty information in products.  
 
Recommendations that arose within the workshop will be synthesized and used to update the 
User Requirements Document maintained by the SST CCI project team (update due December 
2015). The organisers thank all the attendees for their enthusiastic and constructive 
contributions. 

1. Aims and Context of Workshop 
 
Many different groups around the world develop observational data sets and analyses of sea 
surface temperature for varying applications, e.g. short-term weather and ocean forecasting, 



fisheries and ecosystem research, monthly-to-decadal forecasting, evaluation of climate 
model simulations, engineering and military use. In most cases, uncertainties in this 
information, arising from various aspects of the measurement or estimation processes 
involved, will have an impact on the way it is used and may impact on the conclusions drawn. 
 
Hitherto, the use of provided uncertainty information has been minimal. This means a 
disconnect has existed between users and those sea surface temperature data providers who 
have attempted to quantify and communicate uncertainties in their products; either 
uncertainties are not being provided in a useful way, or users do not understand how to use 
them. This is true for other surface temperature data too, as identified in Merchant et al 
(2013). 
  
Providing information on uncertainties in sea surface temperature (or any other) 
measurements in a way that is useful to users requires in-depth discussion with a range of 
different users. This is necessary in order to understand what those users are aiming to 
achieve and, therefore, how these uncertainties might affect them. Accordingly, the European 
Space Agency Climate Change Initiative sea surface temperature project identified this as a 
priority for their current programme of work and proposed a workshop to try to  
engender a common understanding of:  
 

• where uncertainty in observational sea surface temperature products comes from;  
• how to talk about it;  
• how well the uncertainty information that is provided addresses users´ needs; and  
• how to practically use such information.  

 
It comprised a mixture of oral and poster presentations, activities and group discussions. 
 
The aims of the meeting were to: 
 

• Exchange information about uncertainties in sea surface temperature observations; 
• Create new expert sea surface temperature users who, through publication of their 

work, can inspire others to take uncertainty information into account; 
• Source requirements from sea surface temperature users on uncertainty information 

and other aspects of the Climate Data Records; 
• Spread best practice through a follow-on meeting report or journal article. 

 

2. Summary of sessions 

2.1. SST CCI products 
 

There are many sea surface temperature products, and the SST CCI project aims to make a 
unique contribution to climate observation by creating a dataset for the last few decades 
that has the following properties:  
 
1.  independence from SST measurements made in situ 
2.  of useful, quantified accuracy and sensitivity 
3.  with context-sensitive uncertainty estimates (at all spatio-temporal scales) 
4.  harmonised to provide useful stability 
5.  able to be linked to the longer historical record 
6.  generated by a robust, sustainable processing system 



 
To achieve this SST CCI products are based on linking measurements from all sensors to 
the series of Along Track Scanning Radiometers, particularly ATSR-2 and AATSR. For these 
sensors, physics-based retrieval (i.e. estimation of SST from the radiances measured by 
the satellite instrument) can be defined using radiative transfer simulations of the change 
in radiance between the surface and the instruments, because these instruments are 
particularly well characterised. 
 
Measurements from other sensors, particularly AVHRRs, are cross-calibrated (at both 
radiance and SST stages) to the ATSR results. This is useful since the AVHRRs extend back 
prior to the ATSRs in time and have better spatial sampling, but can be less accurate.  
 
Many AVHRR sensors have flown on satellites whose orbits have decayed over time, 
resulting in a progressive change in the local time at which they observe any particular 
location. SST can have a large diurnal cycle under some conditions. To avoid aliasing of 
this diurnal cycle into the apparent changes seen in the long term record, thus 
compromising the long-term observational stability, all SST CCI instantaneous skin 
temperatures are adjusted via a model to a reference local time of day (1030 h or 2230h). 
To allow linkage to historical data, the same model also provides an adjustment to 20 cm 
depth, since these satellite instruments estimate the temperature of the first few microns 
below the ocean surface. 
 
The issue of independence is driven by the desire to build confidence in satellite-only and 
in situ-only SST datasets by showing that these are compatible in their view of ocean 
surface temperatures, despite the need in both cases to account for observing system 
changes over time. 
 
Swath (also known as Level 2), gridded (Level 3) and analysed (Level 4, gridded then in-
filled using statistical techniques) versions of data products are provided by SST CCI, and 
an uncertainty estimate is provided with every SST data value. 
 
To use SST CCI products, read the short data paper (Merchant et al., 2014), the Product 
User Guide (http://www.esa-sst-cci.org/sites/default/files/Documents/public/SST_CCI-
PUG-UKMO-001_Issue-3-signed-accepted.pdf) and following links therein to data and 
further documentation. 

2.2. Vocabulary and presentation of uncertainty 
 

Vocabulary 
 
We established a common vocabulary to be used when discussing uncertainty with the aid 
of a presentation drawing on experience from metrology. 
 
After a brief historical introduction some of the central concepts were presented.  In 
particular the core principle of a rigorous assessment of uncertainty and traceability 
achieved through formal documentation, audits, peer reviews and formal comparisons 
together with community defined references (preferably SI) was introduced.   The 
concepts of uncertainty and traceability were further expanded on with the introduction 
of the GUM (Guide to the expression of Uncertainty in Measurement, BIPM 2008 - the 
foremost authority and guide to the expression and calculation of uncertainty) together 
with the key concepts of traceability as an unbroken chain linking all processes back to a 
reference using as complete as possible uncertainty budget calculation.  It was pointed out 



that in the case of Earth Observation the situation may be more ill-defined than for 
standard metrological measurements due to either ill-conditioned problems (such as 
found in data assimilation) or just simple lack of knowledge of the complete system and 
that the GUM, for example, does not cover such cases.   There are, however, several current 
projects that are beginning to look into such issues and will provide some guidance in the 
future.  It was also pointed out that there are still benefits to going through a 
metrologically robust process since it forces a reassessment of all possible sources of 
uncertainty including documentary evidence which will reduce any hidden uncertainties 
due to any previous assumptions made. 
 
The presentation then moved onto defining a consistent vocabulary for uncertainty and 
made the point that error is not the same thing as uncertainty and both terms have clearly 
defined meanings.  In particular, uncertainty describes the spread of a probability 
distribution and can be parameterised by values such as the standard deviation.  In other 
words uncertainty is the doubt you have on the value.  Error, on the other hand, is a 
difference from truth which can derive from a range of different processes such as 
measurement imperfections.  Further, when an error is known it can be corrected, though 
there will always be a residual error which will add to the final uncertainty.   
 
Errors can arise from random and/or systematic effects.  Random effects are different for 
every observation and cannot be corrected, even if the measurement is fully understood.   
Random effects can, however, have the same associated uncertainty (drawn from the same 
probability distribution).   Note, it is incorrect to use the phrase “random uncertainties” –
“uncertainty” describes the probability distribution.   Strictly it should be “uncertainties 
associated with random effects”. 
 
Systematic effects, on the other hand, are errors which can in principle be corrected if the 
cause of the error is fully understood.  In reality, of course, there are many instances 
where the cause of an error is not fully known or understood giving rise to uncertainties 
associated with systematic effects.   With many systematic effects there can also be an 
associated time and space scale where a given uncertainty is applicable.   Examples 
include detector degradation where the error changes over time or where the calibration 
system is compromised such as the solar contamination seen in the Advanced Very High 
Resolution Radiometer (AVHRR) e.g. Cao et al. (2004).  Spatial errors can also exist such as 
those caused by a geophysical retrieval where the effect of the atmosphere is not fully 
accounted for.  Unfortunately metrology does not have as yet an exact terminology for 
such effects though the term ‘locally systematic’ has been proposed.  
 
We discussed the different methods that are used to determine uncertainty.  These can be 
separated into two cases known as Type A and Type B methods.   Type A use statistical 
methods applied to a set of measurements either experimentally or numerically derived.  
Type B methods, on the other hand, use experience and knowledge of the underlying 
physical processes to derive estimations of the uncertainties.   Both methods are 
considered valid in determining uncertainties. 
 
Finally the question of how to propagate uncertainties was raised.  The GUM contains the 
fundamental equation describing the propagation of uncertainties including the case 
where the uncertainties are correlated; this can be used directly in many instances.  Of 
course where the underlying problem is ill-defined, as can be the case for data assimilation 
the GUM itself does not help, but for many Earth Observation problems it can be used 
easily.  An example was given where the calibration of the AVHRR was studied. In this 



case, taking a numerical approach (a Type A method) combined with an analytical, 
equation based approach (Type B method) can begin to give real insights into the full 
uncertainty budget. 
 
Further information on uncertainty propagation is given in Section 2.3. 
 
In related discussions both informally and in group discussions other aspects of taking a 
metrological approach towards uncertainty were discussed.  The use of a consistent 
vocabulary together with the rigour of a metrologically robust framework under which an 
uncertainty budget can be developed was considered to be an improvement and 
something that would help provide extra confidence in SST data and its associated 
uncertainties.  However, it was also felt by many people who use SST data that the use of 
metrological techniques is not in itself sufficient to make people trust the final results, as 
non-experts would not be able to independently assess whether anything had been missed 
in the processing, and that in the end the reputation of the associated production team 
was perhaps more important.  But the combination of a production team with an excellent 
reputation together with the use of metrological techniques would provide the highest 
confidence. 
 
Current methods of uncertainty communication in SST products 

 
Uncertainties in SST measurements and analyses are complicated and have different 
correlations in space and time. Different data providers use different means to 
communicate this information to users. 
 
Uncertainties in SST CCI products are provided as three components, according to the 
correlation structure of the underlying errors. These components arise from random, 
locally systematic and large-scale systematic effects. A total uncertainty is also provided. 
 
Other SST data providers, e.g. the Met Office Hadley Centre (Kennedy et al, 2011a and b), 
provide uncertainty information via an ensemble of interchangeable realisations of Level 3 
and Level 4 products. Covariance matrices are also provided to describe residual 
uncertainties arising from biases in individual ships and under-sampling of grid boxes. 

 

2.3. Origins and Propagation of Uncertainty 
 

There are a number of potential sources of error in sea surface temperature (SST) 
measurements, which should be reflected in their associated uncertainties.  Some sources 
of error are common to both satellite and in-situ observations such as calibration, 
geolocation, software issues, data corruption, instrument noise and degradation.  Satellite 
observations can also be subject to retrieval errors on synoptic scales introduced by 
atmospheric conditions and errors from imperfect cloud detection.  In situ data records 
are subject to human error in reading temperatures, inconsistency in the measurement 
depth, measurement conditions, logging and transcribing.   The instrument scale can limit 
measurement accuracy, and buoys may wash ashore or become encased by barnacles. 
 
Within the workshop we considered three primary types of uncertainty: originating from 
errors caused by random effects, errors from locally systematic effects and errors from 
large-scale systematic effects.  These sources of uncertainty are uncorrelated with one 
another and are applicable to all levels of products.  At higher product levels, uncertainties 
due to sampling effects were also considered. Details of the SST CCI approach are available 



in the SST CCI Uncertainty Characterisation Report (UCR; http://www.esa-sst-
cci.org/sites/default/files/Documents/public/SST_cci%20UCR%20Issue%203%20%282
013%2012%2004%29.pdf). 
 
