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Table 1-1: Reference Documents 

ID TITLE ISSUE DATE 
RD-1 Users Requirements Document   
RD-2 Product Specification Document   
RD-3 Data Access Requirements Document   
RD-4 Product Validation and Algorithm Selection   
RD-5 Algorithm Theoretical Basis Document   
RD-6 Algorithm Development Plan   
RD-7 Product Validation Plan   
RD-8 Algorithm Theoretical Basis Document of GlobBiomass project   

 

1 Introduction 
Above-ground biomass (AGB, units: Mg ha-1) is defined by the Global Carbon Observing System (GCOS) 
as one of more than 50 Essential Climate Variables (ECV). For climate science communities, AGB is a 
pivotal variable of the Earth System, as it impacts the surface energy budget, the land surface water 
balance, the atmospheric concentration of greenhouse gases and a range of ecosystem services. The 
GCOS requirement is for AGB to be provided wall-to-wall over the entire globe for all major woody 
biomes at 500 m to 1 km spatial resolution with a relative error of less than 20% where AGB exceeds 
50 Mg ha-1 and a fixed error of 10 Mg ha-1 where the AGB is below that limit.  
 
One of the objectives of the CCI Biomass project is to generate global maps of AGB using a variety of 
Earth Observation (EO) datasets using state-of-the-art models for three epochs (2010, 2017 and 2018) 
and assess biomass changes on both a yearly time scale and an almost decadal time scale. The maps 
should be spatially and temporally consistent; in addition, they need to be consistent with other data 
layers thematically similar to the AGB dataset produced in the framework of the CCI Programme (e.g., 
Fire, Land Cover, Snow etc.).  
 
Algorithms to estimate AGB and its changes are described in the Algorithm Theoretical Basis Document 
(ATBD) [RD-5]. The scope of this document is to define and quantify the uncertainties associated with 
the biomass estimates. This End to End ECV Uncertainty Budget document (E3UB) relies on indications 
in the User Requirements Document (URD) [RD-1], the Product Specifications Document (PSD) [RD-2] 
and the Data Access Requirements Document (DARD) [RD-3]. Advances, such as those described in the 
Product Validation and Algorithm Selection Report (PVASR) [RD-4], that may potentially be 
implemented in future revisions of the ATBD and in this document are described in the Algorithm 
Development Plan (ADP) [RD-6]. 
 
During Year 1 of the project, methods were developed that led to the generation of the global AGB 
product for the year 2017. In year 2, the methods were refined to generate a set of three global 
datasets of AGB for the years 2010, 2017 and 2018. In year 3, the AGB estimation methods have been 
refined towards an improved set of AGB maps, also allowing for an assessment of AGB changes 
between epochs. Accordingly, with each iteration, the framework that quantifies the uncertainties of 
each map has been set and updated. This report documents the framework adopted to quantify the 
precision of the AGB and AGB change estimates. 
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Section 2 provides the background of this E3UB, describing the strategy that underpins the algorithms 
implemented in CCI Biomass to estimate AGB and AGB change. Sections 3 and 4 describe the 
procedures implemented to characterize the precision of the AGB and the AGB change estimates, 
respectively.  

2 Background 
Accuracy describes how well the estimate of a certain quantity (e.g., AGB) matches its true value. For 
an ensemble of data, two gross statistical measures of the precision of the estimator are commonly 
used: bias, which is the expected value of the difference between the estimated and true value, and a 
quantity indicating the variability of the estimate (standard deviation). More complete descriptors 
could include, for example, confidence intervals on the estimates or the full error distribution. These 
descriptors are, however, practically impossible to obtain in our case because the errors of some of 
the parameters involved in the biomass retrieval scheme could only be assumed. A framework to 
estimate the bias of an AGB estimate is introduced in the ATBD of this project. The focus of this 
document is the characterization of the precision of the AGB and AGB change estimates starting from 
the standard deviation of the observations and the model parameters. 
 
In the case of AGB retrieval, the precision of the retrieved value depends on the precision of the input 
data and the precision of the estimation procedure. Figure 2-1 shows the flowchart of the CORE AGB 
estimation procedures implemented in year 1 and then in successive years of the CCI Biomass project 
to generate global datasets of AGB estimates for the three epochs envisaged by CCI Biomass [RD-5].  
 

 

 

Year 1 Current 
 
Figure 2-1: Functional dependencies of datasets and approaches forming the CCI Biomass CORE global biomass 

retrieval algorithm (right) and for year 1 (left). Text in red visualizes modifications introduced from year 1 to 
year 2, i.e., the current version of the CORE algorithm. The shaded part of the flowchart represents potential 

improvements following the implementation of additional retrieval techniques [RD-5]. 

The CORE algorithm implemented in year 1 foresees that two independent estimates of growing stock 
volume (GSV, unit: m3 ha-1) are obtained from the BIOMASAR algorithm adapted to ingest C-band 
(BIOMASAR-C) and L-band data (BIOMASAR-L). The estimates are combined to obtain a final estimate 
that should be characterized by smaller errors than the original values. Since the C- and L-band 
datasets have different pixel spacing, the GSV estimates from the BIOMASAR-C algorithm have slightly 
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lower resolution so are resampled to the geometry of the BIOMASAR-L estimates. Finally, GSV is 
converted to AGB with a Biomass Conversion and Expansion Factor (BCEF). 
 
Starting with year 2, the retrieval strategy has not changed but we have modified the inversion models 
by expressing them directly as a function of AGB. The Water Cloud Model now foresees that the SAR 
backscatter is related to canopy density and height. Allometries linking these two variables as well as 
canopy height to AGB allow AGB to be directly included in the Water Cloud Model without having to 
rely on empirical coefficients, as is usually done.  
 
The quantification of the standard deviation of an AGB estimate is described in Section 3 for each of 
the implementations, following the description of the algorithms in the ATBD. 
 
