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Report on exploiting CCI products in MIP experiments 

 

1. Purpose and scope of this report 

This document is the first report on the outputs of the CMUG Model Inter Comparison (MIP) 
type experiments using data products from the CCI+ ECV projects. Its purpose is to provide 
feedback to ESA and the CCI teams on the suitability and application of CCI climate data 
products in climate models. This activity has eleven experiments (CMUG WPs 4.1 to 4.11) by 
four CMUG partners. These are all focused studies which use CMIP6 model output for the 
research (as opposed to conducting new model runs). Many data products from the CCI ECVs 
are included, and outputs from five of the new CCI+ ECVs are used (or will be when available). 
An overview of the key features of the experiments is given in Table 1. 

 

2. CMUG approach for assessing quality in CCI products 

This work is concerned with exploiting CCI products in MIP experiments, with the activity in 
CMUG WPs 4.1 to 4.6 on statistical analyses that evaluate facets of model behaviour in 
representing climate. They carefully target individual elements of uncertainty derived either 
from the climate system (e.g. internal variability, system memory) or the observations (e.g. 
levels of processing or scales of averaging) and then provide a framework for combining these. 
There is an emphasis on characterising and understanding uncertainty in these experiments to 
inform the CMUG work on the ESMValTool to include uncertainty in its evaluation process 
for the metrics of the ECVs in these experiments. CMUG WP 4.7 addresses the important issue 
relevant to the component of CMIP6 focusing on decadal prediction by applying multiple 
CCI/CCI+ atmospheric and marine ECVs to generate an assessment of the skill in decadal 
forecasting systems. CMUG WPs 4.8 to 4.10 focus on the application of CCI/CCI+ terrestrial 
ECVs to evaluate the physical basis of representation of biophysical land surface processes and 
assess their simulation in earth system model components. They use data from the CMIP6 
archive to understand plant climate interactions, their representation in climate models and 
evaluate model performance and suggest areas for future model development. WP 4.11 will 
build on the process analysis undertaken elsewhere in CMUG and will apply several ECVs and 
other datasets to identify the drivers of biases in the state of the terrestrial surface and the fluxes 
generated by its interaction with the atmosphere. This will provide an assessment of the value 
of combining multiple ECVs with other data sources to assess the quality and identify areas for 
improvement in the atmospheric model component of CMIP.  

The uncertainty characterisation accompanying the CCI ECV datasets is examined to 
understand its usefulness in the modelling studies. The different types of uncertainty 
characterisation (grid point, bias, statistical, variance, temporal/spatial, or other) provided by 
the CCI ECV teams and how it meets user requirements is commented on in this report.
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CMUG 
WP 

EXPLOITING CCI PRODUCTS IN MIP 
EXPERIMENTS 

CMUG 
LEAD 

 EXPERIMENT 
TYPE 

  CCI ECVS  OTHER ECVS 

4.1 Evaluation of modelled system memory MPI-M Statistical 
analysis 

4 Salinity, Snow, 
LST, SST, SI 

 

4.2 Evaluation of model results considering 
observational uncertainty 

MPI-M Statistical 
analysis 

4 Salinity, Snow, 
LST, SST, SI 

 

4.3 Evaluation of model results considering the 
abstraction level of observational products 

MPI-M Statistical 
analysis 

4 Salinity, Snow, 
LST, SST, SI 

 

4.4 Optimal spatial and temporal scales for model 
evaluation 

MPI-M Statistical 
analysis 

4 Salinity, Snow, 
LST, SST, SI 

 

4.5 Evaluation of model results considering internal 
variability 

MPI-M Statistical 
analysis 

4 Salinity, Snow, 
LST, SST, SI 

 

4.6 Evaluation of model results considering a 
combination of sources of uncertainties 

MPI-M Statistical 
analysis 

4 Salinity, Snow, 
LST, SST, SI 

 

4.7 Skill assessment of the DCPP decadal predictions BSC Skill analysis 4 Sea Level, SST, 
Clouds 

 

4.8 Use LST products to develop and test simple models 
relating the LST versus air temperature (near 
surface) difference to vegetation moisture stress 

Met 
Office 

MIP process 
analysis 

3 AGBiomass, LST, 
SM, LC 

Temperature, Precipitation, FAPAR, 
LAI 

4.9 Use CCI+ products and simple models developed in 
WP4.8 to evaluate performance of LST versus air 
temp, using multiple land surface and ES models 

Met 
Office 

MIP process 
analysis 

3 LST, AGBiomass, 
LC/HRLC 

Temperature 
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4.10 Comparison of CCI data in vegetation study with 
other satellite data and LS models 

Met 
Office 

MIP process 
analysis 

3 AGBiomass, LST, 
SM, LC 

Temperature, Precipitation, FAPAR, 
LAI 

4.11 Land-surface interaction related biases in AMIP IPSL MIP process 
analysis 

4 LST , Snow, SM Air temp, turb. fluxes (Jung, Gleam,) 
meteo analysis, MODIS data, CERES 
rad. fluxes, SM (SMOS, Gleam) 

 Table 1: Main features of the work on exploiting CCI products in MIP experiments. 
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3. Links between Task 4 and the CMIP projects 

The results are relevant to the CMIP6 endorsed MIP projects that are working in a similar 
research area to CMUG WP4. CMIP is part of WCRP (World Climate Research Programme) 
which has proposed areas for emphasis in climate research called the ‘grand challenges’1, which 
the MIPs are helping to address. There are currently 23 CMIP6 endorsed MIP projects2 (plus 
17 related or supporting MIP type projects) which cover a wide range of Earth system processes 
and modelling activities. The CMUG partners working on this Task are engaging with relevant 
CMIP projects and exchanging results and information about their respective research. CMUG 
partners are currently involved in all of the CMIP projects and a summary of this is given in 
Table 2.  
  