Corrections applied to in situ measurements to account for the impact on the climate 
record of changes in measurement method through time are specified using parameters 
which are themselves uncertain. This effect is considered large-scale systematic. These 
corrections are applied to measurements made using general types of measurement 
method, e.g. a canvas bucket, or engine room intake. Individual ships’ bias characteristics 
differ from these large-scale corrections. There is therefore also a residual uncertainty in 
ship measurements from this locally-systematic effect. 
 
The full equation for the propagation of uncertainties is shown in (1).    The first term in 
the equation describes the addition of uncertainty terms in quadrature, with the 
differential describing the sensitivity of the uncertainty to the observation.  The second 
term describes the uncertainty correlation.  Where uncertainties are completely 
uncorrelated this term reduces to zero. 
 

 

 
(1) 
 

 
For satellite observations, sources of error in radiance data (Level 1, pre-transformation 
into the geophysical variable, such as SST) include radiometric noise (resulting in 
uncertainty from random effects), intermittently determined calibration parameters 
(locally systematic effects) and errors in emissivity or the spectral response function 
(large scale systematic effects).  Propagation of uncertainties in Level 1 data from random 
effects through to Level 2 (swath) and Level 3 (gridded) data is illustrated in Figure 1.  The 
top row shows a simulated error field for the 11 and 12 μm channel for the Advanced 
Along Track Scanning Radiometer (AATSR).  The error field is simulated by randomly 
sampling a Gaussian distribution with a mean of zero and standard deviation of 0.1 K 
(determined by our knowledge of the noise as a function of the instrument’s responsivity 
to temperature in both channels with reference to the blackbodies and instrument model).   
 
In the second row, these errors are propagated into N2 SST retrievals (using both 
channels, but only the information from the nadir view) and D2 SST retrievals (using both 
channels and both nadir and forward views).  The error propagation term is the sum of the 
errors in each channel multiplied by the corresponding channel coefficient from the SST 
retrieval.  The D2 retrieval contains observations from four channels and therefore the 
propagated random error is larger than for the N2 retrieval.  The third row illustrates how 
these errors propagate into Level 3 data over a 5x5 pixel grid box, with the fourth row 
showing the corresponding uncertainty field.  The errors do not average down, but the 
uncertainties do reduce as a function of 1/√n because they arise from random effects.  The 
uncertainties resulting from random effects are therefore largest where fewer 
observations are available in a given grid box (for example where cloud partially obscures 
the box). 
 

http://www.esa-sst-cci.org/sites/default/files/Documents/public/SST_cci%20UCR%20Issue%203%20%282013%2012%2004%29.pdf
http://www.esa-sst-cci.org/sites/default/files/Documents/public/SST_cci%20UCR%20Issue%203%20%282013%2012%2004%29.pdf
http://www.esa-sst-cci.org/sites/default/files/Documents/public/SST_cci%20UCR%20Issue%203%20%282013%2012%2004%29.pdf


 
Figure 1: Propagation of error and uncertainty from random effects on brightness temperature 

(BT, top row) into Level 2 (second row) and Level 3 (third and fourth rows) SST data. 

 
Locally systematic uncertainties in Level 2 data are caused by ambiguities in or limitations 
to the retrieval scheme.  They can be estimated using simulation studies with a true SST 
and simulated brightness temperatures, e.g. under different atmospheric conditions.   
These simulated brightness temperatures can then be used to calculate SST using the 
retrieval algorithm.  Comparisons between the true and retrieved SSTs enable 
characterisation of the algorithm uncertainty. 
 
Production of Level 3 gridded data introduces a further source of uncertainty due to 
under-sampling.  Where a gridded domain is not fully observed (in the case of satellite 



data, typically due to cloud cover), the mean SST in the observed pixels is likely to deviate 
from the mean SST that would be calculated if the domain were fully observed.  This 
sampling uncertainty can be modelled for satellite data as a function of the variability in 
the SSTs observed, the percentage of clear sky pixels and the domain size. 
 
Figure 2 shows the modelled sampling uncertainties.  The SST variability in the observed 
pixels is the main determinant of the shape of this curve.  Domain size only becomes 
important where the SST variability is high and a low percentage of clear-sky pixels is 
available.  Where the percentage of clear-sky pixels is 100%, the sampling uncertainty 
naturally tends to 0.0 K as all possible observations are available. 
 

 
Figure 2: Modelled sampling uncertainties in Level 3 data at two different resolutions: 25 pixels 

(~0.05 degrees, blue) and 100 pixels (~0.1 degrees, red). 

 
Level 3 data created for the Obs4MIPs archive are monthly, 1-degree resolution products, 
generated from Level 2 and higher resolution Level 3 datasets.   In this case, the 
propagation of uncertainties is more complicated as the scales averaged over are longer 
than synoptic time scales and therefore the locally correlated uncertainties average down 
a certain amount, but not by as much as 1/√n.  The uncertainty propagation needs to take 
into account the number of constituent grid boxes and synoptic areas and therefore 
includes the spatial and temporal correlation between each pair of observations 
contributing to the SST derivation, with reference to the appropriate correlation length 
scales. However, in order for users of these fields to be able to appropriately propagate 
these differently correlated uncertainty components through their application, they need 



to be provided separately (this requires an evolution of the current Obs4MIPS format to 
accommodate this). 
 
Uncertainties arising from large-scale correlated effects are applicable to each pixel in the 
SST retrieval over a very large area (e.g. a hemisphere or the globe) and do not average 
down as they are propagated through product levels. 
 
SST CCI Level 4 analysis products are daily, global, spatially complete blended datasets 
using Level 2, Level 3 and EUMETSAT OSI-SAF ice concentrations as input.  The 
uncertainty components provided in the Level 2 and Level 3 data are not propagated 
directly into the SST CCI analysis products, but the total uncertainty is used to weight the 
observations in the optimal interpolation assimilation.   Analysis uncertainties in the Level 
4 data are also calculated using optimal interpolation with a background error covariance 
weighted by the influence of the observations on the analysis. 
 
In other SST analyses, e.g. HadISST.2.1.0.0, analysis uncertainty and its relationship to 
uncertainties in Level 3 data are propagated via an ensemble. 
 
Practice at propagating uncertainty components was provided in the practical exercises 
(see Appendix D). 

2.4. Validation of Uncertainty  
 

A key development within the SST CCI project is the provision of enhanced uncertainty 
information for each pixel or cell in every SST CCI product. As discussed above, this 
enhanced uncertainty information includes estimates of uncertainty components that are 
uncorrelated between observations, locally correlated on synoptic spatio-temporal scales, 
and correlated on large scales. This facilitates a more realistic propagation of uncertainty 
from Level 2/Level 3 products to derivative products (e.g. Level 4 analyses) with coarser 
averaging. As the uncertainty information constitutes part of the product, it must be 
validated in its own right. 
 
Validation here is defined as the assessment of the system outputs (i.e. the products) by 
independent means. So far the SST CCI team have only validated the total uncertainty, 
through comparisons to reference data from drifters, moorings, radiometers and floats. 
These measurements are independent from the SST CCI products. Further details can be 
found in the Product Validation and Intercomparison Report (PVIR; http://www.esa-sst-
cci.org/sites/default/files/Documents/public/SST_CCI-PVIR-UoL-001-Issue_1-signed-
accepted.pdf). 
 
The approach adopted by the SST CCI team is based on establishing a validation 
uncertainty budget that considers the uncertainty as a result of errors arising from the 
comparison to the reference data. The main contributors are: 
 
(1) the uncertainty given in the SST CCI product; 
(2) the uncertainty on the reference measurement; 
(3) a contribution from errors arising from comparing the reference measurement to the 
larger spatial average represented by the SST CCI product; 
(4) a contribution from any differences in depth between the SST CCI product and the 
reference measurement; and  
(5) a contribution from any time difference between the SST CCI data and the reference 
measurement.  

http://www.esa-sst-cci.org/sites/default/files/Documents/public/SST_CCI-PVIR-UoL-001-Issue_1-signed-accepted.pdf
http://www.esa-sst-cci.org/sites/default/files/Documents/public/SST_CCI-PVIR-UoL-001-Issue_1-signed-accepted.pdf
http://www.esa-sst-cci.org/sites/default/files/Documents/public/SST_CCI-PVIR-UoL-001-Issue_1-signed-accepted.pdf


 
A presentation demonstrated how term (3) is minimised by using a large set of match-ups 
and how terms (4) and (5) are minimised using a combined skin effect and diurnal 
variability model. Consequently, the uncertainty budget for a large dataset of match-ups to 
drifting buoys for example, can be represented as: 
 

 
 
where σSST_CCI is the uncertainty on the SST CCI product and σdrifter is the uncertainty on 
the drifting buoys, which we estimate to be 0.2 K for the entire dataset. At low satellite 
uncertainties the standard deviation of the differences is dominated by the uncertainty in 
the reference data. As you move to higher satellite uncertainties the satellite uncertainty 
will then dominate, as the reference uncertainty becomes a less significant contribution to 
the total uncertainty. The other uncertainty contributions are effectively made negligible, 
as described earlier. 

 
Figure 3: Plot of SST CCI Level 4 analysis product uncertainty against the robust standard deviation of 

the discrepancies between SST CCI analysis and drifting buoys. The green lines indicated the 
theoretical dispersion of uncertainties assuming an average drifter buoy measurement uncertainty of 0.2 
K. The blue lines indicated the measured dispersion for each uncertainty level. The red lines indicate the 

standard error for each uncertainty level and also provide an indication of the number of match-ups. 

Several results from the uncertainty validation were presented, and one example, for the 
SST CCI Level 4 analysis product is shown in Figure 3. The spread of uncertainties in 
Figure 3 is from ~0.05 K to 1.5 K. The agreement between the theoretical and measured 
RSD values is excellent across the full range of uncertainties. Some divergence is seen for 
uncertainties above 1.2 K but the increase in spread of the standard error (shown by the 
red lines) indicates a low number of match-ups at these levels. 
 
The methodology only works where there are independent reference data to directly 
compare to. However, it is vital that we know that the uncertainties are realistic 
everywhere. The concept of uncertainty verification was then introduced, which can be 
used to inform the user where is has (and has not) been possible to verify that the product 
uncertainties are of the right order of magnitude. The term uncertainty verification and 
not uncertainty validation is used as the verification may not come from direct 
comparisons to reference data (validation) alone but may come from additional 
knowledge. For example, if we know that the uncertainties are realistic in one region from 
independent comparison then it is reasonable to assume that uncertainties in regions of 
similar measurement conditions (e.g. equivalent water vapour loading, view angle, aerosol 
loading, etc.) are also realistic. An example uncertainty verification map is shown in Figure 
4. 



 
Figure 4: Verification maps for SST CCI analysis (OSTIA) SSTdepth uncertainties assessed using 

drifting buoy SSTdepth. This plot shows the degree to which the SST CCI product uncertainties can be 
verified using independent reference data. It should not be taken as an indication of SST CCI 

product data quality and is intended to help the user interpret their own results from using product 
uncertainties in their application. 

 
The coverage of match-ups shown in Figure 4 is very good with very few unverifiable 
regions; however, the map covers the entire time period of the V1.0 SST CCI analysis 
dataset from 1991 to 2010. On average the uncertainties are of high quality compared to 
the reference dataset and in general regions of medium and low quality occur in areas that 
contain few drifting buoys. It is important to stress that regions of lower verifiability do 
not mean the product uncertainties are unrealistic in these areas, it simply means we 
cannot confirm them independently. Users are always advised to use the product 
uncertainties everywhere. 
 