AGB changes can be estimated either by differencing signals or by differencing estimates of AGB. The 
latter approach propagates errors of individual estimates but is the only viable solution if the 
framework  to estimate changes considers multiple predictors, which furthermore have different 
characteristics (e.g., density of observations). The synergy of spaceborne observations being the major 
strength of the CORE algorithm to obtain a reliable distribution of AGB estimates worldwide, the AGB 
change products developed in this context rely on the individual maps rather than on the EO 
observations. The AGB change products are defined simply as the difference between maps between 
two epochs; here, we describe the quantification of the uncertainties, following the description of the 
AGB change product in the ATBD. 

3 Methods to assign precision to AGB estimates 
In this Section, we detail methods to quantify the standard deviation for each of the individual global 
inversion methods and for the final AGB product. First, we summarize the current two 
implementations of the CCI Biomass CORE algorithm (Section 3.1). Then, the precision of the estimates 
from BIOMASAR-C and BIOMASAR-L are presented (Sections 3.2 and 3.3, respectively). The methods 
presented reflect our current understanding of the standard deviations embedded in the retrieval 
algorithms.  

3.1 The modelling framework 
The Water Cloud Model (WCM) with gaps, given as Equation (3-1), was derived from the original WCM 
presented by (Attema & Ulaby, 1978) to express the total forest backscatter of a forest as the sum of 
direct scattering from the ground through gaps in the canopy, ground scattering attenuated by the 
canopy and direct scattering from vegetation: 
 
𝜎!"#$ = (1 − 𝜂)𝜎%#$ + 𝜂𝜎%#$ 𝑇&#'' + η𝜎('%$ (1 − 𝑇&#'')                    (3-1) 
 
Here η is the area-fill or canopy density factor, representing the fraction of the area covered by 
vegetation, s0

gr and s0
veg represent the backscattering coefficients of the ground and vegetation layer, 

respectively, and Ttree is the two-way tree transmissivity, which can be expressed as e-αh, where a is the 
two-way attenuation per meter through the tree canopy and h is the depth of the attenuating layer. 
 
Another formulation of the WCM relates the forest backscatter directly to the GSV:  
 
𝜎!"#$ = 𝜎%#$ 𝑒)*+ + 𝜎('%$ ,1 − 𝑒)*+-        (3-2) 
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where β is an empirically defined coefficient expressed in ha m-3 and expresses the forest transmissivity 
modelled as a simple exponential of the GSV, V. 
 
By comparing Equations (3-1) and (3-2), the link between β, η and α is given by (Santoro et al., 2002):  

𝑒)*+ = 1 − 𝜂,1 − 𝑒),--                     (3-3) 

While Equation (3-3) can be considered valid in mature forests because height and GSV (or AGB) are 
almost linearly related, it is not correct throughout the entire range of biomass because of the non-
linear relationship between the forest variables: height, biomass, volume and canopy density. 
 
Equation (3-2) was used in year 1 of CCI Biomass to estimate GSV. Starting with year 2, we considered 
the original WCM with gaps in Equation (3-1) and the set of functional dependencies between canopy 
density, tree height and above-ground biomass to express the WCM as a function of AGB [RD-5]. 
 
𝐶𝐷 = 1 − 𝑒).-                         (3-4) 
 
𝐴𝐺𝐵 = 𝑝/𝐻0!                          (3-5) 
 
The empirical coefficients q, p1 and p2 are regression coefficients estimated by means of non-linear 
least squares [RD-5]. The estimation of the parameter q was supported by canopy density (CD) and 
height (h) derived from ICESat GLAS measurements of canopy density and top-of-canopy height 
(RH100). The estimation of the parameters p1 and p2 was supported by the RH100 ICESat GLAS 
measurements and corresponding surrogate AGB values from the GlobBiomass dataset of 2010 
(Santoro et al., 2020). The justification for using map values instead of in situ measurements of AGB 
has been outlined in the ATBD [RD-5].  
 
In the following sections, we provide a description of the errors in each of the two retrieval methods. 
 
3.1.1 BIOMASAR	for	GSV	retrieval	
 
The parameters s0

gr and s0
veg are unknown a priori and need to be estimated. The estimate of s0

gr 
corresponds to the mean value of the SAR backscatter for pixels characterized by low canopy cover 
(so-called “ground” pixels) around the pixel of interest. The estimate of s0

veg is obtained from the mean 
value of the SAR backscatter for pixels characterized by high canopy cover (so-called “dense forest” 
pixels) around the pixel of interest. This value, referred to as s0

df, is compensated for the residual 
ground contribution due to the canopy not being completely opaque. The estimation of s0

veg from s0
df 

and s0
gr is done in slightly different ways depending on whether GSV is estimated from C-band SAR 

(BIOMASAR-C) or L-band SAR backscatter data (BIOMASAR-L) [RD-5]. In addition, an estimate of the 
coefficient of the two-way forest transmissivity, β, is needed, together with an estimate of the GSV of 
dense forest (Vdf , BIOMASAR-C) or canopy height and canopy density of dense forests (hdf  and ηdf , 
BIOMASAR-L) [RD-5]. 
 
Once the model parameters have been estimated, the inversion of the WCM in Equation (3-2) is 
straightforward. 
 

𝑽6 = − 𝟏
𝜷
𝒍𝒏 9

𝝈𝒎𝒆𝒂𝒔𝟎 )𝝈𝒗𝒆𝒈𝟎

𝝈𝒈𝒓𝟎 )𝝈𝒗𝒆𝒈𝟎 :         (3-6) 
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Given N observations of the SAR backscatter acquired at different times, the corresponding N 
estimates of GSV can be combined with a weighted average to form a new estimate of GSV. The 
resulting estimate will have higher precision than any of the individual GSV estimates but may not be 
closer to the true GSV if the estimates are biased. 
 