                                                
1  https://www.wcrp-climate.org/grand-challenges/grand-challenges-overview 
2  https://www.wcrp-climate.org/modelling-wgcm-mip-catalogue/modelling-wgcm-cmip6-endorsed-mips 
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CMUG PARTNER MIP PROJECTS 
Met Office 

All MIP projects, either directly or through collaborative research with the UK institutes 
using the Met Office climate model 
The Met Office leads HighResMIP. 
A Met Office researcher is a panel member for CMIP6 

DLR 
Veronika Eyring is a panel member for CMIP6 
MIPs relevant to atmospheric processes and chemistry 

IPSL 
LS3MIP (Land Surface, Snow and Soil Moisture Model Intercomparison Project) - the 
results will be valuable for the work proposed in CMUG. 
SPMIP for Soil Parameter MIP - the results will be particularly valuable for the work 
proposed in CMUG. 
AMIP  
HiResMIP (an AMIP at higher resolution) 

BSC 
ScenarioMIP (5x SSP2-4.5 scenario runs) 
DCPP 
VolMIP  (volcpinatubo-full and volc-long-eq) 
HiResMIP  PRIMAVERA: spinup, hist-1950, control-1950 and highres-future) 
AerChemMIP  (piClim-2xdust) 
C4MIP 

MPI-M 
Dirk Notz is co-chair of SIMIP 
Researchers at MPI-M are involved in virtually all MIPs and will 
provide respective model output from specific simulations. 

Météo France 
AERCHEMMIP 
CFMIP 
DAMIP 
DCPP 
FAFMIP 
LS3MIP 
RFMIP 
ScenarioMIP 
CORDEX 
Plus an involvement with many others 

SMHI 
CMIP 
HighRESMIP 

Table 2: Summary of CMUG involvement with CMIP projects. 
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4. CMUG MIP experiments with CCI products 

4.1 Evaluation of modelled system memory 

Lead partner: MPI-M 

Author: Andreas Wernecke 

Aim 

The aim of this research is to develop and apply a framework that allows evaluation of the 
simulated memory (temporal correlation) of ECVs in a model-evaluation processing chain. It 
will address the following scientific question: How can we evaluate the memory of climate 
variables as simulated by large-scale model simulations? 

Summary of Work and Results 

Work on this experiment has so far focused on the Sea Surface Salinity ECV (SSS) but the 
general workflow is adjustable to other ECVs. The temporal auto-correlation, or memory, is an 
essential property of all ECVs. It describes the ability of the earth system to maintain a quantity 
in spite of climate variability. The memory is also closely related to the predictability of a 
variable and the time-frame for which data assimilation into prediction models has the potential 
to be beneficial. However, here we do not investigate the role of model memory in the context 
of (e.g. seasonal-) prediction models but for the evaluation of climate models in general. The 
memory of a system variable is the result of the sum of all relevant physical processes, acting 
on their respective time scales. A disagreement of modelled and real memory indicates either 
that the relevance of processes is falsely interpreted (including potentially neglecting a process 
completely) or that processes are misrepresented in the model so that the respective relevant 
time scales are wrong. Observational uncertainties can also distort the image of the real system 
memory where e.g. sensor white noise would reduce the observed memory. 

Three statistics are used here, which are quickly introduced in the following.  

The Anomaly Correlation Coefficient (ACC) is frequently used as fully localized measure of 
the correlation between a seasonal forecast (v) and observations (o). The ACC is the Pearson 
correlation coefficient for a given location and month of the year, calculated over a range of 
years. For the memory we treat the SSS of month x as forecast for a following month (x+lag). 
For example, the ACC can be a measure of how strongly a positive SSS anomaly in, say, 
January is informative for the SSS anomaly in March (lag=2 month), at any given location.  

 

The lagged pattern correlation on the other hand is defined as the Pearson correlation between 
two time slices, calculated across all locations. The pattern correlation between January and 
March can therefore have different values for each year, which we average using a Fisher-Z 
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transformation. The pattern correlation is a global statistic describing regional memory; how 
long does a pattern (fingerprint) of regionally high/low anomalies persist? Limitations are the 
disregard towards biases (of limited concern here since the seasonal cycle/trends are not the 
focus area) and amplitude of the pattern. For example, if there is a spatial pattern of high/low 
anomalies in January which diminish homogeneously (anomalies become smaller with time but 
maintain their relative spatial distribution) the pattern correlation would still attest full/perfect 
memory.  

Lagged Mean Squared Differences (MSD) (also called mean squared error) reflect a 
combination of change in amplitude and change in location. The MSD is easily converted into 
a skill score by S_MSD=1-MSD/MSD_REF, setting one to a perfect value (no differences) and 
zero to an MSD equal to a reference MSD. Typically reference values are based on an earlier 
MSD or a climatology (Section 8.3.3 in ‘Statistical Methods in the Atmospheric Sciences’; 
Wilks, 2019). Here we use the climatology as reference so that S_MSD=0 corresponds to a lag 
time where the initial SSS anomaly is just as good a predictor for a later time as the climatology 
(i.e. zero for anomalies). Note that for lag times larger than the temporal correlation length scale 
(memory), the climatology is the best a-priory predictor of the SSS state, meaning that negative 
S_MSD are to be expected.  

Here we investigate SSS memory in the CCI+ SSS product, ORAS5 reanalysis and the MPI-
ESM grand ensemble (MPI-GE). We use two periods for model-to-observation comparisons 
which are 1979-2005 (ORAS5 and MPI-GE historical runs) and 2010-2019 (CCI and MPI-GE 
RCP4.5 runs). In all cases we first derive the (linearly) detrended anomalies (the respective 
climatologies are based on the same periods as mentioned before) and bring the MPI-GE data 
onto the observational (EASE-2) projection. The MPI-GE sea surface salinity extends 
underneath sea ice, where the view for CCI satellite observations is blocked. We use only 
locations for which valid SSS observations are available throughout the whole data period and 
use the same mask for MPI-GE data. To minimize the influence of sea ice further we limit the 
study area to 65° S to 65° N.  

Figure 4.1.1 illustrates crucial steps towards the SSS memory analysis. The CCI+ SSS product 
and MPI-ESM data are brought to the same grid and masks (location of valid estimates) are 
synchronized (top row of Figure 4.1.1). SSS anomalies are derived year-round by subtracting 
the seasonal cycle and linear trends (examples for January and April 2019 shown in the second 
and third row of Figure 4.1.1). The anomalies (and with that the absolute SSS values) cannot 
be expected to agree between the data sets since they represent internal variability of the 
(modelled and observed) system. Again, the model runs used here are climate projections and 
are not intended to forecast the one realization of internal variability which the real world is 
taking but instead to represent plausible (alternative) realizations with realistic magnitude, 
spatial and temporal characteristics. The memory, represented by the ACC in the bottom row 
of Figure 4.1.1, is one of those characteristics which would ideally be consistent between the 
data sets. Overall, the ACC is considerably smaller in the CCI+ product than in the MPI-ESM 
and fewer locations have significant correlation. That being said, some regional similarities do 
exist, for example in the tropical pacific with bands of increased memory north and south of the 
equator as well as the north Atlantic between 10° N and 30° N and around Australia and 
Maritime Southeast Asia. 
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Figure 4.1.1: CCI+ satellite observations (left) and MPI-ESM grand ensemble member #1 
(right) January 2019 Sea Surface Salinity (SSS) (top) and SSS anomalies for January and April 
2019 (second and third row respectively) and Anomaly Correlation Coefficients (ACC, bottom 
row) between January and April SSS based on 2010 to 2019. Locations with ACC p-value below 
0.05 (failed significance test) are hatched.  