The issue of uncertainty validation was discussed during the breakout discussions, where 
participants were asked to say what would convince them that the SST CCI product 
uncertainties were realistic. The participants felt the current approach adopted by the SST 
CCI team is useful. The participants agreed that independent validation of product 
uncertainties is essential but emphasised that the results from the uncertainty validation, 
along with their derivation, must be published in peer-reviewed literature. The 
publication step is extremely important as this provides the confidence to the user that 
independent experts have reviewed the uncertainties. This is particularly true for a 
traceability chain for the derivation of the product uncertainties, where users felt they 
would not necessarily have the expertise to trust the uncertainties based on the chain 
alone – it needs the extra step of peer review. 
 
Participants felt that the SST CCI project team could provide some examples where the 
uncertainties have been used to show a demonstrable improvement in an application (e.g. 
such as in a Level 4 analysis). It was noted that such an approach would, of course, be 
application dependent (e.g. a particular forecast model), but nevertheless by building up a 
series of such cases studies users can gain trust in the data. The participants stressed the 
need to validate product uncertainties at all scales e.g. global/regional/local/coastal, and 
include the sensitivity to assumptions of scale in any correlations between the sources of 
error considered when developing the uncertainty budget. Also, it would be useful to 
provide results from validating uncertainties in regions of known issues affecting satellite 
SST retrievals, e.g. stratocumulus clouds in the Southern Atlantic.  
 



The participants felt the uncertainty verification maps were useful but noted that they 
would need to be used in combination with the validation results. Clear advice should be 
given, for example, on what to do where areas of high uncertainty cannot be validated. It 
was apparent from the discussion that the verification maps are confusing to some users 
and that the project team must think carefully how they are communicated in the future. 
For example, it must be made clear to users that the inability to validate a product 
uncertainty does not mean it is unrealistic, it is just that we cannot demonstrate its 
validity - users should always use the uncertainties in the products. 
 
In general the SST CCI team has made a good start in convincing users that the product 
uncertainties are realistic. Several recommendations detailed in this section for additional 
information/steps that are needed by users will provide them with all the necessary 
material they need. 

2.5. Current and Ideal Use of Uncertainty Information in Applications 
 

Information on participants’ current activities and needs for uncertainty information was 
gathered from poster and oral presentations and through small group discussions. Some 
participants already use information on sea surface temperature or other observational 
uncertainty in their applications: 
 
• Ensemble twentieth century reanalyses are run at ECMWF using an ensemble of SST 
boundary conditions to allow exploration of the sensitivity of the reanalysis to uncertainty 
in SST. SST is a key driver of atmospheric reanalyses (Shoji Hirahara); 
• The impact of observational uncertainty on the detection and attribution of human and 
natural influences on surface temperature change has been explored (Andrew Schurer and 
Gareth Jones); 
• Ensembles of high resolution local analyses of SST in the Bay of Biscay region have 
been generated in order to explore air-sea interactions there (Ganix Esnaola Aldanondo); 
• SST information has been assimilated into ocean analyses used to initialise seasonal 
forecasts and hindcasts. Here estimates of observational and representivity uncertainty 
are needed in order to appropriately weight each observation (Drew Peterson); 
• Satellite retrievals and their uncertainties are used to characterise errors in 
measurements of SST made in situ, through direct comparison (Dave Berry); 
• Assessments of the performance of climate model simulations, through the calculation 
of ~100 metrics summarising the simulation of different aspects of the climate system, 
utilises information on observational uncertainty in some cases in order to determine the 
significance of differences in those metrics as calculated from simulations and 
observations. This is currently done by comparison to a number of different observational 
data sets (Alistair Sellar); 
• Ensembles of gridded fields of global surface temperature have been generated in 
order to determine the significance of observed changes (Colin Morice); 
• The sensitivity of ensembles of weather forecasts to forcing by different SST analyses is 
being assessed (Martin Lange); 
• Creation of complete, gap-free analyses of SST utilises information on the uncertainty 
in satellite retrievals of SST (Andy Harris); 
• Reanalyses of both regional shelf seas over the last few decades and the global ocean 
over the last century assimilate information on SST and its uncertainties (David Ford and 
Chunxue Yang) 
 



In some cases, participants identified what they would like to be able to do now, ignoring 
any technical challenges they might face: 
 
• Compare model simulations with observations and see whether or not they agree 
within their uncertainties, taking error covariance into account; 
• To be able to use correlated uncertainties properly in in-filled analyses. Analysis 
methods currently assume uncertainties are uncorrelated between observations; 
• To use Level 2 and Level 3 along with their associated uncertainties in conjunction 
with in situ data and their uncertainties, e.g. for construction of infilled analyses; 
• Be able to use the uncertainty information in SST data to look at the impact of this on 
meteorological parameters downstream in Numerical Weather Prediction (NWP); 
• Use observational uncertainties in data assimilation to inform background error 
covariances; 
• Examine the uncertainties at each step of a traceability chain for SST; 
• Propagate SST uncertainty appropriately into regional averages, taking correlation of 
errors into account. 

2.6. Requirements on Provision of Uncertainty Information 
 

In order to achieve these goals, participants were asked how they would like to receive 
information on uncertainty in SST observations. They identified the following current 
requirements. (These have been translated into draft user requirements in Appendix C.): 
 
Timeliness: 
• Operationally-available daily SST analyses together with uncertainty estimates for 
each value (for generation of ensembles for NWP). 
 
For other space and time scales: 
• Information on uncertainties on specific/larger spatial scales, e.g. for ocean basin 
averages, and over longer temporal scales (Hurricane forecasting and detection and 
attribution); 
• A tool (perhaps web-based) to grid to any spatial/temporal scale (e.g. model grids) 
with full uncertainty propagation (and ensemble generation) from native resolution. This 
would include the ability to extract information for specific regions and to extract SST 
information for different depths;  
• Information to develop and use tools to calculate uncertainties at a range of time and 
space scales. If dataset uncertainty information is described in a standard way, 
uncertainties can be propagated appropriately automatically. 
• Coastal SSTs with uncertainties under all conditions; 
 
For information about the behaviour of uncertainties: 
• Full characterisation of uncertainty for construction of in-filled analyses; 
• Error covariance matrices (e.g. for data assimilation); 
• Error distribution; 
• Median estimate, plus uncertainty; 
• Consistent treatment/presentation of uncertainty components across ECVs (e.g. for 
multi-variate data assimilation or model evaluation) 
 
If the correlation structure were captured by an ensemble, users would need: 



• A large, easy to use, fully-documented ensemble of sea surface temperature 
information, which samples the full error model (detection and attribution and seasonal 
forecasting); 
• Different ensembles for different uses, e.g. in some applications, the tails of 
distributions may be more relevant; 
• Perhaps, a tool which allows the user to generate their own ensemble. 
 
For historical SST data: 
• Uncertainty information for individual SST observations going back to 1800, possibly 
as an ensemble; 
• Quantified uncertainties back as far as possible in the historical record; 
 
For flags: 
• Quality flags as a proxy for uncertainty, possibly a tool to create tailored flags for 
specific users/groups of users. Flags should be well and prominently documented; 
• Yes/no type information for some users for whom ensembles may provide too much 
information; 
• Indicator for the source of possible error (e.g. information on uncertainties from 
clouds to help to distinguish them from fronts); 
 
For documentation: 
• Clear documentation to mitigate against users using the data blindly; 
• Information content of analysed values, e.g. time of last measurement or percentage 
coverage; 
• Information on how uncertainty estimates were derived and what the contributing 
factors were; 
• The ability to disentangle any retrieval bias from the systematic uncertainty term. 
 
Relating to external bodies: 
• Validated uncertainties. More high-quality reference data are needed to allow this; 
• Updates to the CF conventions (standard name tables) to provide sufficient vocabulary 
to describe all uncertainty components adequately. 

 
Some more general requirements were also identified: 
 
• Sufficient information to make an informed choice about which data set to choose, 
including known limitations (e.g. analysis uncertainties which are assumed uncorrelated, 
but are not). This needs to be readily accessible, currently one has to drill down into the 
PUG to get the required information; 
• Perhaps a PUG written by users; 
• Link to information in other fora, e.g. NCAR climate data guide, GHRSST multi-product 
ensemble; 
• Feedback mechanism, e.g. a forum or discussion group; 
• Code repository; 
• Provision of SST variability within a given grid cell and its associated uncertainty 
would be a useful metric 

 

2.7. Reflections on practical experiences using uncertainty information 
 



Workshop participants were encouraged to explore the uncertainty information provided 
in SST CCI products in practical exercises undertaken during the workshop. Practical 
exercises were undertaken in smaller groups of up to ten participants with facilitators to 
help them. Appendix D contains the specification of the exercises. Appendix E contains 
worked examples of the exercises in the form of ipython notebooks; these were not 
available to the participants during the workshop. 
 
After the practical activities, the facilitators of the different groups reflected on how their 
groups of users had found the experience. They reported the following: 
 
Regarding format: 
• Some users had difficulties in reading the data (provision of the products as NetCDF4 
is a concern for some users) – the project should provide reader tools and more assistance 
in reading the files; 
• The time variable used in the SST CCI product format is fiddly to use (currently 
compatibility with GHRSST formats is required); 
• When calculating 5-day averages, the provision of ATSR data in Level 3 format for 
every swath was cumbersome, so daily (or day/night) L3C (i.e. collating different swaths) 
could be useful. 
 
Regarding documentation: 
• Level 4 analysis uncertainties are too small when propagated into larger area averages, 
because no information on their correlation structure is provided. Should users treat these 
as correlated, or not?; 
• Workshop organisers should provide model answers for later so people could see if 
they get the same answers (see Appendix E); 
• An indication of number of observations contributing to each value in the Level 4 
analysis would be useful; 
• How do uncertainty values in Level 2, Level 3 translate to Level 4? (see Section 2.3); 
• More documentation about uncertainties and the full equation for how to propagate 
them would be useful; 
• The project should provide guidance on what we would expect their size to be to guide 
the user to determine whether or not they are realistic; 
• For users not used to using large data sets, we need clear documented examples. E.g. 
How to take products from archive and use in applications. 
 
Regarding tools: 
• The project should provide functions for common types of data manipulation. 
 
Other feedback: 
• There was seen to be striping in some Level 4 analysis uncertainty fields, but the range 
of this is very small and not noticeable except when looking at small regions;  
• Level 4 analysis uncertainties are named “analysis error” in the NetCDF files. This 
terminology is confusing; 
 
These reflections have been translated into draft user requirements in Appendix C. 