𝑽𝒎𝒕 =
∑ 𝒘𝒊𝑽9𝒊𝑵
𝒊,𝟏
∑ 𝒘𝒊𝑵
𝒊,𝟏

           (3-7) 

 
The weights, wi, in Equation (3-7) are defined as the vegetation-to-ground backscatter difference in 
dB, s0

veg - s0
gr, normalized by the maximum backscatter difference:  

 

𝒘𝒊 =
𝝈𝒗𝒆𝒈,𝒊
𝟎 )𝝈𝒈𝒓,𝒊

𝟎

𝒎𝒂𝒙=𝝈𝒗𝒆𝒈,𝒊
𝟎 )𝝈𝒈𝒓,𝒊

𝟎 >
          (3-8) 

 
Merging of the BIOMASAR-C and BIOMASAR-L estimates of GSV is implemented in the form of a 
weighted average, where the weights account for three different calculated weights combined into 
one [RD-5]:  
 
𝐺𝑆𝑉 = 𝑤(𝐿)𝑉?&,A +𝑤(𝐶)𝑉?&,B         (3-9) 
 
Estimation of AGB is a simple scaling of GSV with the BCEF.  
 
𝐴𝐺𝐵 = 𝐵𝐶𝐸𝐹 ∙ 𝐺𝑆𝑉          (3-10) 
 
where BCEF is the product of wood density (g/cm3) and the total-to-stem biomass ratio. 
 
3.1.2 BIOMASAR	for	AGB	retrieval	
The parameters s0

gr, s0
veg and α are unknown a priori and need to be estimated.  

 
For BIOMASAR-C, it is assumed that α remains constant and its uncertainty can be neglected because 
of its minimal impact on the retrieval. The estimates of s0

gr and s0
veg are obtained with a least squares 

regression of Equation (3-11), i.e., a simplified version of the original WCM assuming that the tree 
transmissivity component is negligible [RD-5]. The tree cover dataset is used as reference for the 
parameter η. The procedure is applied separately to each set of backscatter measurements and 
percent tree cover values characterized by a specific range of incidence angles. 
 
𝜎!"#$ = (1 − 𝜂)𝜎%#$ + η𝜎('%$          (3-11) 
 
For BIOMASAR-L, all three parameters need to be estimated. Equation (3-1) is therefore regressed to 
observations of canopy density and SAR backscatter, using the allometry in Equation (3-4) to replace 
height  with canopy density (η) [RD-5]. The procedure is applied separately to each set of backscatter 
measurements and percent tree cover values characterized by a specific range of incidence angles. 
 
Once the allometries (3-9) and (3-10) have been inserted into Equation (3-1), the inversion of the WCM 
to estimate AGB is done numerically. Having multiple observations of the backscatter at C-band implies 
that the final estimate of AGB is obtained with the same procedure as is described in Section 3.1.1, 
Equations (3-7) and (3-8). 
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3.2 Quantifying the precision of the BIOMASAR-C estimates 

3.2.1 Accuracy	of	the	C-band	backscatter	measurements	
The precision of a backscatter measurement is affected by the radiometric and calibration accuracies, 
thermal noise and speckle. The SAR pre-processing also introduces additional uncertainty related to: 
(i) the precision of the geocoding transformation and resampling between radar and map geometries; 
(ii) the horizontal and vertical precision of the Digital Elevation Model (DEM) used as reference for the 
map geometry, and (iii) the precision of the pixel area and local incidence angle used to normalize the 
backscatter for slope-induced effects on the backscatter. Since the pixel-level uncertainties in the 
DEMs used in this study are unavailable, we cannot estimate the variance of a backscatter 
measurement from the individual variances of the terms listed above. We therefore estimate it 
empirically by equating it to the Equivalent Number of Looks (ENL).  
 
In the ATBD [RD-5], our estimate of the ENL for Sentinel-1 was 162 (median value) with a span of [90, 
375] but most values lie between 100 and 250. Assuming a constant ENL of 162 for Sentinel-1, we 
obtain a standard deviation of 0.32 dB. In Santoro et al. (2015), we quantified the standard deviation 
of Envisat ASAR backscatter observations as a function of the number of observations available in the 
multi-channel speckle filter: 0.6 dB for N ≤ 50; 0.5 dB for 51 ≤ N ≤ 150; and 0.4 dB for N > 150, where 
N is the number of backscatter observations at a pixel.  
 
These values are here used to characterize the 𝛿𝜎?'CD$  component of the standard deviation of the 
biomass estimates (see Equation (3-12)). 
 
3.2.2 BIOMASAR	for	GSV	retrieval	
 
The precision of a biomass estimate obtained from a single observation of the SAR backscatter is 
quantified by propagating the standard deviation of (i) the measured SAR backscatter, s0

meas, and (ii) 
the estimates of the forest backscatter model parameters s0

gr, s0
df, β and Vdf. Since the standard 

deviations of the five random variables listed above are uncorrelated and small (see below), the 
standard deviation of the estimate of GSV obtained from a single backscatter observation, δV, is given 
by: 
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            (3-12) 
 
Each of the partial derivatives in Equation (3-12) is derived from Equation (3-3) (Annex A).  
 
The standard deviation of the model parameters expressing the backscatter from the ground, 𝛿𝜎%#$ , 
and dense forest, 𝛿𝜎H!$ , combines the standard deviation in the observations of the pixels labelled as 
unvegetated or dense forest, respectively, and the standard deviation of the backscatter for the tree 
cover values representing the “ground” and “dense forest” classes. Here s0

gr and s0
df  are estimated 

from the histograms of the SAR backscatter measurements for unvegetated and dense forest pixels 
(see Figure 9 in Santoro et al., 2011). In summary, the standard deviations 𝛿𝜎%#$  and 𝛿𝜎H!$  are obtained 
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by subtracting the variance associated with the backscatter measurements, i.e., 𝛿𝜎?'CD$ 2, from the 
variance of the histogram for “ground” pixels and “dense forest” pixels, respectively.  
 
The estimates of the coefficient β and the corresponding standard deviation 𝛿𝛽	are defined in the 
ATBD of the GlobBiomass project (available at http://globbiomass.org/products/global-mapping/) 
[RD-8]. For each ecological zone of the FAO Global Ecological Zones (GEZ) dataset (see [RD-5] for 
details), the coefficient β was set equal to the value of the exponential model relating MODIS 
Vegetation Continuous Fields (VCF) estimates of canopy cover and GSV from map datasets. 
Accordingly, the standard deviation was defined as the mean standard deviation of the observations. 
It is important to remark that this is an educated guess due to the lack of observations of forest 
transmissivity from different biomes.  
 