The local memory, as approached above by the ACC, can give valuable information of regional 
model to observation agreement. Relevant processes, leading to agreement or disagreement 
between the data sets, will however change throughout the year and act on a range of timescales, 
making a systematic investigation challenging (note that we show only the ACC between 
January and April as examples). The main global pattern appears to be that the observed 
memory is shorter than the MPI-ESM memory making local interpretations cumbersome. To 
test this hypothesis, we use the global anomaly pattern correlation.  



CMUG CCI+ Deliverable  
Reference:  D4.1: Exploiting CCI products in MIP experiments 
Submission date:  April 2021 
Version:  1.3 

 
 

12 of 45 

 

Figure 4.1.2: Global SSS anomaly pattern correlation from MPI-ESM (right) and observations 
(left), namely the CCI+ SSS product (top) and ORAS5 ocean reanalysis (bottom). Note that the 
MPI-ESM data is confined to the same time periods as the respective observations and that we 
use historical forcing experiment before 2005 and RCP4.5 experiment past 2005. Dots indicate 
significance. 

We calculate the lagged pattern correlation between each month of the year (lead month) and 
each month of the full succeeding year (lag month). The lag period goes therefore from zero to 
eleven month (x-axis of Figure 4.1.2) where zero lag time corresponds to a perfect correlation 
of one. In general, the memory characteristics are discussed in terms of persistence (the initial 
short-term drop in correlation), long term memory and potential reemergence of correlations 
throughout the year. However, the results shown in Figure 4.1.2 do not show noteworthy 
variations throughout the year or any features but a monotonic drop in pattern correlation. The 
typical time scale of these drops differs however by data set; The CCI+ product shows the 
shortest memory of only about three months, followed by ORAS5 reanalysis  with about five 
months, the ten year MPI-ESM RCP4.5 sub-period of about six to seven months and the longest 
memory of the 27 year MPI-ESM historical sub-period of more than 12 months (Figure 4.1.2). 

While noise in the satellite data could result in an underestimation of the system memory, we 
do not expect the ORAS5 reanalysis data to be particularly noisy. The consistently longer 
memory in model runs compared to both types of observations therefore suggests that the MPI-
ESM grand ensemble simulations have an unrealistically long modelled system memory. The 
temporal evolution of these model simulations is therefore apparently too smooth on short 
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(seasonal to yearly) time-scales. As mentioned before, the MPI-ESM RCP4.5 memory for the 
CCI+ period (2010-2019) is significantly shorter than for the historical simulations from 1979-
2005. This is fully consistent with shorter memory in the CCI+ data compared to ORAS5 data 
which is therefore no indication for a substantial influence of noise on the CCI+ data. 

The pattern correlation does not cover changes in the amplitude of the anomalies but just the 
relative spatial high/low anomaly distribution, which is why we complement the pattern 
correlation by an analysis of the MSD skill score.  

 

Figure 4.1.3: As Figure 4.1.2 but showing the Mean Squared Differences Skill Score (S_MSD) 
instead of the pattern correlation. 

 

The lagged MSD Skill Score (Figure 4.1.3) shows the same behavior as the pattern correlation 
with the only difference that small values are reached after shorter periods which can be easily 
explained by the differences in the statistics. Both show a value of one for optimal agreement 
but while zero in the pattern correlation indicates no correlation between the two anomaly fields, 
an MSD Skill of zero only indicates that the MSD is as small as the climatology value. The 
order of length of memory by data set is the same for both statistics. 

Since the memory has no clear dependency on the time of the year, as can be seen in Figure 
4.1.3, we illustrate the decline of S_MSD as function of lag time and combine model and 
observational estimates in Figure 4.1.4. We further define an estimate for the memory as the 
first crossing of S_MSD with zero, i.e. the time for which the lead month can be considered a 
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useful, i.e. better than climatology, predictor for the lag month. Note that the absolute value of 
this definition of memory is strongly dependent on the statistic used (compare Figures 4.1.2 and 
4.1.3) but is nevertheless useful for model to observation comparisons. It can be seen that MPI-
ESM simulation can largely be separated from the observations for both data sets without 
consideration of seasons or any temporal averaging (Figure 4.1.4). 

 

Figure 4.1.4: Decline of S_MSD with lag time for observations (black) and MPI-ESM (red) 
(left) where there is one line for each month of the time series, representing the decline in skill  
with the following month. The frequency distributions of the corresponding first crossing of 
S_MSD with zero using linear interpolation (‘memory’) is shown on the right. The CCI+ data 
and period are used for the top row and ORAS5 data and period for the bottom row.  

 

Lastly, we investigate the potential of a latitudinal dependency of the memory, inspired by the 
findings from the ACC above. For this reason, we derive the memory (as defined above) on 
latitudinal bands of 15° for each month of the year. Besides the now well-established difference 
in absolute memory we see good agreement in the latitudinal-temporal development. The 
memory is largest at around +/-30° N and towards 60° N with the shortest memory near the 
equator (Figure 4.1.5). Also the temporal development shows many similarities with a 
prolongation of the memory in the first half of the year (January to June) around 30° N and in 
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the second half of the year (July to December) at around 30° S. Small differences between 
observations and model are however noticeable; the tropical minimum in the MPI-ESM data 
lies between approximately 10° S (around June/July) to 10° N (December/January) while those 
points are about 5° to 10° further north and about two month earlier in both observational data 
sets. 

 

Figure 4.1.5: The memory (defined here as the first zero crossing of the MSD Skill Score) by 
latitude (15° bands centered at the latitudes shown) and lead month, averaged over the years 
and based on the data set, noted above each panel. 

 

Publications 

None so far, but we plan to describe related concrete plans in the next version of this report. 