3. The future 

3.1. Future landscape 
 



In order to ensure that recommendations arising from the workshop were future-proofed 
in some way, participants were asked to think ahead to likely future improvements to 
their technical infrastructure and methods. They identified the following likely 
developments in: 
 
Resolution and timeliness: 

• Moving towards generating data as close to real time as possible. Data with 1-2 
days delay is useful for e.g. seasonal forecasting and the continuation of reanalysis; 

• Provision of more diurnal information; 
• Perhaps, smaller grids (e.g. 1km) for some applications; 

 
Diverse and better characterized observing system: 

• Better information on the accuracy of SST measured by drifting buoys would be 
used: 

o Ideally point-by-point 
o Including metadata on type of buoy or other characteristics 
o From multiple sensors 

• Incorporation of data from citizen measurements (e.g. dive computers) assuming 
uncertainties can be characterized;  

• More diverse in situ observations (e.g. Argo, wave gliders) and consequent impact 
on homogeneity of derived data sets and analyses; 

• Looking at cross-consistency between variables/features using uncertainties (eg. 
SST, ocean colour, sea ice concentration); 

 
More computing power, resulting in the ability to:  

• Better treat uncertainty when creating in-filled analyses; 
• Deal with uncertainties analytically rather than (or as well as) via an ensemble; 
• Send data more easily; 
• Process more data: 

o Models will be at higher resolution. Data resolution should match model 
resolution; 

o Evaluate multiple sources of data; 
o Provide large ensembles; 
o Generate an ensemble on demand; 

• Port uncertainty aggregation software from tools currently in Java to e.g. python 
and make modular to imbed in users’ own processing. 

 
Better in-filled analyses will lead to improved quality historical reconstructions. 

 
Data assimilation: 

• Coupled reanalysis will occur in next five years; 
• Modern data allow improvement of e.g. assimilation methods, leading to improved 

historical analyses; 
• Inclusion of observational error correlation in data assimilation. 

 
NWP: 

• Change to ensemble systems; 
• Taking diurnal variability in SST into account;  
• Ocean/atmosphere coupling; 



• Distilling observations from new sensors into super-obs using uncertainty 
information. 

 
Provision of information: 

• Central data provision services and an increased capability for using new datasets 
and associated uncertainties; 

• Annotated products with user comments as to their applicability;  
• More interaction between users and data providers and consistent documentation 

across projects.  
 

3.2. Exploration of Possible Future Developments in Provision of Uncertainty Information  
 
Recurrent themes were identified from participants’ statements of requirements. 
Consequently, we discussed three aspects in more detail, i.e. the provision of: ensembles; 
error covariance information in other forms and web-based tools. 
 
Provision of ensembles 
 
An ensemble is a potentially convenient way to encapsulate and convey to users 
information on the sometimes complicated correlation structure of errors. It allows users 
to explore the impact of these uncertainties on their application in a straightforward way; 
repeating their analysis multiple times using different ensemble members. A family of 
different ensembles might be generated, consistently, for different users. Sub-setting of the 
ensemble for specific regional interests would also need to be facilitated. 
 
The number of ensemble members needed is application-dependent, but is likely to range 
between 10 and 1000. Producing a large number would allow users to choose a sub-set. 
However, users need to be guided to choose an unbiased set and not left to make random 
choices.  
 
In such a set-up there would be: 

• A data-producer preferred, central single realisation; 
• Randomly-ordered ensemble members so they aren’t grouped by, e.g. structural 

uncertainties in case users do randomly pick ensemble members; 
• Perhaps, a sub-setting tool which could choose a sub-set from the larger ensemble. 

 
It was discussed whether or not there should be a best estimate and an ensemble around 
it, or just the ensemble members. The difficulty is that what is “most likely” might depend 
on what you’re looking at whether it be e.g. trends or variability, etc. It must be noted that 
the single “best estimate” realisation isn’t an ensemble member, because it isn’t random. 
 
It is important to start the ensemble generation from Level 1 (radiance) data in order to 
include the structural uncertainty relating to how to address e.g. inter-satellite calibration. 
Ensembles would then need to be created on different Levels to suit different applications, 
i.e.: Level 2 (e.g. for assimilation); Level 3 (e.g. for detection and attribution); Level 4 (e.g. 
for driving models); and time series over regions from the Level 4 ensemble. 
 
If the means were provided for a user to generate an ensemble, this should only provide 
the ability to change high-level features such as the output resolution, not to change the 
choice of the range of parameters used in the fundamental ensemble generation. 



 
Users need: clearly stated underlying assumptions; the ensemble to be on 0.05 degrees 
latitude by longitude, daily and coarser; an operationally available ensemble (this is 
technically feasible) or a “best estimate” operationally and the ensemble later. In 
providing an updating ensemble, however, one needs to bear in mind that updates have to 
truly belong to the same ensemble; mere statistical compatibility is not sufficient. 
 
Data providers need to be careful to describe the ensemble using correct, non-confusing 
terminology. For example, are the members equally likely or not? 
 
Provision of covariance information 
 
For some applications, there is a requirement for the provision of uncertainty and 
reliability information in a form other than an ensemble. For some analysis methods it is 
necessary (or at least useful) to have access to information about the covariance of errors. 
Explicitly forming error-covariance matrices can be prohibitively expensive, so it will 
likely be necessary to find some form of parameterisation that allows the majority of the 
information to be conveyed in a compact manner. For Level 4 analyses, potentially with a 
range of spatial scales, this could be a complex operation. In order to guide users through 
the complexities of using such compact covariance representations, good guidance and 
good examples would be needed. 
 
Some users also need information regarding the shape of error distributions. In some 
cases this information will be used to answer standard questions: "are the data close 
enough to Gaussian for our application?", "Is the distribution symmetric?" However, for 
other applications, for example assessing extremes of temperature, information about the 
shape of the distributions will be important: fat-tailed distributions throw up outliers 
more often than expected. Providing a full pdf for each estimated SST would, as for 
providing covariance matrices, be expensive in terms of storage. A solution would be to 
parameterise the distributions using a limited number of functional forms and 
parameters. For those users not needing such detailed information, a selection of example 
PDFs could be provided to give users an idea of how the distributions might look under a 
variety of conditions and why they take the form they do. 
 
With Level 4 analyses, a common concern is whether features that appear in the data are 
real, or an artefact of the interpolation and data fusion techniques. On the other side of 
this, is the concern that an absence of a feature, for example an SST front, does not 
necessarily mean that the feature was absent and might instead mean that the analysis 
was unable to resolve it due to a lack of data, limitations of the statistical methods or both. 
One way that users can assess this in current products is to use proxy uncertainty 
information provided with Level 4 data. For example, estimates of "observational 
influence", length-scale information (in methods that use adaptive length-scales, providing 
more detail where data density allows) or, more directly, whether a grid cell contained 
actual observations and how many there were. However, this kind of ancillary information 
is not easy to interpret without knowledge of how the analysis techniques work. Guidance 
on the strengths, limitations and characteristics of the methods is needed, as is guidance 
on the interpretation of features and their relationship with estimated uncertainty. The 
same problem also likely affects the interpretation of ensembles. 
 
Provision of web-based tools 
 



There are a number of common tasks that users may want to perform on the datasets 
generated by the SST CCI (or any other) project. These include sub-setting the data 
temporally, spatially or by the variables of interest, aggregating the data onto different 
grids and the corresponding propagation of uncertainty information, and applying flags to 
the data (for example using a criterion based on the uncertainty in the SSTs). For at least 
some of these tasks it makes sense to perform this processing before serving the data to 
users as the volume of sub-setted or aggregated data is lower than that of the full dataset. 
There is then less strain placed on internet connections and the data processing and 
storage capabilities of the end user. To achieve this, a web interface would need to be 
designed that allowed users to define what they would like done to the data. The web 
interface would need to be connected to a large data store and sufficient computing power 
to be able to complete the user-specified tasks in a timely manner. It was considered that 
this is all technically feasible using current technology and there are examples of similar 
systems already in use or planned. 
 
The required timeliness of the system would depend on the task that was to be performed. 
For very quick tasks, the web interface should be able to complete the task with minimal 
delay and display a download link to allow users to download the data. For longer tasks 
there may be problems with web pages timing out and users may wish to close their web 
browser before the data were ready. In this case, the system should have the ability to 
send an email alert when the task is complete. Although it is debatable how long a wait is 
acceptable for a task to be completed, it was felt that one day would be reasonable but not 
a month. Certainly, the expectation would be that the system would complete any task 
faster than a user could themselves. In some cases it would be necessary for a user to be 
given priority over others. An example of this would be a user participating in a research 
cruise who cannot afford to wait for their data. It should therefore be made possible to 
apply for priority status for a particular activity to ensure that there are no delays in cases 
where there is urgency for data. Another potential issue is that long processing tasks may 
take up a large proportion of the processing capability of the system, preventing short 
tasks from completing in a timely manner; short tasks should therefore be given greater 
priority than longer tasks. The system should give an estimate of the amount of processing 
and final data quantity so that a user knows what to expect and can modify their choices if 
they wish. 
 
A way to speed up access to processed data would be to cache frequently-downloaded 
data and point users to those if they request the same or similar processing. The cache 
would need to be monitored and any infrequently accessed data deleted. In addition, there 
would need to be an option to not expose data to public access if the nature of the activity 
was sensitive, for example for commercial reasons. The system could usefully output 
example code to read the output data in common programming languages and provide 
alerts to users if data they have downloaded have been updated. Other issues to consider 
include which data formats to support. For example, when on a research cruise with 
limited internet access, output in a very compressed format such as JPEG might be most 
appropriate. This case of limited internet access should also be considered when designing 
the web interface.  
 
A useful addition to the web system would be a facility that allowed users to run their own 
code. This could be done by allowing users to have access to a command prompt in a 
secure virtual environment and run their own scripts on the data. Alternatively, users 
could upload functions that were executed by the system when processing each grid cell; 
these could, for example, be used to generate user defined statistics that are included in 



the output data files. In this case the user would not need to have any direct interaction 
with the data themselves nor any knowledge of the environment in which the code is 
running, which would help make the facility simple to use and secure.  
 
Other functionality that could be considered is the ability to generate match ups between 
satellite and in situ data or to extract/interpolate along a ship track, the ability to upload a 
specification of an area over which data would be aggregated, and the ability to produce 
analyses on a user-specified grid and/or with variations to the standard settings of the 
analysis system. However, in this last case it was recognised that there are significant 
scientific hurdles to overcome to set up the system to do this and that the system may 
have to be restricted to running over a limited region because of the processing cost. To 
extend the usefulness of the tools, they could be designed to run on user's systems and 
data in addition to the SST CCI web system. The tools could also be designed in a modular 
way so that users could use individual modules in their own systems rather than just 
being supplied with an executable program. However, a difficulty is that the tools would 
need to be able to exploit the different technologies in use on the different systems to give 
the best performance. 
 
In summary, it has been identified that a web application could provide a wide range of 
useful functionality to users. While there are plenty of challenges and ideas to consider, 
there is nothing that is unsolvable. It is also noted that a lot of the functionality that has 
been identified is not unique to SST data, so, while it would widen the technical challenges 
considerably, there is the potential to create a powerful system that also serves the users 
of other ECV data. 

 

3.3. Summary and Next Steps 
 

This workshop provided a two-way exchange of information between SST data providers 
and users. Common understanding was engendered through presentations about current 
SST products and their uncertainties, how to talk about and propagate uncertainties and 
how uncertainties might be validated. Approaches by others to the same problem were 
also discussed. Presentations, posters and group discussions allowed information to be 
gathered from users as to their needs for uncertainty information and documentation, 
both now and in the future. 
 
A draft set of user requirements has been created as a result of this workshop (Appendix 
C). These will be analysed and incorporated, as appropriate, into the next revision of the 
SST CCI User Requirements Document, due in late 2015. Thereafter, these User 
Requirements will inform the development of future versions of the SST CCI and other SST 
products. 
 