The standard deviation of the Vdf parameter, 𝛿𝑉H! , was also discussed in the ATBD of the GlobBiomass 
project [RD-8]. A global raster was obtained with RandomForest (Breiman, 2001) models for each 
ecoregion of the FAO GEZ dataset using a set of initial estimates of Vdf from various sources [RD-5] as 
response and the WorldClim [RD-5] and ICESAT GLAS layers of forest height and density [RD-5] as 
predictors. Figure 3-1 illustrates the predictive performance of the models for each FAO ecoregion 
with the comparison of Out-Of-Bag model predictions (i.e., bootstrap aggregation of predictions from 
500 regression tree models) versus the initial estimates for Vdf from the reference database. These 
values suggest that the standard deviation associated with RandomForest predictions for Vdf is of the 
order of 15 to 60% with the largest error of 40 to 60% for sub-tropical and tropical dry forests. This 
approximation might be too coarse but is currently our best achievable estimate.  
 

 
Figure 3-1: RandomForest predictions of the GSV of dense forests per 2°x2° grid cell derived from WorldClim 

and ICESAT GLAS versus estimates derived from inventory, provincial/state reports or existing maps. 

 
The multi-temporal GSV estimate is obtained as a linear combination of GSV estimates from images 
acquired at different times. The aim of the multi-temporal combination is to reduce noise affecting 
each single estimate of GSV. Accordingly, the standard deviation of the multi-temporal estimate of 
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GSV is obtained as the square root of the sum of the variances weighted with the coefficients wi in 
Equation (3-8).  
 
If the backscatter observations were independent of each other, the standard deviation of the final 
GSV estimate would correspond to the weighted sum of the standard deviations of each individual GSV 
estimate. In reality, observations are correlated, so the standard deviation of the multi-temporal GSV 
estimates is the sum of a variance component and a covariance component that accounts for the 
correlation between errors. 
 
𝛿(𝑉?&)E = ∑ 𝑤IEJ

IK/ 𝛿(𝑉I)E + 2∑ ∑ 𝑤IJ
LKIM/ 𝑤LJ)/

IK/ 𝐶𝑜𝑣(𝑉I , 𝑉L)     (3-13) 
 
where 
 
𝐶𝑜𝑣,𝑉I , 𝑉L- = 𝛿𝑉I𝛿𝑉L𝑟IL          (3-14) 
 
The variance component of the standard deviation of the multi-temporal GSV estimate is modelled as 
a linear combination of the single-image GSV variances given by Equation (3-3). Here, it is assumed 
that the multi-temporal weights are the best estimates of the individual variances of the individual 
estimates of GSV. 
 
The covariance component is then expressed in a similar manner where individual error co-variances 
are weighted. The symbol rij represents the correlation of errors between the estimates of GSV from 
image i and image j. Such correlation has been neglected in previous studies due to the weak 
correlation between observations at coarse spatial resolution. Envisat ASAR observations with a pixel 
size of 1,000 m repeat from the same orbit every 35 days; observations adjacent in time were taken 
from adjacent orbits and/or different nodes. From this weak correlation, it was assumed that also the 
correlation of the errors was small. In the case of Sentinel-1, this assumption has been revisited for 
two reasons. The higher spatial resolution compared to the Envisat ASAR dataset (100 m vs. 1,000 m) 
allows a more detailed spatial characterization of the biomass. In addition, the constellation formed 
by the Sentinel-1A and -1B units observes any point on the ground with the same viewing geometry 
every 6 days; this increases to 12 days for a single satellite. This increases the probability of correlation 
between retrieval errors. 
 
Computing the correlation of errors requires a reference dataset. The only viable solution is to use 
maps of AGB, since plot measurements are typically too sparse to allow a spatially explicit 
characterization of the error covariance. Laser-based maps of AGB are probably the most suitable 
reference dataset for characterizing the error covariance. Although such maps are not free from errors, 
it is reasonable to assume that their impact on the correlation of errors is minimal because of their 
usual high precision. Obviously, maps lacking complete characterization of errors and with low 
precision should be discarded, which poses a serious issue when attempting to generate wall-to-wall 
values of the error covariance. This is discussed later in this Section.  
 
Figure 3-2 shows a matrix reporting at each bin the correlation of the errors between Sentinel-1 images 
i and j using as a reference the GSV predicted from country-wide laser scanning of Sweden (Nilsson et 
al., 2017). The index on each axis represents the date of acquisition in 2017 (i.e., 1, 2, 3 etc. mean first, 
second, third, etc.) image acquired in 2017. The correlations have been computed for all pixels within 
a 1° x 1° grid cell in North Sweden. The impact of the area selected to compute the error correlation is 
negligible. In Figure 3-2, we observe higher correlations towards the top-left and bottom-right corners, 
which represent data acquired during the first 3 months of the year (image index between 1 and 180) 
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and the last 2 months of the year (image index 700 to 814; i.e., under winter/frozen conditions). 
Similarly, somewhat high correlations can be seen at the top-right and bottom-left corner of the 
matrix, corresponding to combinations involving an image acquired at the beginning and end of 2017, 
with both characterized by winter/frozen conditions. Occasionally, high correlation is observed for 
some of the winter-summer pairs, whereas pairs formed by images acquired under unfrozen 
conditions were mostly characterized by lower correlation. 
 

 
Figure 3-2: Matrix of error correlations for Sentinel-1 GSV estimates for a 1° x 1° area in northern Sweden (Lat: 

63°-64°N; Lon: 14°-15°E, corresponding to tile X: 194 and Y: 026)  

 
The histogram of correlations shows the distribution of the error correlation for all combinations of 
images acquired over the area visualized in Figure 3-3. The mean correlation coefficient was 0.53 with 
a span of 0.16 to 0.82.  
 

 
Figure 3-3: Histogram of error correlation for the dataset illustrated in Figure 3-2. 