 

Interactions with the ECVs used in this experiment 

Interactions between the CMUG and ECV projects for work on this WP in particular happened though 
an email exchange with the CCI+ SSS science lead where the influence of the sensor penetration depth 
on the characteristic depth of the surface water layer have been discussed. We concluded that under most 
circumstances (all but strong rain events) SSS satellite observations are representative for the surface 
mixed layer, which allows a one to one comparison with modelled SSS memory. The quarterly CSWG 
and the Integration meetings allowed for additional interactions, including with the SSS team. 
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Consistency between data products 

So far we did not identify any inconsistencies of concern with regard to the system memory (in addition 
to those discussed above). There appears to be a bias in the global mean SSS between the model and 
observations of about 0.2 g/kg to 0.25 g/kg, which appears to be larger in the southern hemisphere than 
in the northern hemisphere. This biases towards MPI-ESM data are, however, consistent between 
reanalysis and CCI+ observations, suggesting that the model has a negative bias towards the real state. 

 

Recommendations to the CCI ECV teams 

To be completed in next version of this report. 
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4.2 Evaluation of model results considering observational 
uncertainty 

Lead partner: MPI-M 

Author: Andreas Wernecke 

Aim 

The aim of this research is to develop and apply a framework that allows one to include 
observational uncertainty information into a model-evaluation processing chain. It will address 
the following scientific question: How can we take observational uncertainty into account when 
evaluating large-scale model simulations? 

Summary of Work and Results 

So far, work in this area has focused on the sea ice ECV. When the sea ice ECV is used for 
model evaluation, this is in most cases done in terms of the Sea Ice Area (SIA), Sea Ice Extent 
(SIE) or Sea Ice Volume (SIV). Here we focus on the SIA due to known limitations of the SIE 
(such as resolution dependency) and it being used much more frequently than the SIV. The SIA 
is calculated as the Sea Ice Concentration (SIC) multiplied by corresponding pixel size, summed 
up over the whole hemisphere. Sometimes the difference in SIA from a few SIC products is 
used as a rough estimate of the SIA but with ongoing progress in SIC uncertainty quantification, 
an accompanying single product SIA uncertainty estimate seems overdue. The challenge is to 
convert local SIC uncertainty to a combined SIA uncertainty for which it is necessary to take 
into account the spatial covariance structure. The importance of the correlation structure for the 
SIA uncertainty, and with that for model evaluations, becomes clear when considering the two 
extremes: All SIC pixels could be considered statistically independent which would in practice 
result in SIA standard deviation of order 10 000 km². The other extreme is to consider all local 
uncertainties throughout the hemisphere as fully correlated which would increase the SIA 
uncertainty in practice to the order of 1 000 000 km² (based on 50 km resolution CCI+ SIC 
data).  

Work on this WP started with the theoretical development of a spatial covariance model which 
combines expected correlation signatures (based on our understanding of the error sources 
following discussions with the CCI+ SIC team; Thomas Lavergne, Met Norway). The main 
challenge is to quantify covariance model parameters (of our new model or in fact any 
covariance model). Most prominently this is the spatial de-correlation length scale, i.e. the 
characteristic spatial distance at which errors in the SIC product are largely independent. We 
address this challenge by three different approaches, as described below. 
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The covariance model 

The algorithmic and smearing uncertainties (as provided by the CCI+ product) are assumed to 
be independent, each with their own correlation matrix. 

The algorithm uncertainty is expected to be largely driven by tie-point and methodological 
uncertainties and only to a smaller (here neglected) extent from local measurement 
uncertainties. Since small SIC values will be predominantly impacted by the ocean tie-point 
and high SIC values predominantly impacted by the 100% sea ice tie-point, we base the 
(hemisphere wide) algorithmic correlation solely on differences in the sea ice concentration, 
not on the physical distance between measurements. The following error correlation function 
(ca(xi ,xj ))  for the algorithmic uncertainty between measurements at locations xi and xj , 

fulfills these criteria: 

ca(xi ,xj )= exp[− δSIC
.2

lSIC
2 ]

 

 

where lSIC is a scaling parameter and
δSIC is the absolute difference in SIC (in percent) at the 

locations xi and xj .  

The smearing uncertainty represents a range of influences on the satellite measurements related 
to the different footprint sizes and spillover effects from outside of the theoretical footprints. Its 
correlation structure is hence more complex and should fulfill the following considerations: 

 The correlation should diminish with distance between locations 

 Uncertainties for similar SIC values are more likely to be subject to coherent errors than 
across SIC gradients 

 The land spillover effect near coasts is expected to cause correlated errors. 

 

The following error correlation function for the smearing uncertainty (cs(xi ,x j)) , between 

measurements at locations xi and xj , fulfills these criteria: 

 

𝑐௦൫𝑥, 𝑥൯ = 𝑒𝑥𝑝 ቈ
−𝛿௫

ଶ

(𝐼௫ + 𝐼௫ௌூ(1 − 𝛿ௌூ 100%⁄ ) + 𝐼௫𝑟)
ଶ
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with l x0 , l xSIC and l xL being components of the characteristic correlation length scale, 
δx being 

the distance between xi and xj ,
δSIC as defined before and r L a factor representing the 

combined proximity to the land by: 

 

𝑟 =
𝐼
ଶ

𝛿,𝛿,
 

where l L is a typical length scale for the impact of land on the correlation and
δL,i being the 

shortest distance to land (as defined by the SIC land mask) of xi (
δL, j is defined accordingly). 

To restrict the maximal impact of the land spillover on the correlation we set the maximum of
r L to one. Note that l xL and l L are separate parameters, the first representing the maximal 

additional correlation length scale in cs(xi ,x j) due to land influence (which can be understood 

as a distance the land influence is able to carry the uncertainty correlation) and the latter ( l L ) 
representing the typical distance away from the coast which is impacted. 

In summary, we defined correlation functions that match our basic expectations. It is not 
encompassing anti-correlations which is in line with our error characteristic expectations. The 
smearing error correlations diminish with distance between two measurements with the typical 

correlation length-scale (at which the correlation has fallen to about 0.37) between l x0 and
l x0+l xSIC+ l xL , depending on the sea ice concentration (longer with similar concentration 

values) and proximity to land (longer close to the coast). There are five free parameters 

(algorithmic and smearing uncertainty combined) which need to be set (l x0 ,l xSIC , l xL ,l L ,l SIC) . 
This is not to say that these are the only or best functional forms to represent the error correlation 
structure, it is one representation in line with our expectations. More research is needed to test 
these expectations, test other functional relationships and constrain the free parameters. The 
work described in the following is an early attempt to deepen our understanding in this regard. 