A presentation on the outcomes from this workshop will be made at the ESA Climate 
Change Initiative Integration meeting (Sweden, May 2015), in order to disseminate this 
information to teams working on the development of Climate Data Records of other 
Essential Climate Variables. 
 
A short summary piece has been drafted for the EOS magazine of the American 
Geophysical Union. Should this be accepted for publication, this will enable the 
dissemination of these outcomes to a wider audience of data providers and users. Other 
organisations, such as the Group for High Resolution SST and Obs4MIPS will also be 
contacted directly. 



 
The workshop organisers wish to thank all the participants most sincerely for giving up 
their time and for their enthusiastic participation; it is much appreciated. 
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Appendix A: Agenda 
 
Tuesday 18th November 
 
0845-0900 Registration 
 
0900-0930 Welcome addresses: 

• Welcome - Pascal Lecomte, ESA Climate Office, Harwell, UK 
• Welcome – Nick Rayner, Met Office Hadley Centre  
• SST CCI products and how they relate to other SST products – Chris Merchant, Science 

Leader, ESA CCI SST project 
 
0930-0950 Activity: Where do the uncertainties come from? What can go wrong with SST 
measurements? 
0950-1030 Presentation: Establishing a common vocabulary – Jon Mittaz, NPL and University 
of Reading 
1030-1050 Presentation: How uncertainties are currently presented – Chris Merchant and 
Nick Rayner 
 
1050-1130 Coffee 
 
1130-1300 then 1400-1530 Activity: Exploring uncertainties (see handouts for your practical 
activity groupings) 
 
1300-1400 Lunch 
 
1530-1600 Coffee 
 
1600-1620 Plenary discussion: Feedback from activity 
 
1620-1700 Presentations: Example use cases of SST uncertainty 
information 

• Use of SST ensemble to better understand uncertainty in an estimate of Transient 
Climate Response – Andrew Schurer and Gabi Hegerl, University of Edinburgh 

• Applications of sea surface temperature in maritime defence operations - Martin 
Veasey, Defence Applications, Met Office 

 
1700-1730 Presentation: Uncertainty validation – Gary Corlett, University of Leicester 
 
1730-1830 Ice breaker reception in Street at the Met Office 
 
Wednesday 19th November 
 
0900-0930 Recap on what we discussed yesterday 
0930-1000 Presentation: How do other people present uncertainty information? Adam Povey, 
University of Oxford 
1000-1030 Presentation: Propagation of uncertainty information through levels of products – 
Claire Bulgin, University of Reading and Emma Fiedler, Met Office 
 
1030-1100 Coffee 
 



1100-1300 Poster session #1 and #2 (45 mins each session) and general discussion (30 
mins): users’ applications of SST observations, including statements of extra information 
needed and any technical challenges that exist to using SST uncertainty information. See 
handouts for your poster session allocation. 
 
Feedback on current SST CCI User Requirements Document (see http://www.esa-sst-
cci.org/?q=webfm_send/46) will also be gathered. 
 
1300-1400 Lunch 
 
1400-1700 Small group discussions to explore specific 
questions, e.g.: 

• Aims: What users would like to be able to do, ignoring technical challenges 
• Proposals: How do you want to receive uncertainty information? 

 
1520-1540 Coffee 
 

• Future proofing: What are likely future improvements in users’ technical 
infrastructure and methods? 

• What would convince you that uncertainties provided were realistic? 
 
Thursday 20th November 
 
0930-1030 Recap and Plenary discussion: feedback from group discussions. 
 
1030-1100 Coffee 
 
1100-1215 Different small group discussions to then critically assess: 

• Any problems with the ideas generated 
• Technical challenges to using uncertainties 
• How we could solve these problems 

 
1215-1300 Plenary discussion: specific plans and feedback of morning’s recommendations 
 
Close 
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Appendix C: Draft User Requirements 
 
SST_CCI-UR-UWU-1 Information on uncertainties on 

specific/larger spatial scales, e.g. for ocean 
basin averages, and over longer temporal 
scales 

SST_CCI-UR-UWU-2 A large, easy to use, fully-documented 
ensemble of sea surface temperature 
information, which samples the full error 
model and can be sub-selected according to 
need 

SST_CCI-UR-UWU-3 A tool which allows the user to generate their 
own ensemble 

SST_CCI-UR-UWU-4 A tool (perhaps web-based) to grid to any 
spatial/temporal scale (e.g. model grids) with 
full uncertainty propagation (and ensemble 
generation) from native resolution. This 
would include the ability to extract 
information for specific regions and to extract 
SST information for different depths 

SST_CCI-UR-UWU-5 Quality flags as a proxy for uncertainty or a 
tool to create tailored flags for specific 
users/groups of users. 

SST_CCI-UR-UWU-6 Full characterization and clear 
documentation of uncertainty, i.e. 
information on how uncertainty estimates 
were derived, what the contributing factors 
were, how to propagate them and what size 
to expect. 

SST_CCI-UR-UWU-7 Quality flags should be well and prominently 
documented. 

SST_CCI-UR-UWU-8 Indicator for the source of possible error (e.g. 
information on uncertainties from clouds to 
help to distinguish them from fronts) 

SST_CCI-UR-UWU-9 Error covariance matrices 
SST_CCI-UR-UWU-10 Error distribution 
SST_CCI-UR-UWU-11 Median estimate, plus uncertainty 
SST_CCI-UR-UWU-12 Validated uncertainties. (More high-quality 

reference data are needed.) 
SST_CCI-UR-UWU-13 Quantified uncertainties back as far as 

possible in the historical record. 
SST_CCI-UR-UWU-14 Coastal SSTs with uncertainties under all 

conditions. 
SST_CCI-UR-UWU-15 Updates to the CF conventions (standard 

name tables) to provide sufficient vocabulary 
to describe all uncertainty components 
adequately. 

SST_CCI-UR-UWU-16 Information content of analysed values, e.g. 
time of last measurement, number of 
contributing observations, or percentage 
coverage. 



SST_CCI-UR-UWU-17 Operationally-available daily SST analyses 
together with uncertainty estimates for each 
value. 

SST_CCI-UR-UWU-18 The ability to disentangle any retrieval bias 
from the systematic uncertainty term. 

SST_CCI-UR-UWU-19 Consistent treatment/presentation of 
uncertainty components across ECVs. 

SST_CCI-UR-UWU-20 Sufficient information, which is easily 
accessible, to make an informed choice about 
which data set to choose, including known 
limitations. 

SST_CCI-UR-UWU-21 A PUG written by users. 
SST_CCI-UR-UWU-22 Link to information in other fora, e.g. NCEP 

climate data guide, GHRSST multi-product 
ensemble. 

SST_CCI-UR-UWU-23 Feedback mechanism, e.g. a forum or 
discussion group. 

SST_CCI-UR-UWU-24 Code repository including, e.g. data readers 
and functions for common data manipulation 
tasks (in particular, how to use the time 
variable). Clear documentation of these. 

SST_CCI-UR-UWU-25 Provision of SST variability within a given 
grid cell and its associated uncertainty. 

SST_CCI-UR-UWU-26 Model answers to the practical activities. 
SST_CCI-UR-UWU-27 Daily (or day/night) L3C products. 
SST_CCI-UR-UWU-28 Rename the L4 analysis uncertainties to be 

more correct. 
SST_CCI-UR-UWU-29 Clear documented examples of e.g. how to 

take products from the archive and use in 
applications. 

SST_CCI-UR-UWU-30 Results from the uncertainty validation, along 
with their derivation, must be published in 
peer-reviewed literature. 

SST_CCI-UR-UWU-31 Examples where the uncertainties have been 
used should be provided to show a 
demonstrable improvement in an application. 

SST_CCI-UR-UWU-32 Validate product uncertainties at all scales 
e.g. global/regional/local/coastal. 

SST_CCI-UR-UWU-33 Provide results from validating uncertainties 
in regions of known issues affecting satellite 
SST retrievals. 

SST_CCI-UR-UWU-34 Clear advice should be given on 
interpretation of uncertainty verification 
maps, e.g. what to do where areas of high 
uncertainty cannot be validated. 

 
  



Appendix D: Practical activities 
 
Activity 1: Compare the SST CCI L4 products and see if they agree 

within their uncertainties 
 
Aim: To familiarise yourself with the uncertainties in ESA SST CCI L4 data and think about 
their limitations. 
 
Objective: To compare time series of SST from the SST CCI L4 and SST CCI L4 demonstration 
products and assess whether they agree within their uncertainties. 
 
Data provided: 1° extracts of daily SST CCI L4 fields (on a 0.05° grid) are provided for three 
different locations – (i) central North Atlantic subtropical gyre; (ii) offshore West Africa; (iii) 
central Bering Sea.  See labels A, B and X in the figure below (the bottom left corner of a label 
is positioned in the centre of an extracted region).  Data cover the period June-August 2007, 
which is the test period for which the demonstration SST CCI L4 product was produced.  
Separate data files are provided for each product and for each region (six files in total).    
 

 
 
Background: 
 
For each 1° region of interest you have been provided with a time series of data extracted 
from the SST CCI L4 product and from the SST CCI L4 demonstration product.  The 
demonstration product is produced by the same analysis system as the SST CCI L4 product, 
but makes use of microwave (MW) SST retrievals in addition to infra red (IR) data.  IR 
frequencies are attenuated by cloud and dust particles, reducing the frequency and accuracy 
of measurements in regions with high cloud and dust levels.  MW measurements have a 
higher uncertainty, but are much less attenuated by clouds and dust.  Observations show the 
offshore West Africa and Bering Sea regions extracted here to be locations of high probability 
atmospheric-dust and cloud-cover respectively.  
 
Tasks: 
 
To make the assessment, for each region you should: 
 



i. Read in and unpack the analysed_sst and analysis_error variables for the two L4 
products. 

ii. Create a time series of SST and uncertainties for each 1° location. 
iii. Assess whether the difference between the time series is significant given the 

uncertainties. 
 
Questions: 
 

• Do the time series differ within their uncertainties?  How and why do they differ? 
 

• How would covariance of the uncertainty between grid cells or between products 
affect your interpretation?  Why might this covariance arise?   
 

• Instead of averaging over a 1° area, try comparing time series from a single 0.05° grid 
cell.  How does this affect your conclusions? 
 

• An approximate correlation length scale for the L4 uncertainties might be ~50 km.  
This is a comparable scale to the 1° area being considered here.  If we assume the L4 
uncertainties entirely correlated in space for each product, how does this affect your 
conclusions? 

 
Activity 2: Create and SST index and calculate uncertainties on it 

using L3U and L4 data and compare 
 
Aim: To familiarise yourself with the uncertainties in ESA SST CCI L3U and L4 data and how 
they should be combined/compared. 
 
Objective: To create a simple SST index and calculate its uncertainty 
 
Data provided: Re-gridded ATSR V1.1 L3U and analysis V1.0 L4 for 2006 to 2010 for a region 
covering 100W to 80W and 5N to 20N. The data have been re-gridded to a spatial resolution 
of 1 degree and a temporal resolution of 5 days. 
 
Background: 
 
You have been provided with re-gridded L3U and L4 data for a region covering 100W to 80W 
and 5N to 20N for the period 2006 through 2010 in 1 degree pentads. The chosen region is 
affected by the Papagayo wind that intermittently dramatically cools the SST. Your task is to 
create an index of the degree of Papagayo cooling by comparing the SST and its uncertainties 
at two different locations. The extracted L3U data contains an additional uncertainty term 
“coverage_uncertainty”, which is an estimate of the uncertainty in each 1-degree cell due to 
the variable sampling as a result of clouds in the input infrared imagery. 
 