 
Since the computation of the error correlation requires a reference dataset, the question is whether a 
model or some general rules can be identified to characterize the correlation, given that no such 
dataset is available globally. Figure 3-4 and Figure 3-5 show two examples of correlation of errors 
between a given image and all other images for the 1° x 1° tile considered in Figure 3-2. Figure 3-4 is 
based on an image acquired under winter/frozen conditions and shows a slight seasonal trend of 
higher correlation when the other image was also acquired during winter. Figure 3-5 is instead based 
on an image acquired under summer/unfrozen conditions and shows fairly constant behaviour. These 
results indicate that a model expressing correlation as a function of time (e.g., exponential decay) does 
not apply. A model that replicates seasonality would be more suitable but difficult to implement as it 
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changes in space depending on local climatic conditions. Hence, in the first instance, one could 
consider using a simple generic value, such as the median of all correlations. 
 

 
Figure 3-4: Error correlation between GSV estimated from a Sentinel-1 image acquired on 20170127 and all 

other Sentinel-1 images covering the 1° x 1° tile introduced in Figure 3-2. 

 

 
Figure 3-5: Error correlation between GSV estimated from a Sentinel-1 image acquired on 20170704 and all 

other Sentinel-1 images covering the 1° x 1° tile introduced in Figure 3-2. 

 
The total standard deviation and its components are illustrated in Figure 3-6 for the 1° x 1° tile in North 
Sweden (lower panels). We also include the map of GSV retrieved with the BIOMASAR-C algorithm and 
an image showing the number of Sentinel-1 backscatter observations used to retrieve GSV (upper 
panels). It is notable that, at this stage, GSV has been retrieved regardless of the land cover (i.e., values 
of GSV have also been associated with water bodies and cropland). These areas need to be masked 
out for any further analysis of the data. Because of the very large number of observations used to 
retrieve GSV, the variance term  in Equation (3-13) becomes small. The covariance term in Equation 
(3-13) instead is large because of the large number of combinations, in particular when the temporal 
correlation between errors remains moderate or high .  
 
The same analysis was repeated for other areas where laser-based maps of AGB are available so as to 
reinforce the findings obtained in a boreal environment. The results did not differ essentially from 
those obtained in Sweden. For this reason, we have computed the GSV standard deviation by assuming 
a constant error correlation, equal to the mean of the correlations shown in the histogram of Figure 
3-3. The result is identical to the bottom-right panel in Figure 3-6 showing the covariance term of the 
standard deviation, suggesting that this simplifying assumption may be introduced to give a global 
characterization of the error covariance term. 
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Figure 3-6: Comparing total standard deviations using the correlation matrix shown in Figure 3-2 (left) and a 

constant correlation matrix with correlation equal to the mean of the error correlation in Figure 3-3. 

 
3.2.3 BIOMASAR	for	AGB	retrieval	
 
The precision of an AGB estimate obtained from a single observation of the SAR backscatter is 
quantified by propagating the standard deviation of (i) the measured SAR backscatter, s0

meas, (ii) the 
estimates of the forest backscatter model parameters s0

gr and s0
veg, (iii) the coefficient of the 

allometric function relating canopy density and RH100, q, and (iv) the coefficients of the allometry 
relating canopy height and AGB, p1 and p2. 
 
The estimates of s0

gr and s0
veg are first obtained by least squares regression to the model in Equation 

(3-11) per 10° wide intervals of local incidence angle; then, a quadratic function is established to 
describe the variation of each parameter as a function of incidence angle [RD-5]. Accordingly, the 
standard deviations of s0

gr and s0
veg were obtained from the variance-covariance matrix for the fitted 

coefficients using Equation (3-11). The covariance term was usually much smaller than the variance 
terms, thus confirming the assumption of the two parameters being independent from each other. 
Then, the standard deviations of s0

gr and s0
veg per incidence angle range are transformed with the 

error model of the quadratic function to obtain a value for each per incidence angle. The error 
propagation is programmed in the polyconf tool of the Matlab scripting language. 
 
The standard error of the coefficient q was calculated through bootstrapping with replacement for 
each of the ecoregions, with 100 iterations per ecoregion. Figure 3-7 shows the spatially explicit map 
of the standard error of q obtained by interpolating the individual value per ecoregion with bicubic 
interpolation to avoid offsets at the boundary of ecoregions. The standard error ranged from 0 to 
143%, although it was highly correlated with the number of available footprints per ecoregion (Figure 
3-8), with ecoregions with more than 100 footprints all having a standard error < 10%. Larger errors 
were obtain for ecoregions characterized by sparse to almost absent forest cover, in which case the 
number of GLAS footprints used to estimate q was small.  
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Figure 3-7: Spatially interpolated maps of the standard error of the coefficient q. The map shows the standard 

error relative to the estimate of each parameter. 

 

 
Figure 3-8: Scatterplot demonstrating the influence of the number of available ICESat GLAS footprints within an 

ecoregion on the standard error of the q value obtained 

 
 
The standard deviation of the coefficients p1 and p2 was obtained from the confidence intervals 
estimated when fitting AGB from the GlobBiomass dataset and RH100 measurements from the 
spaceborne LiDAR datasets [RD-5]. Figure 3-9 shows that the standard deviation was mostly below 
10% and 5% of the estimated value for p1 and p2, respectively, except in regions of sparse forest cover 
and barren ground. Here, the uncertainty was larger due to the difficulty to fit the allometry to a very 
small range of AGB and height measurements. 
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Figure 3-9: Spatially interpolated maps of the standard deviation of coefficients p1 and p2. The maps show the 
ratio between the standard deviation and the estimate of each parameter 

 
Because of the numerical inversion to estimate AGB from a backscatter observation, the computation 
of the standard deviation of an AGB estimate also needs to be handled with a numerical approach. A 
numerical approach means that the retrieval model parameters involved in the estimation of the AGB 
(s0

meas, s0
gr, s0

veg, q, p1 and p2) are perturbed on the basis of the individual standard deviations and a 
perturbed AGB is estimated. This procedure is repeated N times for each pixel and in each SAR image 
so to create for each time a vector of perturbed AGB estimates from which the standard deviation 
corresponding to a retrieved AGB at a given pixel and image is computed. 
 