Investigation of the CCI+ SIC error correlation 

First, we derive spatial SIC correlations and SIC uncertainty correlations from repeated 
measurements. The rationale behind the use of the spatial SIC correlation as proxy for the SIC 
error correlation is that for a constant real SIC, the changes in SIC measurements would 
represent errors of repeated measurements. The SIC uncertainty correlation is related to the SIC 
error correlation by the idea that any process causing an increased uncertainty over a certain 
spatial footprint is more likely to cause the corresponding errors to be correlated as well. To be 
clear about the difference between errors and uncertainties: The uncertainty is a measure of the 
width of the distribution of a random variable (here the CCI SIC at a given time and location), 
the error is the SIC difference between a specific measurement (e.g. the SIC product value 
which is the center of the uncertainty distribution) and the real value. If the uncertainty estimates 
are good, the error distribution will be consistent with the uncertainty estimates. For example, 
if two locations have highly correlated uncertainties it means that if one has relatively wide 
probability distribution, it is very likely that the other one has a relatively wide probability 
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distribution as well. It does per se not mean that an e.g. overestimated SIC measurement at one 
location makes it more likely that the measurement at the other location is overestimated as 
well. 

For Figure 4.2.1 (right) we derive the SIC correlation structure from the CCI+ SIC 
measurements from February 21st and use the provided uncertainties (algorithmic and smearing) 
from Feb. 21 2016 to receive a combined covariance estimate. This is compared (Figure 4.2.1, 
left) with the covariance based on our correlation model with selected parameters (here: 
l x0= 100km,lxSIC300km,lxL= 100km,lL= 100km,lSIC= 20% ). The model has the advantage 

that, once the parameters are derived, it is available for every time and place and does adapt to 
changes in the ice cover dynamically. While this is just one example, it shows that sample 
covariance structures can show complex patterns and that the correlation model developed here 
is capable of representing such structures reasonably well. Note that this approach is challenging 
to evaluate systematically (Figure 4.2.1 shows the covariance for one day and relative to one 
location). 

 

Figure 4.2.1: Spatial covariance for selected location northeast of Svalbard (black circle) from 
the developed covariance model on the SIC product from Feb. 21 2016 (left) and the sample 
SIC covariance with correlation pattern based on the years 2007 to 2016 for the same day 
(right).  

For comparison and generalization of the previous finding we now use correlation length scales 
from the CCI SIC validation and inter-comparison report (PVIR) (https://icdc.cen.uni-
hamburg.defileadminuser upload ESA Sea-Ice-ECV Phase2 1SICCI P2 PVIR-SIT D4.1 Issue 
1.1.pdf ). These global SIC correlation length-scale estimates, kindly provided by Stefan Kern, 
represent the approximate circular radius of correlation in the SIC product and SIC uncertainty 
product. They are therefore not suited to directly constraining the parameters of our error 
correlation model, particularly not the non-circular components. 
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In the PVIR, MODIS data is used to identify regions with >=90% (labeled ’Pack Ice’) and 0% 
SIC (labeled ’Ocean’) and 31 day periods of the CCI product derivation from these values is 
used to calculate a sample correlation. The availability of MODIS SIC estimates is limited by 
clouds, so that this analysis is applied to windows of opportunity and represents only errors for 
cloud free conditions. The correlation length-scale are calculated by defining rings around the 
currently investigated cell and fitting an exponentially decaying function to the average 
correlation within each ring. This is repeated for each cell and day. The reported correlation 
length hence corresponds to the distance at which the correlation towards the center cell has 
dropped to approximately 37% 

 

Figure 4.2.2: Frequency distributions of 2016 correlation length of the SIC and SIC uncertainty 
variables for preclassified open water locations (left) and pack ice locations (right). Based on 
calculations done for the PVIR.  

In Figure 4.2.2 we see the distribution of correlation length scales for the whole Arctic basin 
within year 2016. Other years and quarterly assessments show very similar results (not shown). 
The differences in SIC error correlation length scales between pack ice and ocean conditions 
are very small (compare left and right of Figure 4.2.2). This is a promising result since it means 
that there are no indications for a dependency on the correlation length on the SIC values or 
between typical pack ice and ocean regions. This provides no information about a potential 
dependency on SIC gradient. The SIC uncertainty product has shorter correlation scales than 
the SIC product (red vs. black histograms). The range of values is mostly between one hundred 
to a few hundred kilometers.  

Lastly we approach the error correlation by triangulation of independent satellite SIC products. 
This approach avoids any assumptions about the real state of the SIC (y) since it is the same for 
all SIC products and cancels out when basing the calculations solely on the differences in SIC 
products. Figure 4.2.3 illustrate this approach and provides the derived equations which assume 
that the unbiased SIC product errors (e1 to e3) are independent between the products. This 
assumption might not be justified, considering similarities in used satellite sensors, frequency 
bands and retrieval approaches. 
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For Figure 4.2.4 we use daily SIC fields from all days in February (excluding the 29.th) for the 
years of 2003 to 2017 (excluding 2012 and parts of Feb. 2016 due to missing data). It is based 
on the CCI+ SIC, NASA team algorithm (as provided by NSIDC, doi: 
https://doi.org/10.7265/N59P2ZTG) and SSMI/ASI algorithm (as provided by the ICDC 
https://icdc.cen.uni-hamburg.de/seaiceconcentration-asi-ssmi.html). Here we can combine 
several years of February data due to reduced dependence of the real state of the sea ice for this 
approach.  

 

cov(e1)≈
1
2

(cov(Z12)− cov(Z23)+cov(Z13))

cov(e2)≈
1
2

(cov(Z12)+cov(Z23)− cov(Z13))

cov(e3)≈
1
2

(− cov(Z12)+cov(Z23)+cov(Z13))
 

 

 

Figure 4.2.3: Schematic of SIC error triangulation and corresponding derived equations with 
y representing the real SIC, ei being the error of SIC product i and Z_ij being the difference in 
SIC product i and j.  

 

Figure 4.2.4: Covariance estimates (equations given in Figure 4.2.3) for February (as example) 
of three SIC products (left: CCI+, center: NASA team, right: SSMI ASI) relative to the location 
marked by a black circle, approx. 200 km south of the Bering strait and just north of St. 
Lawrence Island. 