An example L4 image for the chosen region is given below: 
 



 
 
In addition to the re-gridded data we have also provided you with a pre-extracted time series 
from two locations, one in an area affected by the wind (88.5W/9.5N) and one in an area 
unaffected (88.5W/9.5N).  The two locations are shown using the two dots on the previous image. 
For the L3U data, the total uncertainty has been added to the time series file along with its component 
terms. 
 
Tasks: 
 
To create the index the first step is to extract a time series of SST uncertainties. To do this you should: 
 

iv. Read in the image data 
v. Select your locations – one from an area affected by the wind and one from an area unaffected 

by the wind 
vi. Extract a time series of SST and uncertainties at each location; for L3U calculate the total 

uncertainty for each point of the time series 
 
Once you have extracted your time series the next step is to generate the index and its uncertainty. 
Finally, plot the index for both the L3U and L4 data and compare. You should: 
 

i. Calculate the mean of the time series at each location and generate an anomaly time series for 
each location 

ii. Calculate the index as the difference between the anomalies at each location 
iii. Calculate the uncertainty on the index.  
iv. The data is plotted to distinguish its positive (affected by the wind) and negative (unaffected) 

phases. 
 
We strongly advise that you generate your own time series but you are free to use the pre-
extracted time series should you wish to do so. 
 
Questions: 
 

• How did you calculate the uncertainty on the index? 
 

• What are the main differences between the L3U and L4 results? 
 

• What information is currently missing in either the L3U or L4 data sets that would 
have helped with this task? 



 
Activity 3: Create an averaged time series (1 degree and 5-day) 

from SST CCI L3U data 
 
Aim: To understand how different uncertainty terms should be propagated when averaging 
data in time and space. 
 
Objective: To create a 5-day average SST time series at 0.2 metre depth for a 1 degree region 
using L3U data.  
 
Data provided: AATSR v1.1 L3U data (on a 0.05° grid), extracted for the region 30-31°N and 
46-45°W in the subtropical North Atlantic.  Data are for August 2004.  A separate file with 
data extracted for the whole of 2004 is also provided should participants prefer to calculate a 
longer time series.     
 
Background: 
 
You have been provided with a time series of L3U data extracted for a 1° region.  The SST in 
each extracted 0.05° grid cell has several different uncertainty terms associated with it that 
arise due to different kinds of measurement error.  These uncertainty terms separate a grid 
cell’s total uncertainty into components which are correlated with other grid cells on different 
time/space scales.  By providing these components separately, this allows us to propagate 
uncertainty appropriately when aggregating multiple grid cells.  This is what we will do here. 
 
The files provided for this exercise are in SST CCI L3U format.  These provide both a skin SST 
(the upper few microns of the sea surface, which is what is measured by infra red 
instruments) and SST at 0.2 m depth.  To get from skin SST to SST at 0.2 m we apply an 
adjustment to the skin SST measurement.  This adjustment has an associated uncertainty.  
Because we are producing a time series of SST at 0.2 metre depth, we need to make sure we 
take this uncertainty into account in this activity.    
 
Note that the data files provided for this exercise contain a large amount of missing data.  This 
is because each time slice comprises data from a single AATSR orbit, thus in many cases a time 
slice contains no data where the AATSR swath did not pass over the region of interest.  Data 
may also be missing due to cloud obscuring the AATSR view.  We have purposely chosen an 
area which is well sampled by the AATSR, and so in this activity we will ignore sampling 
uncertainty (the uncertainty that arises due to incomplete sampling of an area in space and 
time).  However, this is an additional source of error that a user would need to consider when 
working with the SST CCI data (note that when regridding SST CCI data using the SST CCI 
regridder tool, an estimate of sampling uncertainty is provided). 
 
Tasks: 
 
To create a time series of 1-degree and 5-day averages you should: 
 
vii. Read in and unpack the time, sst_dtime, sea_surface_temperature_depth, quality_level, 

large_scale_correlated_uncertainty, synoptically_correlated_uncertainty, 
adjustment_uncertainty and uncorrelated_uncertainty variables. 

viii. Produce a time variable (hint: add sst_dtime to time to get seconds after 1981-01-01 00:00:00, 
then subtract 744163200 to convert to seconds since 2004-08-01 00:00:00).    

ix. For each 5-day averaging window, find SST obs whose times fall in the averaging window and 
whose value is not equal to -32768 and whose quality level is equal to 5. 



x. Average the obs that meet the above criteria for each 5-day window. 
xi. Calculate uncertainties for the average in each 5-day window (hint: this can be done following 

guidance in Section 7.4 of the SST CCI PUG, which we have provided for this activity.  A mean 
spatial separation, dxy, and mean temporal separation, dt, will be required for the calculations.  
You can use dxy=50 km and dt=2 days).   

 
[To simplify the exercise, you may prefer to calculate a single monthly average with uncertainties for 
August 2004.  In this case average all SST obs in the file whose value is not equal to -32768 and whose 
quality level is equal to 5, and calculate the uncertainties using dxy=50 km and dt=6 days] 
 
Questions: 
 

• For 1-degree and 5-day averages, can we distinguish an SST signal at this location given 
the uncertainty?  
 

• Which term(s) is the dominant source of uncertainty in the averages? 
 

• How might this differ if we averaged over smaller or larger time/space scales? 
 

Appendix E: Worked Examples of Practical Activities 
 
 



Activity 1 - Compare the SST CCI L4 products and see if they agree within 
their uncertainties

Set up

Import the modules we need and set graphics to display on the page.

In [1]: 

import matplotlib.pyplot as plt

from netCDF4 import Dataset

import numpy as np

%matplotlib inline

Define a function to read in the data we wish to use.

In [2]: 

def read_data(region):

'''Read extracts of the SST CCI level 4 product and the SST CCI demonstration level 4 product.

       Region can be '179_5W58_5N' or '19_5W20_5N' or '40_5W33_5N'.

       The SST and SST uncertainty data from both products are returned.

    '''

datadir = '/project/sstcci/workshop'



file1 = datadir + '/ESA_SST_CCI-uncertainty-workshop-activity-I-L4-' + region + '.nc'

file2 = datadir + '/ESA_SST_CCI-uncertainty-workshop-activity-I-demoL4-' + region + '.nc'

nc = Dataset(file1)
sst1 = nc.variables['analysed_sst'][:]

unc1 = nc.variables['analysis_error'][:]

nc.close()

nc = Dataset(file2)

sst2 = nc.variables['analysed_sst'][:]

unc2 = nc.variables['analysis_error'][:]

nc.close()

return sst1, unc1, sst2, unc2

A function to display the four fields read by the read_data function.

In [3]: 

def plot_data(sst1, unc1, sst2, unc2, timepoint):

'''Produces a plot of the SST and uncertainty data.

       sst1, unc1, sst2, unc2 are the data read by the read_data function.

       timepoint is the index to plot in the time dimension.

    '''

fig = plt.figure(figsize=(10, 10))

ax = fig.add_subplot(2, 2, 1)

p = plt.imshow(sst1[timepoint, :, :])

cb = plt.colorbar(p)

cb.formatter.set_useOffset(False)

cb.update_ticks()
cb.set_label('K')



ax.set_title('SST1')

ax = fig.add_subplot(2, 2, 2)

p = plt.imshow(unc1[timepoint, :, :])

cb = plt.colorbar(p)

cb.formatter.set_useOffset(False)

cb.update_ticks()

cb.set_label('K')

plt.gca().set_title('UNC1')

ax = fig.add_subplot(2, 2, 3)

p = plt.imshow(sst2[timepoint, :, :])

cb = plt.colorbar(p)

cb.formatter.set_useOffset(False)

cb.update_ticks()

cb.set_label('K')

plt.gca().set_title('SST1')

ax = fig.add_subplot(2, 2, 4)

p = plt.imshow(unc2[timepoint, :, :])

cb = plt.colorbar(p)

cb.formatter.set_useOffset(False)

cb.update_ticks()

cb.set_label('K')

plt.gca().set_title('UNC1')

plt.show()

Results



Region: 179_5W58_5N

Read the data and plot.

In [4]: 

sst1, unc1, sst2, unc2 = read_data('179_5W58_5N')

plot_data(sst1, unc1, sst2, unc2, 0)





First look at averages of the images. For efficiency the data are first reshaped into 2-dimensional arrays with time in one dimension. The mean of the 

SSTs is found. Uncertainties are combined assuming that errors in the SSTs are uncorrelated between grid cells.

In [5]: 

# Find the number of time points.

ntimes = sst1.shape[0]

# For computational efficiency we make the arrays 2D with time in one dimension, space in the other.

sst1rs = sst1.reshape(ntimes, -1)

unc1rs = unc1.reshape(ntimes, -1)

sst2rs = sst2.reshape(ntimes, -1)

unc2rs = unc2.reshape(ntimes, -1)

npoints = unc1rs.shape[1]

# Using the reshaped arrays we can generate the time series.

sst1ts = np.mean(sst1rs, axis=1)

unc1ts = np.sqrt(np.sum(unc1rs**2, axis=1)) / npoints

sst2ts = np.mean(sst2rs, axis=1)

unc2ts = np.sqrt(np.sum(unc2rs**2, axis=1)) / npoints

# Plot of the data.

plt.errorbar(range(ntimes), sst1ts, yerr=unc1ts, label='SST1')

plt.errorbar(range(ntimes), sst2ts, yerr=unc2ts, label='SST2')

plt.gca().set_ylabel('K')

plt.legend(loc=2)

plt.show()



We are interested in the difference between the two SST time series. The uncertainties are combined in quadrature i.e. we are assuming that errors 

in the two time series are uncorrelated with each other (this is perhaps ill-advised for this example, however).

In [6]: 

sstdiff = sst1ts - sst2ts

unctotal = np.sqrt(unc1ts**2 + unc2ts**2)

plt.errorbar(range(ntimes), sstdiff, yerr=unctotal)

plt.axhline(color='k')

plt.gca().set_ylabel('K')

plt.show()



An alternative assumption is that errors are correlated between grid cells.

In [7]: 

unc1ts = np.sum(unc1rs, axis=1) / npoints

unc2ts = np.sum(unc2rs, axis=1) / npoints

unctotal = np.sqrt(unc1ts**2 + unc2ts**2)

# Plot.

plt.errorbar(range(ntimes), sstdiff, yerr=unctotal)

plt.axhline(color='k')

plt.gca().set_ylabel('K')

plt.show()



Single pixels can also be compared.

In [8]: 

# Pixel coordinates.

x = 9

y = 9

# Extract from the data.

sst1ts = sst1[:, x, y]

unc1ts = unc1[:, x, y]

sst2ts = sst2[:, x, y]

unc2ts = unc2[:, x, y]

# Difference.

sstdiff = sst1ts - sst2ts



unctotal = np.sqrt(unc1ts**2 + unc2ts**2)

# Plot.

plt.errorbar(range(ntimes), sstdiff, yerr=unctotal)

plt.axhline(color='k')

plt.gca().set_ylabel('K')

plt.show()

The result is similar to the correlated errors example.

Region: 19_5W20_5N



Results are shown for a single pixel from this region. Working follows the example above.