As in the case of a retrieval of GSV, the standard deviation of the multi-temporal estimate of AGB is 
the sum of a variance component and a covariance component that accounts for the correlation 
between errors. 
 
𝛿(𝐴𝐺𝐵?&)E = ∑ 𝑤IEJ

IK/ 𝛿(𝐴𝐺𝐵I)E + 2∑ ∑ 𝑤IJ
LKIM/ 𝑤LJ)/

IK/ 𝐶𝑜𝑣(𝐴𝐺𝐵I , 𝐴𝐺𝐵L)   (3-15) 
 
where 
 
𝐶𝑜𝑣,𝐴𝐺𝐵I , 𝐴𝐺𝐵L- = 𝛿𝐴𝐺𝐵I𝛿𝐴𝐺𝐵L𝑟IL         (3-16) 
 
The variance component of the standard deviation of the multi-temporal AGB estimate is modelled as 
a linear combination of the single-image AGB variances. For the covariance term, we assume that the 
approach developed for the GSV holds true because of the simple scaling between GSV and AGB. 

3.3 Quantifying the precision of the BIOMASAR-L estimates 

3.3.1 Accuracy	of	the	L-band	backscatter	measurements	
 
The ALOS-2 FBD and ScanSAR datasets, which were provided by JAXA in the form of global mosaics on 
an annual basis (FBD) or as per-cycle mosaics (ScanSAR), introduce errors in the AGB retrieval  
associated with speckle, thermal noise, and errors in calibration, geocoding and topographic 
corrections. 
 
In the ATBD [RD-5], we documented radiometric and geometric errors that were presumed due to the 
fact that the SRTM DEM had not been compensated for elevation offsets between the geoid (SRTM 
reports geoid referenced heights) and the WGS84 ellipsoid. This resulted in systematic geolocation 
errors of the ALOS-2 backscatter imagery up to several pixels dependent on the Geoid-WGS84 
elevation offset. The geolocation error was reduced by means of co-registration of the imagery with a 
global Landsat NDVI dataset. While the co-registration allowed linear offsets to be corrected, 
topography-related geolocation errors and also the sub-optimal performance of topogaphic 
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corrections could not be corrected. Because these errors cannot be quantified at pixel level, we here 
can only quantify the error associated with speckle.  
 
In order to reduce the speckle in the original ALOS-2 imagery with 25m pixel size, all images were: 
 

1) aggregated to the target pixel size of 100 m (0.00088888°) for the mapping of biomass 
2) filtered with the multi-temporal filter suggested in Quegan & Yu (2001).  

The ENL of the imagery after filtering was assessed for a number of homogenous forest patches, 
identified by means of visual image interpretation. Since the performance of the multi-temporal 
filtering depends on the number of images considered in the filtering as well as the level of speckle 
correlation between images (which given the repeat intervals of ALOS-2 of 14 days should be low), no 
global ENL can be specified. In areas where only FBD mosaics were available, we found the ENL to be 
of the order of 70 to 80. In areas where FBD and ScanSAR imagery could be combined, the ENL was on 
average of the order of 300.  
 
3.3.2 BIOMASAR	for	GSV	retrieval	
The BIOMASAR-C error model used to quantify the standard deviation of a GSV estimate, δV, from a 
backscatter observation is also applied in the case of BIOMASAR-L. However, some modifications are 
required because of the differences in the estimation of the parameter σ0

veg. 
 
In the model inverted for GSV, σ0

veg is expressed as a function of the average backscatter observed 
over dense forests, σ0

df, the average canopy density of dense forests, ηdf, the average height of dense 
forests, hdf, and the two-way attenuation coefficient, α [RD-5]. The error model therefore needs to be 
reformulated to consider the error associated with ηdf, α, and hdf: 
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  (3-17) 

 
As for BIOMASAR-C, the precision of the estimates of σ0

df and σ0
gr is estimated as the standard deviation 

of the histograms of backscatter observations in areas of low and high canopy density, since the 
histograms summarize the uncertainties associated with estimating the parameters due to spatially 
variable imaging conditions, uncompensated topographic effects, etc. (e.g., variable soil/canopy 
moisture).  
 
Reported accuracies of height and canopy density estimates derived from ICESAT GLAS are used to 
determine the uncertainty associated with estimating hdf and ηdf. Following the results in Los et al. 
(2012) and Simard et al. (2011), who validated GLAS-based height estimates at boreal, temperate, sub-
tropical, and tropical forest sites, we assumed standard deviations for height estimates at the GLAS 
footprint level as between 4 m (boreal) and 10 m (tropics). While there are a large number of studies 
on the estimation of canopy cover and closely related variables, such as fractional cover, gap 
probability or transmittance from LiDAR, only a few have presented comprehensive validation. It is 
thus not possible to provide forest type-specific numbers for the error in the BIOMASAR-L retrieval 
associated with errors in the parameter ηdf. As indicated by Garcia et al. (2012), the error of  the canopy 
cover estimate from ICESAT GLAS may be of the order of 15 to 20%. We therefore assume a 
conservative global error of 20%. Note that the parameters hdf  and ηdf are estimated with the average 
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GLAS height and density across all footprints covering an ALOS-2 1° × 1° tile that cover dense forest 
according to Landsat. It is therefore assumed that the standard deviation for the two parameters 
reduces as the square root of the number of GLAS footprints used in the estimation. 
 
The precision of the forest transmissivity coefficient b and the related two-way attenuation coefficient 
α are the most difficult to specify and it is only possible to provide a best guess for BIOMASAR-C. In the 
case of b, the associated standard deviation may be inferred from the relationship between the forest 
transmissivity, simulated with the aid of GLAS height and optical canopy density estimates, and GSV 
(see Figure 3-10). The results presented in Figure 3-10 suggest that the standard deviation increases 
with increasing b. The 95% error bounds of the estimate for b  increased from +/-0.002 ha m-3 in the 
case of low values of b  that are valid in boreal and subtropical dry forests to +/-0.007 ha m-3 for the 
highest values of b  that are applied in the tropics. For the two-way attenuation coefficient α, we 
assume a standard deviation of 0.25 dB m-1, which is roughly consistent with the range of values 
reported in the literature (Ulaby et al., 1990; Chauhan et al., 1991; Shinohara et al., 1992; Sheen et al., 
1994; Kurum et al., 2009; Praks et al., 2012).  
 