The covariance estimates in Figure 4.2.4 show some differences between the products. The 
NASA team and ASI products have larger correlation length scales of about 400 km in radius 
(the shown box covers an area of 1600 km × 1600 km) where the CCI covariance seems to be 
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more localized. The NASA team product has a stronger connection across the Bering Strait then 
the ASI product and shows in addition lower covariance along the coasts. 

A major question is how reliable these estimates are; the assumption of independent errors of 
the products might not hold. To investigate the robustness of our approach we use a fourth SIC 
product (the Bootstrap Algorithm from the NSIDC doi: https://doi.org/10.7265/N59P2ZTG) 
and repeat the above analysis with each possible pair of three. We investigate the dependency 
of the CCI+ SIC product error covariance estimate on the choice of the two other products 
which are used to derive it. Ideally all three covariance estimates in Figure 4.2.5 would be in 
good agreement. While there are some consistent features (e.g. reduced CCI+ covariance across 
the Bering strait and mostly increased covariance near the coast), there are also substantial 
differences (Figure 4.2.5). This is thought to be caused by a failure of the independence 
assumption between the SIC products. We derived error covariance estimates for all four 
products and analyzed other locations and seasons and find that this approach appears to be 
more suited for the NASA Team and ASI algorithms (higher consistency, not shown). There 
are two likely reasons for this. (1) CCI+ error correlations are typically weaker which makes it 
more likely that weaknesses in these estimates are overpowering the signal and/or (2) the cross-
product error correlations are in such a way that they do have a stronger impact the CCI+ 
product (which is not a quality characteristic). In the equations, allowing for a positive cross-
product error correlation for two of the three involved SIC products results in an 
underestimation in the spatial error covariance estimates of the two correlated products and an 
overestimation of the spatial covariance of the third, independent SIC product. 

 

Figure 4.2.5: Covariance estimates (equations given in Figure 4.2.3) for February of the CCI+ 
SIC product based on triangulation with three sets of other SIC products (left: SSMI/ASI + 
Bootstrap, center: NASA team + SSMI/ASI, right: NASA Team + Bootstrap) relative to the 
location marked by a black circle, approx. 200 km south of the Bering strait and just north of 
St. Lawrence Island. 
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Synthesis 

We developed an SIC error correlation model and attempted to constrain the corresponding 
parameters based on a statistical analysis of the data. None of the approaches (individual SIC 
sample correlations, re-analysis of the PVIR circular correlation estimates and a triangulation 
of error correlations by a combination of several SIC products) lead to a robust estimate of the 
model parameters. It did, however allow us to improve our understanding of the SIC error 
characteristics and cross-product correlations. Overall, spatial covariance structures can have 
significant non-circular components (Figure 4.2.1), correlation length scales are rarely below 
100 km and frequently reach several hundred km (Figure 4.2.2, Figure 4.2.5), and there are 
weak indications for increased covariance pattern in the CCI+ products near land (Figure 4.2.5, 
center and right). Our correlation model is capable of incorporating all those findings. The lower 

bound of correlation length ( l x0 ) should be chosen to be no less than 100 km and the sum of 

the two additional length scales ( l xL and l xSLC ) should be at least a few hundred km to cover 
the whole range of found SIC error correlation length scales (Figures 4.2.1, 4.2.2 and 4.2.5). If 
simple circular error correlation models are used we would suggest a few hundred kilometers 
as length scale. Note that neglecting the error correlation when e.g. deriving the SIA uncertainty 
would result in an implicit decision to set the characteristic error correlation length scale to a 
value well below the SIC product resolution (zero), which would in general not be in agreement 
with our results. 

Publications 

None so far, but we plan to describe related concrete plans in the next version of this report. 

 

Interactions with the ECVs used in this experiment 

Interactions between the CMUG and ECV projects for work on this WP in particular happened though 
an email exchange with CCI+ SI team members (Thomas Lavergne, Stefan Hendricks and Stefan Kern) 
as well as joining and presenting at meetings, including CCI+ colocation meetings and the CCI+ SI 
progress monitoring meeting in March 2021.  

 

Consistency between data products 

This section will provide a record of any inconsistencies found between ECV products, and will be 
completed in the next version of this report. 
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Recommendations to the CCI ECV teams 

To be completed in next version of this report. 
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4.3 Evaluation of model results considering the abstraction level  
of observational products 

 

Lead partner: MPI-M 

Author: Dirk Olonscheck 

 

Aim 

The aim of this research is to develop and apply a framework that allows one to estimate the 
ideal abstraction level at which a model evaluation should be carried out. It will address the 
following scientific question: At which observational abstraction level should we evaluate 
large-scale model simulations? 

Summary of Work and Results 

To be completed in next version of this report. 

Publications 

None so far, but the interest in the results leading to a journal or conference publication will be described 
in the next version of this report. 

Interactions with the ECVs used in this experiment 

In the first 12 months of this phase of CMUG work there have been interactions with the SSS, Snow, 
SST, SI and LST CCI ECV projects at the quarterly CSWG meetings and the Integration meetings. 
Contact outside that has been only to check on the continuation of the SI and SST projects, and to learn 
about the beta data that LST announced was available in late 2019.  Interactions with the SIMIP project 
are planned for the future. 

Consistency between data products 

This section will provide a record of any inconsistencies found between ECV products, and will be 
completed in the next version of this report. 

Recommendations to the CCI ECV teams 

To be completed in next version of this report. 

 



CMUG CCI+ Deliverable  
Reference:  D4.1: Exploiting CCI products in MIP experiments 
Submission date:  April 2021 
Version:  1.3 

 
 

27 of 45 

 

4.4 Optimal spatial and temporal scales for model evaluation 

 

Lead partner: MPI-M 

Authors: Dirk Olonscheck 

 

Aim 

The aim of this research is to develop and apply a framework that allows one to estimate the 
ideal spatial and temporal time horizon at which a model evaluation should be carried out to 
minimize the impact of observational uncertainty. It will address the following scientific 
question: At which time and space scale should we evaluate large-scale model simulations? 

Summary of Work and Results 

To be completed in next version of this report. 

Publications 

None so far, but the interest in the results leading to a journal or conference publication will be described 
in the next version of this report. 

Interactions with the ECVs used in this experiment 

In the first 12 months of this phase of CMUG work there have been interactions with the SSSal, Snow, 
SST, SI and LST CCI ECV projects at the quarterly CSWG meetings and the Integration meetings. 
Contact outside that has been only to check on the continuation of the SI and SST projects, and to learn 
about the beta data that LST announced was available in late 2019.  Interactions with the SIMIP project 
are planned for the future. 