In [9]: 

sst1, unc1, sst2, unc2 = read_data('19_5W20_5N')

plot_data(sst1, unc1, sst2, unc2, 0)





In [10]: 

# Pixel coordinates.

x = 9

y = 9

# Extract from the data.

sst1ts = sst1[:, x, y]

unc1ts = unc1[:, x, y]

sst2ts = sst2[:, x, y]

unc2ts = unc2[:, x, y]

# Find the number of time points.

ntimes = sst1ts.shape[0]

# Plot of the data.

plt.errorbar(range(ntimes), sst1ts, yerr=unc1ts, label='SST1')

plt.errorbar(range(ntimes), sst2ts, yerr=unc2ts, label='SST2')

plt.gca().set_ylabel('K')

plt.legend(loc=2)

plt.show()



In [11]: 

sstdiff = sst1ts - sst2ts

unctotal = np.sqrt(unc1ts**2 + unc2ts**2)

plt.errorbar(range(ntimes), sstdiff, yerr=unctotal)

plt.axhline(color='k')

plt.gca().set_ylabel('K')

plt.show()



Region: 40_5W33_5N

In [12]: 

sst1, unc1, sst2, unc2 = read_data('40_5W33_5N')

plot_data(sst1, unc1, sst2, unc2, 0)





In [13]: 

# Pixel coordinates.

x = 9

y = 9

# Extract from the data.

sst1ts = sst1[:, x, y]

unc1ts = unc1[:, x, y]

sst2ts = sst2[:, x, y]

unc2ts = unc2[:, x, y]

# Find the number of time points.

ntimes = sst1ts.shape[0]

# Plot of the data.

plt.errorbar(range(ntimes), sst1ts, yerr=unc1ts, label='SST1')

plt.errorbar(range(ntimes), sst2ts, yerr=unc2ts, label='SST2')

plt.gca().set_ylabel('K')

plt.legend(loc=2)

plt.show()



In [14]: 

sstdiff = sst1ts - sst2ts

unctotal = np.sqrt(unc1ts**2 + unc2ts**2)

plt.errorbar(range(ntimes), sstdiff, yerr=unctotal)

plt.axhline(color='k')

plt.gca().set_ylabel('K')

plt.show()



Answers to worksheet questions

� Do the time series differ within their uncertainties? How and why do they differ?

For 1° averages the time series clearly differ given their uncertainties. For the 1° regions centred on 179.5W-58.5N and 19.5W-20.5N we see that the 

SST CCI L4 product is frequently cooler than the demonstration L4 product. This is likely because the demonstration L4 product incorporates

microwave measurements which are less attenuated by cloud and dust. A systematic difference between the two products is less apparent for the 1° 

region centred on 40.5W-33.5N where there is a lower probability of cloud or dust in the atmosphere.

� How would covariance of the error between grid cells or between products affect your interpretation? Why might this covariance arise?

When aggregating grid cells together, covariance of the error between grid cells will increase the uncertainty in the aggregate. This in turn increases 

the uncertainty of the difference between the two L4 products, which is calculated by combining the uncertainties of the aggregates in quadrature.



One way in which this covariance might arise is because the satellite SST observations ingested by the L4 products have a component of uncertainty 

arising from errors that are correlated over synoptic scales.

If covariance of the error exists between the products, this will reduce the uncertainty of the difference between the two L4 products. This is because, 

if we have two values A and B with uncertainties sig(A) and sig(B), then using the law of propagation of uncertainties, the uncertainty of A-B = SQRT

[ sig(A)^2 + sig(B)^2 – 2*cov(sig(A),sig(B)) ]; i.e. the covariance term (cov) reduces the uncertainty of the difference. This covariance might arise 

because the two L4 products being compared share some input observations and use the same analysis system.

These two un-quantified effects make it difficult to interpret the significance of the differences between the 1° averaged time series.

� Instead of averaging over a 1° area, try comparing time series from a single 0.05° grid cell. How does this affect your conclusions?

If we look at 0.05° extracts, we see that the time series themselves are similar to the time series of the 1° aggregates, but the magnitude of the 

uncertainties has increased. Despite this increase, for regions 179.5W-58.5N and 19.5W-20.5N, we still see that the SST CCI L4 product is

sometimes cooler than the demonstration L4 product given the uncertainties. Because we are no longer aggregating grid cells, we do not need to 

worry about covariance of the error between grid cells. However, as discussed in the previous question, when looking at the difference between the 

two time series, the covariance of the error between the two products remains un-quantified which makes interpreting the significance of the 

differences difficult. However, because this covariance will act to reduce the uncertainty of the difference between the two products, we can consider 

the uncertainties for the 0.05° extracts to be at their upper limit. This means that the differences we see here are robust.

It is emphasised that were the uncertainties correctly quantified, the two products would agree given their uncertainties. The disagreement we see for 

regions 179.5W-58.5N and 19.5W-20.5N is likely occurring because the error model does not adequately capture the effects of cloud and dust on the 

SST analysis.

� An approximate correlation length scale for the L4 errors might be ~50 km. This is a comparable scale to the 1° area being considered here. 

If we assume the L4 errors entirely correlated in space for each product, how does this affect your conclusions? 

In this case we get a similar answer as for the 0.05° extracts.



Actvity 2

In this activity we create an index for cooling of the SST by the Papagayo wind

First we setup the python libraries we need

In [11]: from netCDF4 import Dataset

import numpy as np

import matplotlib.pyplot as plt

import matplotlib.dates as dt

The first task is to read in the L3U and L4 extracts. There is one file provided for ATSR L3U data and one for analysis L4 data

Define location of data

In [12]: datadir = '/Users/garycorlett/gkc1/SST_CCI/Phase-II/uncertainty_workshop/Data'

l3u_extract_file = datadir + '/ESA-SST_CCI-uncertainty-workshop-actvity-II-L3U-extracts.nc'

l4_extract_file = datadir + '/ESA-SST_CCI-uncertainty-workshop-actvity-II-L4-extracts.nc'

First read in L3U data (we are only going to read in the variables we need)



In [13]: nc_l3u = Dataset(l3u_extract_file)

# Time

time_l3u = nc_l3u.variables['time'][:]

# SST - read 20 cm depth

sst_l3u = nc_l3u.variables['sst_depth_20'][:,:,:]

# Uncertainty due to incompelte spatial coverage of ATSR L3U data

cov_l3u = nc_l3u.variables['coverage_uncertainty'][:,:,:]

# Uncertainty due to uncorrelated (random) effects

unc_l3u = nc_l3u.variables['uncorrelated_uncertainty'][:,:,:]

# Uncertainty due to large scale correlated effects

cor_l3u = nc_l3u.variables['large_scale_correlated_uncertainty'][:,:,:]

# Uncertainty due to locally (synoptically) correlated effetcs

syn_l3u = nc_l3u.variables['synoptically_correlated_uncertainty'][:,:,:]

# Uncertainty from errors in diurnal adjusment model

adj_l3u = nc_l3u.variables['adjustment_uncertainty'][:,:,:]

nc_l3u.close()

Now read in the L4 data

In [14]: nc_l4 = Dataset(l4_extract_file)

# Time

time_l4 = nc_l4.variables['time'][:]

# SST - 20 cm depth

sst_l4 = nc_l4.variables['analysed_sst'][:,:,:]

# Total uncertainty - incorrectly named as following GHRSST guidelines

tot_l4 = nc_l4.variables['analysis_error'][:,:,:]

nc_l4.close()

Now extract time series at chosen location. We are going to select locations at 12.5N/91.5W and 9.5N/88.5W. As we know the extracts

are from 5N to 20N in latitude and 100W to 80W in longitude at 1-degree resolution we can simply select the locations by selecting their

indices as [10,11] and [7,8], respectively. Note: Data are stored as [time, lat, lon] so the first index is for latitude and the second as

longitude.



In [16]: # Extract data at chosen locations

l3u_ssts_1 = sst_l3u[:,7,8]

l3u_ssts_2 = sst_l3u[:,10,11]

l4_ssts_1 = sst_l4[:,7,8]

l4_ssts_2 = sst_l4[:,10,11]

# For L3U we need to calculate the total uncertainty from the provided component elements

l3u_tot_1 = np.sqrt(cov_l3u[:,7,8]**2 + unc_l3u[:,7,8]**2 + cor_l3u[:,7,8]**2 + syn_l3u[:,7,8]**

2 + adj_l3u[:,7,8]**2)

l3u_tot_2 = np.sqrt(cov_l3u[:,10,11]**2 + unc_l3u[:,10,11]**2 + cor_l3u[:,10,11]**2 + syn_l3u[:,

10,11]**2 + adj_l3u[:,10,11]**2)

l4_tot_1 = tot_l4[:,7,8]

l4_tot_2 = tot_l4[:,10,11]

One we extracted out time series we can now create an index by differencing the SST anomaly at each location.  To calculate the

anomaly we subtract the mean SST at each location. We also calculate the uncertainty on the index as the uncertainty on the difference

between two SSTs so we simply propogate the uncerainties in quadrature.

In [17]: # First calculate means

mean1_l3u = np.mean(l3u_ssts_1)

mean2_l3u = np.mean(l3u_ssts_2)

mean1_l4 = np.mean(l4_ssts_1)

mean2_l4 = np.mean(l4_ssts_2)

# Now calculate index

diff_l3u = (l3u_ssts_1 - mean1_l3u) - (l3u_ssts_2 - mean2_l3u)

diff_l4 = (l4_ssts_1 - mean1_l4) - (l4_ssts_2 - mean2_l4)

# Finally, calculate uncertainty on index

tot_unc_l3u = np.sqrt(l3u_tot_1**2 + l3u_tot_2**2)

tot_unc_l4 = np.sqrt(l4_tot_1**2 + l4_tot_2**2)

Now we can plot the index - for simplcity we plot the negtive and positive phases of the index indifferent colours. We represent the

uncertainty at each location as an error bar (for ease of plotting).



In [18]: # Convert times as seconds from 00:00:00 01/01/1981 to Matplotlib format

epoch = dt.date2num(datetime.datetime( 1981, 1, 1))

l3u_dates = (time_l3u / 86400.0) + epoch

l4_dates = (time_l4 / 86400.0) + epoch

First, the L3U results:

In [19]: # Create a mask for values greater than zero and values less than or equal to  zero

ind_pos = np.where(diff_l3u > 0.0)

ind_neg = np.where(diff_l3u <= 0.0)

# Plot using error bars to show magnitude of uncertainty, postive phase in red, negative phase i

n blue

fig = plt.figure()

plt.ylim(-5,5)

plt.xlabel('Date')

plt.ylabel('L3U SST index')

ax = fig.add_subplot(1, 1, 1)

ax.errorbar(l3u_dates[ind_pos], diff_l3u[ind_pos], yerr=tot_unc_l3u[ind_pos], color='red', fmt =

 'o')

ax.errorbar(l3u_dates[ind_neg], diff_l3u[ind_neg], yerr=tot_unc_l3u[ind_neg], color='blue', fmt 

= 'o')

ax.xaxis_date()

plt.show()

Next, the L4 results:



In [20]: # Create a mask for values greater than zero and values less than or equal to  zero

ind_pos = np.where(diff_l4 > 0.0)

ind_neg = np.where(diff_l4 <= 0.0)

# Plot using error bars to show magnitude of uncertainty, postive phase in red, negative phase i

n blue

fig = plt.figure()

plt.ylim(-5,5)

plt.xlabel('Date')

plt.ylabel('L4 SST index')

ax = fig.add_subplot(1, 1, 1)

ax.errorbar(l4_dates[ind_pos], diff_l4[ind_pos], yerr=tot_unc_l4[ind_pos], color='red', fmt = 'o

')

ax.errorbar(l4_dates[ind_neg], diff_l4[ind_neg], yerr=tot_unc_l4[ind_neg], color='blue', fmt = '

o')

ax.xaxis_date()

plt.show()

Answers to questions

Question 1: How did you calculate the uncertainty on the index?