 
Figure 3-10: Estimates for β (incl. 95% confidence bounds) obtained for different FAO eco-regions. For details, 
refer to the ATBD of the GlobBiomass project [RD-8]. 

 
Equation (3-17) quantifies the standard deviation of GSV estimates derived from a single L-band 
observation, as in the case of BIOMASAR-L applied to one channel of the yearly JAXA L-band SAR 
backscatter mosaics (see [RD-5]). In a multi-temporal scenario (i.e., when multiple mosaics and/or Fine 
Beam Dual (FBD) and ScanSAR data are used (see [RD-5]), the standard deviation of the final GSV is 
obtained, similarly to the case of BIOMASAR-C, as a weighted multi-temporal combination of single 
image standard deviations and error covariance: 
 
𝛿(𝑉?&)E = ∑ 𝑤IEJ

IK/ 𝛿(𝑉I)E + 2∑ ∑ 𝑤IJ
LKIM/ 𝑤LJ)/

IK/ 𝐶𝑜𝑣(𝑉I , 𝑉L)    (3-18) 
 
It the retrieval errors between single image GSV estimates are uncorrelated, the second term in 
Equation (3-18) becomes zero. Figure 3-11 shows the standard deviation for the BIOMASAR-L data 
product of GSV from ALOS-2 PALSAR-2 data assuming uncorrelated errors. For the map of GSV 
obtained with the BIOMASAR-L algorithm, refer to the ATBD of this project [RD-5]. 
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Figure 3-11: Standard deviation of BIOMASAR-L estimates of GSV assuming uncorrelated errors (i.e., first term 
of Equation (3-18)). 

 
In practice, uncorrelated errors are unlikely, especially at low frequencies when the signal presents 
seasonal fluctuations and only minor date-to-date variability due to specific environmental conditions 
at the time of image acquisition.  
 
In order to characterize the error correlation, we tested the use of airborne laser scanner (ALS) derived 
estimates of GSV/AGB as reference. For the AGB reported using laser-based maps, AGB was converted 
to GSV using the global database of BCEF estimates compiled in the frame of the GlobBiomass project 
[RD-8].  
 
Figure 3-12 exemplifies the error correlation for a tropical forest site in Lope, Gabon, and a boreal 
forest site in Krycklan, Sweden. The laser-based maps of biomass used as reference were produced in 
the context of ESA’s airborne radar campaigns AfriSAR and Biosar-2. In Lope, where FBD as well as 
ScanSAR data could be used to retrieve GSV, the error correlation was consistently around 0.5 to 0.6. 
Similar results were observed for other forest sites in the tropics. In Krycklan, instead, where only the 
three ALOS-2 PALSAR-2 FBD mosaics from 2015, 2016, and 2017 were available and only the HV-
polarized backscatter was used to retrieve GSV, the error correlation was close to zero. With a 
negligible covariance term and only three estimates to combine, the multi-temporal combination for 
areas where only FBD data are available hardly improves the standard deviation of the estimates.  
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Figure 3-12: Correlation of GSV retrieval errors for a multi-temporal stack of L-band images acquired over Lope, 
Gabon (left) and Krycklan, Sweden (right). The vertical line denotes the reference image against which the 
correlation of retrieval errors with respect to the other available images was assessed. 

 
The results obtained so far are considered to be a consequence of the fact that, over continuous 
tropical forest, the sensitivity of L-band backscatter to AGB is low, so that different temporally 
uncorrelated noise sources in the measurements (thermal noise, speckle, quantization noise, etc.) 
have a more pronounced effect on the retrievals than in areas where the sensitivity to AGB is higher. 
In addition, it should be noted that the FBD mosaics were compiled with a preference for images 
acquired under dry summer conditions whereas the ScanSAR dataset comprises multi-seasonal 
observations (i.e., the measurements reflect a wider range of imaging conditions). As for BIOMASAR-
C, further investigations are required to assess the representativeness of these results across different 
forest ecosystems. However, some simplifying assumptions will be needed to characterize the error 
correlation matrix because of the unavailability of a global reference dataset.  
 
3.3.3 BIOMASAR	for	AGB	retrieval	
 
As in the case of C-band (Section 3.2.3), the precision of AGB estimates derived from single L-band 
backscatter observations is quantified by propagating the standard deviations of backscatter 
measurements, s0

meas, estimates for the model parameters s0
gr and s0

veg, the coefficient relating 
canopy density and RH100, q, and the coefficients of the allometry relating canopy height and AGB, p1 
and p2. The individual errors are determined in the same way as for C-band. However, in contrast to C-
band, the modelling of L-band backscatter as function of canopy density necessitates the use of the 
full model in Eq. (3-1), which considers that the two-way tree transmissivity and hence the tree height 
and signal attenuation are not negligible at L-band [RD-5]. In the error propagation, we therefore have 
to propagate errors associated with the two-way signal attenuation coefficient. So far only very few 
measurements of the attenuation have been published. We here assume a standard deviation of 0.25 
dB/m, which is roughly consistent with the range of values reported in the literature (Ulaby et al., 1990; 
Chauhan et al., 1991; Shinohara et al., 1992; Sheen et al., 1994; Kurum et al., 2009; Praks et al., 2012).  
 
The standard deviation of multi-temporal AGB estimates is then quantified based on Eqs. 3-15 and 3-
16. The error correlations between individual AGB estimates is assumed similar to those observed in 
the case of GSV (Figure 3-12) 
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3.4 Quantifying the precision of the merged biomass estimates 
When combining estimates from BIOMASAR-C and BIOMASAR-L, Equation (3-19) can be used to 
calculate the standard deviation of the merged product starting from the standard deviations of the 
BIOMASAR-C and BIOMASAR-L estimates.  
 