Consistency between data products 

This section will provide a record of any inconsistencies found between ECV products, and will be 
completed in the next version of this report. 

Recommendations to the CCI ECV teams 

To be completed in next version of this report. 
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4.5 Evaluation of model results considering internal variability 

 

Lead partner: MPI-M 

Authors: Dirk Olonscheck, Dirk Notz 

 

Aim 

The aim of this research is to develop and apply a framework that allows one to consider the 
impact of internal variability into a model-evaluation processing chain. It will address the 
following scientific question: How can we take internal variability into account when evaluating 
large-scale model simulations? 

Summary of Work and Results  

The work done in the first year of this CMUG research period (October 2018 to September 
2019) was on the methodology that will be used on the new CCI+ datasets when they are 
available. The method allows one to easily take model-specific internal variability into account 
when evaluating simulations from global climate models. This lays the methodological basis 
for taking internal climate variability into account when evaluating climate-model simulations 
with the forthcoming CCI+ ECVs. The background research on which the CMUG work is based 
was published in Olonscheck and Notz, 2017, and an evaluation using CMIP5 simulations from 
that paper is shown in Fig. 4.5.1. 

 

 

 

 

 

 

 

 

Figure 4.5.1: 
Schematic view of the method for estimating internal variability for different forcing scenarios.  
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The basic version of the method regresses the estimate of internal variability derived from the 
preindustrial control simulation of a model (x axis) on the ensemble standard deviation of 
models with ensemble simulations such as models 1 and 2 (y axis). The unity line as a reference 
is indicated by the dashed black line. For the extended version, a constructed ensemble standard 
deviation can be derived for models with a single simulation (model 3) using the regression line 
through models 1 and 2. The extended version requires a consistent response of the models with 
ensemble simulations. A summary of the scientific outcomes of the research are:  

1. Development of a new method that allows us to consistently estimate internal climate 
variability and its change over time for all models within a multimodel ensemble such 
as CMIP5 by regressing each model’s estimate of internal variability from the 
preindustrial control simulation on the variability derived from a model’s ensemble 
simulations. 

2. We find a highly variable model-specific internal variability of sea-ice volume and sea-
ice area. 

3. The method allows for the evaluation of climate-model simulations by uniformly taking 
model-specific internal variability for all models into account. 

Publications 

None so far, but the interest in the results leading to a journal or conference publication will be described 
in the next version of this report. 

Interactions with the ECVs used in this experiment 

In the first 12 months of this phase of CMUG work there have been interactions with the SSSal, Snow, 
SST, SI and LST CCI ECV projects at the quarterly CSWG meetings and the Integration meetings. 
Contact outside that has been only to check on the continuation of the SI and SST projects, and to learn 
about the beta data that LST announced was available in late 2019.  Interactions with the SIMIP project 
are planned for the future. 

Consistency between data products 

This section will provide a record of any inconsistencies found between ECV products, and will be 
completed in the next version of this report. 

Recommendations to the CCI ECV teams 

To be completed in next version of this report. 
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4.6 Evaluation of model results considering a combination of 
sources of uncertainties 

 

Lead partner: MPI-M 

Authors: Dirk Olonscheck, Dirk Notz 

 

Aim 

The aim of this research is to develop and apply a framework that allows one to include both 
observational uncertainty and uncertainty arising from internal variability into a model-
evaluation processing chain. It will address the following scientific question: How can we take 
observational uncertainty and internal variability into account when evaluating large-scale 
model simulations? 

Summary of Work and Results 

The work done in the first year of this CMUG research period (October 2018 to September 
2019) was on the methodology that will be used on the new CCI+ datasets when they are 
available. The introduced plausibility variable (below) allows one to take both model-specific 
internal variability and observational uncertainty into account for evaluating climate-model 
simulations. We did so to evaluate the CMIP5 climate-model simulations as shown in Fig. 4.6.1. 
This comprehensive evaluation approach will be applied to comparing climate-model 
simulations with the CCI+ ECVs. The background research on which the CMUG work is based 
was published in Olonscheck and Notz (2017). 

We introduce a plausibility variable as a measure of model fidelity, which takes both the model-
specific internal variability (sigma_mod) and the observational or reanalysis uncertainty 
(delta_ref) into account: 

 

 

 

This approach to evaluate climate-model simulations considers both internal variability and 
observational uncertainty and thus links to Task 4.2. 



CMUG CCI+ Deliverable  
Reference:  D4.1: Exploiting CCI products in MIP experiments 
Submission date:  April 2021 
Version:  1.3 

 
 

31 of 45 

The results allow for a distinction between model deviations that are plausible due to internal 
variability and reference-data uncertainty and those that cannot be explained by these sources 
of uncertainty, pointing to model biases. 

 

 

Figure 4.6.1: Portrait plot of the plausibility of CMIP5 sea-ice simulations for the 30-yr trend and the 
mean state of (a) Northern Hemisphere sea-ice volume, (b) Northern Hemisphere sea-ice area, and (c) 
Southern Hemisphere sea-ice area based on the distance between each extended historical CMIP5 
model simulation and reference data (PIOMAS for Northern Hemisphere sea-ice volume and satellite 
sea ice data from a CCI precursor dataset, Meier 2013, for sea-ice area). Deviations are shown in units 
of “phi”, which combines delta_ref and sigma_mod; a model’s negative (red) and positive (blue) 
deviation with respect to reference data are indicated. Note that each model name is attached to the first 
ensemble simulation only. 
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Publications 

None so far, but the interest in the results leading to a journal or conference publication will be described 
in the next version of this report. 

 

Interactions with the ECVs used in this experiment 

In the first 12 months of this phase of CMUG work there have been interactions with the SSSal, Snow, 
SST, SI and LST CCI ECV projects at the quarterly CSWG meetings and the Integration meetings. 
Contact outside that has been only to check on the continuation of the SI and SST projects, and to learn 
about the beta data that LST announced was available in late 2019.  Interactions with the SIMIP project 
are planned for the future. 

 

Consistency between data products 

This section will provide a record of any inconsistencies found between ECV products, and will be 
completed in the next version of this report. 

 

Recommendations to the CCI ECV teams 

To be completed in next version of this report. 
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4.7 Skill assessment of the DCPP decadal predictions 

 

Lead partner: BSC 

Authors: Roberto Bilbao, Louis-Philippe Caron. 