To calculate the uncertianty  on the index you add the uncertainties from each location in quadrature (you are taking the difference

between SSTs as the index).



Question 2: What are the main differences between the L3U and L4 results?

The indexes are actually fairly consistent between the L3U and L4 results, including the non-observation of a positive phase at the start

of 2010. The most noticeable difference is the order of magnitude of the uncertainties.

Question 3: What information is currently missing in either the L3U or L4 data sets that would have helped with this task?

The difference between the uncertainties is due to the fact that the L4 uncertainty (or analysis_error as it is named) is wrongly assumed

to be random and reduces as part of the re-gridding to 1 degree. The L4 requires more detail on correlation lengths as given in the L3U

products.



Activity 3 - Create an averaged time series (1 degree and 5-day) from SST 
CCI L3U data

Set up

Import the modules we need and set the graphics to appear inline.

In [1]: 

import matplotlib.pyplot as plt

from netCDF4 import Dataset

import numpy as np

%matplotlib inline

Define a data reader.

In [2]: 

def read_data(all2004=False):

if all2004:
filename = '/project/sstcci/workshop/ESA_SST_CCI-uncertainty-workshop-activity-III-L3u-45_5W30_5N-200

4.nc'

reftime = 725760000

else:



filename = '/project/sstcci/workshop/ESA_SST_CCI-uncertainty-workshop-activity-III-L3u-45_5W30_5N-Aug2

004.nc'

reftime = 744163200

data = {} # Dictionary to hold the data.

nc = Dataset(filename)

# Combine the time and sst_dtime variables to find the time of each SST relative to a reference time.

# The reference time corresponds to the beginning of the time period being examined in the units used in t

he netCDF file.

time = nc.variables['time'][:]

dtime = nc.variables['sst_dtime'][:]

data['time'] = time[:, np.newaxis, np.newaxis] + dtime[:, :, :] - reftime

# Other variables are extracted and stored in the dictionary as they are.

data['sst'] = nc.variables['sea_surface_temperature_depth'][:]

data['unc_lsc'] = nc.variables['large_scale_correlated_uncertainty'][:]

data['unc_sc'] = nc.variables['synoptically_correlated_uncertainty'][:]

data['unc_u'] = nc.variables['uncorrelated_uncertainty'][:]

data['unc_a'] = nc.variables['adjustment_uncertainty'][:]

# Ensure that all the variables are masked consistently and that only quality level 5 SSTs are used.

quality = nc.variables['quality_level'][:]

mask = (data['sst'].mask | data['unc_lsc'].mask | data['unc_sc'].mask |

data['unc_u'].mask | data['unc_a'].mask | quality != 5)

data['sst'].mask = mask

data['unc_lsc'].mask = mask

data['unc_sc'].mask = mask

data['unc_u'].mask = mask

data['unc_a'].mask = mask

nc.close()

return data



Analysis - August 2004

Read in the data.

In [3]: 

data = read_data()

The data are to be divided into five day windows. Each window of data is analysed to find the average SST and its uncertainty.

In [4]: 

windowsize = 5.0 * 24.0 * 60.0 * 60.0 # 5 days in seconds.

nwindows = int(np.ceil(np.max(data['time']) / windowsize))
print('Number of windows is %i' % nwindows)

Create arrays to hold the aggregated results.

In [5]: 

Number of windows is 6



asst = np.ma.zeros(nwindows)

aunc_lsc = np.ma.zeros(nwindows)

aunc_sc = np.ma.zeros(nwindows)

aunc_u = np.ma.zeros(nwindows)

aunc_a = np.ma.zeros(nwindows)

asst.mask = True

aunc_lsc.mask = True

aunc_sc.mask = True

aunc_u.mask = True

aunc_a.mask = True

Loop through the windows aggregating the SSTs and uncertainties that fall into each.

In [6]: 

mean_dist = 50.0

mean_time = 2.0

for iwindow in range(nwindows):

timemin = iwindow * windowsize

timemax = (iwindow + 1) * windowsize

inwindow = (data['time'] >= timemin) & (data['time'] < timemax)

ninwindow = np.count_nonzero(data['sst'].mask[inwindow] == False)

if ninwindow == 0: continue

n_synop_areas = ninwindow / (1.0 + np.exp(-0.5 * (mean_dist / 100.0 + mean_time))*(ninwindow - 1))

asst[iwindow] = np.sum(data['sst'][inwindow]) / ninwindow # I.e. the mean.

aunc_lsc[iwindow] = np.sum(data['unc_lsc'][inwindow]) / ninwindow

aunc_sc[iwindow] = np.sqrt(np.sum(data['unc_sc'][inwindow]**2) / (ninwindow * n_synop_areas))



aunc_u[iwindow] = np.sqrt(np.sum(data['unc_u'][inwindow]**2)) / ninwindow

aunc_a[iwindow] = np.sqrt(np.sum(data['unc_a'][inwindow]**2) / (ninwindow * n_synop_areas))

Total uncertainty is obtained by combining the uncertainty components in quadrature.

In [7]: 

aunc_total = np.sqrt(aunc_lsc**2 + aunc_sc**2 + aunc_u**2 + aunc_a**2)

The results of the calculations are plotted below.

In [8]: 

xaxis = np.arange(nwindows) + 1

fig = plt.figure(figsize=(18, 4))

# Plot of SST and total uncertainty.

fig.add_subplot(1, 2, 1)

use = asst.mask == False # Avoids a warning when errorbar is used below.

plt.errorbar(xaxis[use], asst[use], marker='x', ls='None', yerr=2*aunc_total[use])

plt.gca().set_xlim(0, nwindows + 1)

plt.gca().set_xlabel('Window')

plt.gca().set_ylabel('SST (K)')

plt.gca().set_title('Average SST +/- 2-sigma uncertainty')

# Plot of uncertainty components.

fig.add_subplot(1, 2, 2)

plt.plot(xaxis, aunc_lsc, 'x-', label='Large scale')

plt.plot(xaxis, aunc_sc, 'x-', label='Synoptic')



plt.plot(xaxis, aunc_u, 'x-', label='Uncorrelated')

plt.plot(xaxis, aunc_a, 'x-', label='Adjustment')

plt.gca().set_xlim(0, nwindows + 1)

plt.gca().set_xlabel('Window')

plt.gca().set_ylabel('Uncertainty (K)')

plt.gca().set_title('Uncertainty components')

plt.legend()

plt.show()

ANSWERS TO WORKSHEET QUESTIONS: 1. If we plot the August 2004 data we can distinguish some variablility at 2-sigma uncertainty between 

5-day windows. If we plot the 2004 data we clearly see the seasonal cycle. We should remember that sampling uncertainty has not been included 

here. 2. For 1-degree and 5-day averages the synoptically correlated uncertainty is the dominant contributor to the total uncertainty. The large scale 

component can also make a significant contribution to the total uncertainty and for some averaging windows can be comparable in magnitude to the 

synoptically correlated component. 3. If we averaged over larger time and space scales the effective number of synoptic areas would increase, the 

synoptically correlated component of uncertainty would reduce in magnitude, and the large scale correlated component of uncertainty would become



dominant. If we averaged over smaller space and time scales the synoptically correlated components of uncertainty would increase as the effective 

number of synoptic areas tends towards one. The uncorrelated component of uncertainty would also increase because its variance is reduced by the 

square of the number of observations being averaged. In the data provided, the magnitude of the uncorrelated component of uncertainty and the 

adjustment uncertainty are generally smaller than the synoptically correlated component, and so at small scales the synoptically correlated 

component of uncertainty is likely to dominate.

Analysis - 2004

The processing done for August 2004 is now repeated for the whole of 2004.

In [9]: 

data = read_data(all2004=True)

windowsize = 5.0 * 24.0 * 60.0 * 60.0 # 5 days in seconds.

nwindows = int(np.ceil(np.max(data['time']) / windowsize))

print('Number of windows is %i' % nwindows)

asst = np.ma.zeros(nwindows)

aunc_lsc = np.ma.zeros(nwindows)

aunc_sc = np.ma.zeros(nwindows)

aunc_u = np.ma.zeros(nwindows)

aunc_a = np.ma.zeros(nwindows)

asst.mask = True

aunc_lsc.mask = True

aunc_sc.mask = True
aunc_u.mask = True

aunc_a.mask = True



for iwindow in range(nwindows):

timemin = iwindow * windowsize

timemax = (iwindow + 1) * windowsize

inwindow = (data['time'] >= timemin) & (data['time'] < timemax)

ninwindow = np.count_nonzero(data['sst'].mask[inwindow] == False)

if ninwindow == 0: continue

n_synop_areas = ninwindow / (1.0 + np.exp(-0.5 * (mean_dist / 100.0 + mean_time))*(ninwindow - 1))

asst[iwindow] = np.sum(data['sst'][inwindow]) / ninwindow # I.e. the mean.

aunc_lsc[iwindow] = np.sum(data['unc_lsc'][inwindow]) / ninwindow

aunc_sc[iwindow] = np.sqrt(np.sum(data['unc_sc'][inwindow]**2) / (ninwindow * n_synop_areas))

aunc_u[iwindow] = np.sqrt(np.sum(data['unc_u'][inwindow]**2)) / ninwindow

aunc_a[iwindow] = np.sqrt(np.sum(data['unc_a'][inwindow]**2) / (ninwindow * n_synop_areas))

aunc_total = np.sqrt(aunc_lsc**2 + aunc_sc**2 + aunc_u**2 + aunc_a**2)

xaxis = np.arange(nwindows) + 1

fig = plt.figure(figsize=(18, 4))

# Plot of SST and total uncertainty.

fig.add_subplot(1, 2, 1)

use = asst.mask == False# Avoids a warning when errorbar is used below.

plt.errorbar(xaxis[use], asst[use], marker='x', ls='None', yerr=2*aunc_total[use])

plt.gca().set_xlim(0, nwindows + 1)

plt.gca().set_xlabel('Window')

plt.gca().set_ylabel('SST (K)')

plt.gca().set_title('Average SST +/- 2-sigma uncertainty')

# Plot of uncertainty components.

fig.add_subplot(1, 2, 2)

plt.plot(xaxis, aunc_lsc, 'x-', label='Large scale')



plt.plot(xaxis, aunc_sc, 'x-', label='Synoptic')

plt.plot(xaxis, aunc_u, 'x-', label='Uncorrelated')

plt.plot(xaxis, aunc_a, 'x-', label='Adjustment')

plt.gca().set_xlim(0, nwindows + 1)

plt.gca().set_xlabel('Window')

plt.gca().set_ylabel('Uncertainty (K)')

plt.gca().set_title('Uncertainty components')

plt.legend()

plt.show()

Number of windows is 74
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