𝛿(𝐺𝑆𝑉)E = 𝑤E(𝐿)𝛿(𝑉?&,A)E +𝑤E(𝐶)𝛿(𝑉?&,B)E     (3-19) 
 
The equation is written in terms of GSV but applies equally to AGB.  

3.5 Quantifying the precision of the conversion from GSV to AGB 
In the GlobBiomass project, a global raster of the Biomass Conversion and Expansion Factors (BCEF) 
was obtained by producing two independent raster datasets of wood density (WD) and total-to-stem 
biomass ratio (BEF). Each data layer was generated from extensive in situ databases in cooperation 
with the Max Planck Institute for Biogeochemistry (MPI-BGC). In the first year of the CCI Biomass 
project, the GlobBiomass datasets of wood density and biomass expansion are used; refer to the ATBD 
of the GlobBiomass project [RD-8] for details on how these and the corresponding precision were 
derived. 
 
When AGB is obtained by converting an estimate of GSV to AGB with a BCEF, the precision of the AGB 
estimates is obtained as: 
 

𝛿𝐴𝐺𝐵 = SGFOPQ
FRS

H
E
∙ 𝛿𝑊𝐷E + GFOPQ

FQTU
H
E
∙ 𝛿𝐵𝐸𝐹E + GFOPQ

FPV+
H
E
∙ 𝛿𝐺𝑆𝑉E   (3-20) 

 
where 𝛿𝑊𝐷	and 𝛿𝐵𝐸𝐹 represent the precision of the wood density and BEF terms respectively, and 
𝛿𝐺𝑆𝑉 represents the precision of the merged GSV dataset. The partial derivatives of Equation (3-13) 
are reported in Annex B. 
 

4 Methods to assign accuracies to AGB change 
estimates 

AGB change is defined as the difference of AGB estimated at two epochs. In the ATBD [RD-5], we 
described the reasoning behind this definition and the implications concerning the reliability of the 
AGB changes based on estimates of AGB from different EO datasets. At the full resolution of the AGB 
maps, the variance of the AGB change 𝛿(𝐴𝐺𝐵W-CX%')E  is defined as the sum in quadrature of the 
individual variances 𝛿(𝐴𝐺𝐵I)E with i = 1 and 2 being the epoch of the AGB estimate. 
 
𝛿(𝐴𝐺𝐵W-CX%')E = 𝛿(𝐴𝐺𝐵/)E + 𝛿(𝐴𝐺𝐵E)E     (3-21) 
 
Additional terms will appear if a bias correction is applied to each of the AGB estimates. These terms 
correspond to the standard deviation of the bias estimate for date 1 and date 2. These terms, however, 
would be applied only at the spatial resolution of the bias maps, i.e., 0.1°, in which case the standard 
deviation of the two AGB estimates would need to account for the averaging and the spatial correlation 
of errors (Yang et al., 2020).  



 

Ref CCI Biomass End to End ECV Uncertainty Budget v3 

 

Issue Page Date 
1.0 24 2021-06-14 

 
 
 

.06.2021 

 

© Aberystwyth University and GAMMA Remote Sensing, 2018 
This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted without the 

express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG. 

ANNEX A 
Partial derivatives of Equation (3-12) 
 

       (S1) 

     (S2) 

     (S3) 

 (S4) 

       (S5) 

  

( )[ ]0000
,,,

0
1

00 dfmeas
V

grmeas

V

Vmeas
df

df

dfdfgr
e
eV

ssssbs b

b

bss +--
-

=÷÷
ø

ö
çç
è

æ
¶
¶

-

-

( ) ú
ú
û

ù

ê
ê
ë

é

+--
-

-
=÷

÷
ø

ö
ç
ç
è

æ

¶
¶

-

-

000000
,,,

0
11

00 dfmeas
V

grmeas

V

grdfVgr
df

df

dfdfmeas
e
eV

ssssssbs b

b

bss

( ) ú
ú
û

ù

ê
ê
ë

é

-
-

+--
=÷

÷
ø

ö
ç
ç
è

æ

¶
¶

-

-

000000
,,,

0
11

00 grdfdfmeas
V

grmeas

V

Vdf
df

df

dfgrmeas
e
eV

ssssssbs b

b

bss

( )[ ] ( ) ( )
( )[ ]ïþ

ï
ý
ü

ïî

ï
í
ì

+--

-
+

--+--
=÷÷

ø

ö
çç
è

æ
¶
¶

-

--

0000

00

2

000000

,,,

lnln
000 dfmeas

V
grmeas

V
dfgrmeasgrdfdfmeas

V
grmeas

V
df

dfdf

dfdfgrmeas
e

eVeV
ssssb

ss
b

ssssss
b b

bb

sss

( )
( ) 0000

00

,,, 000 dfmeas
V

grmeas

V
grmeas

df
df

df

dfgrmeas
e

e
V
V

ssss
ss
b

b

bsss
+--

-
=÷

÷
ø

ö
ç
ç
è

æ

¶
¶

-

-



 

Ref CCI Biomass End to End ECV Uncertainty Budget v3 

 

Issue Page Date 
1.0 25 2021-06-14 

 
 
 

.06.2021 

 

© Aberystwyth University and GAMMA Remote Sensing, 2018 
This document is the property of the CCI-Biomass partnership, no part of it shall be reproduced or transmitted without the 

express prior written authorization of Aberystwyth University and Gamma Remote Sensing AG. 

ANNEX B 
Partial derivatives of Equation (3-20) 
 
GFOPQ
FRS

H
QTU,PV+

= 𝐵𝐸𝐹 ∙ 𝐺𝑆𝑉        (S6) 

 
GFOPQ
FQTU

H
RS,PV+

= 𝑊𝐷 ∙ 𝐺𝑆𝑉        (S7) 

 
GFOPQ
FPV+

H
RS,QTU

= 𝑊𝐷 ∙ 𝐵𝐸𝐹        (S8) 
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