 

Aim 

The aim of this research is to produce an extensive model skill assessment of the decadal 
hindcasts done within DCPP (Decadal Climate Prediction Project, Boer et al. 2016; and thus 
contributing to CMIP6 initiative) the longest CCI products as an independent source for 
validation, thus testing at the same time the consistency of CCI data with the reference datasets 
used for their initialization. It will address the following scientific questions: 

1. Which are the regions/variables with more skill for decadal prediction across climate 
models? 

2. Can CCI/CCI+ data help to identify if these are robust across datasets? 

3. Does skill arise for different variables over the same region? 

4. Can this help to identify the processes behind the skill? 

Summary of Work and Results 

A preliminary analysis of the skill over the whole period covered by DCPP has been done, 
evaluated  against non-ESA products. (ESA products cover  a shorter period and will be 
included in the following reporting period, to wait for longer or better products to become 
available). 

The BSC recently completed (Sept 2019) the CMIP6 decadal hindcasts using the EC-Earth coupled 
global climate model (https://www.ec-earth.org), to contribute to the Decadal Climate Prediction Project 
(DCPP) component A of the World Climate Research Center (WCRP). This forecast system consists in 
10-member ensembles of 11 year-long hindcasts initialized each year on 1st November between 1960 
to 2016. The decadal predictions are performed with a resolution of T255L91 in the atmosphere and 1° 
and 75 vertical levels in the ocean. The initialization technique used is full-field initialisation. 
Atmospheric initial conditions are generated using ERA-40 and ERA-Interim. Land initial conditions 
are part of ERA-40 prior to 1979. From then onwards ERA-Land is corrected with GPCP observations 
and used as land initialisation. Ocean and sea-ice initial conditions have been produced using a NEMO-
only simulation forced by DFS5.2 atmospheric fields and nudged towards ORAS4. 
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A preliminary analysis of skill in the EC-Earth hindcasts has been carried out for monthly-mean global-
mean sea surface temperature (SST) (Figure 4.7.1a) and several climate variability indices derived from 
SST: the Atlantic Multidecadal Variability (AMV) index (Figure 4.7.1c) calculated with the Trenberth 
and Shea (2006) definition, and El Niño Southern Oscillation (ENSO) index (Figure 4.7.1e) defined as 
the SST average over the Nino3.4 box (5S-5N and 170-120W). Beforehand, hindcast anomalies have 
been computed with respect to the period 1970-2005 using a lead-time dependent climatology. To 
quantify the deterministic skill the anomaly correlation coefficient (ACC) has been used (Figure 4.7.1). 
For this preliminary analysis three observational products have been used as a reference: ORAS4, EN4 
and HadISST. 

The ACC of global-mean SST in EC-Earth hindcasts shows high skill for the 5 forecast years (Figure 
4.7.1b). A large part of the skill of the decadal predictions is associated with the global warming trend, 
thus next steps will compare the decadal hindcast (DCPP) will be compared with the non-initialized 
CMIP6 historical simulations (DECK+ScenarioMIP) to determine the impact of the initialization. Figure 
4.7.1d shows that the model has high skill in reproducing the AMV. For ENSO the model is capable of 
skillfully reproducing the observations for the first few months but the skill drops to zero by the second 
year.  

Since BSC recently finished the DCPP simulations, the future plan is to continue the verification analysis 
of ECVs focused on the biases and skill, both deterministic (e.g. ACC, RMSSS and MSSS) and 
probabilistic (e.g. RPSS). In this preliminary analysis of SST (and SST derived indices) we did not use 
CCI/CCI+ data since the objective was to verify the entire hindcast period (1960-2015), however we 
will also verify the shorter period covered by CCI/CCI+ data for comparison, putting a special emphasis 
in determining if the skilful regions are robust. The skill assessment will also include level and cloud 
cover, two of the longest CCI records available.  

For decadal hindcast verification it is ideal to have the longest observational records possible to most 
accurately and robustly assess the skill of the prediction system. Since the climate model spatial and 
temporal resolution of the DCPP simulations is about 1º and monthly mean respectively, it would be 
useful for this analysis to put the emphasis in the design of Level 3 products (gridded) on maximising 
the length of the record (preferably 30yrs long) and no need for higher temporal resolution than monthly, 
even at the expense of the quality of the data. 
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Figure 4.7.1. a) Annual-mean global mean SST for forecast lead time year 1 for the ensemble 
mean decadal predictions (black), individual members (grey) and three observational product: 
ORAS4 (red), EN4 (blue) and HadISST (green)). b) Anomaly correlation coefficient (ACC) of the 
ensemble mean hindcasts and observations. c) As figure a) but for the AMV (Trenberth and Shea, 
2006 definition). d) ACC of the AMV. e) As figure a) for the Niño3.4 index for the first DJF. e) 
ACC of the Niño3.4 index.  

Publications 

None so far, but the interest in the results leading to a journal or conference publication will be described 
in the next version of this report. 
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Interactions with the ECVs used in this experiment 

In the first 12 months of this phase of CMUG work there have been interactions with the Sea Level,  
SST, and Clouds CCI ECV projects at the quarterly CSWG meetings and the Integration meetings. 
Contact outside that has been only to learn about the continuation datasets they will be producing in 
CCI+. Further interactions with the ScenarioMIP and Decadal Climate Prediction projects are planned 
for 2020. 

Consistency between data products 

This section will provide a record of any inconsistencies found between ECV products, and will be 
completed in the next version of this report. 

Recommendations to the CCI ECV teams 

To be completed in next version of this report. 

 



CMUG CCI+ Deliverable  
Reference:  D4.1: Exploiting CCI products in MIP experiments 
Submission date:  April 2021 
Version:  1.3 

 
 

37 of 45 

 

4.8 Use LST products to develop and test simple models relating 
the LST versus air temperature (near surface) difference to 
vegetation moisture stress 

 

Lead partner: Met Office 

Authors: Rob King 

 

Aim 

The aims of this research are to: 1) use the differences between LST and Temperature (near 
surface) to assess spatial and temporal variations in vegetation moisture stress across biomes. 
SM will also be used to examine the vegetation moisture stress.  The biomes will be 
characterised by AGBiomass and LC. 2) Understand relationships between LST and 
Temperature in the context of vegetation carbon exchanges across biomes and regions. 3) 
Assess the potential for using LST versus Temperature relationships as a large-scale monitor of 
vegetation moisture stress. It will address the following scientific questions: 

1. Can LST versus Temperature relationships be used to monitor large-scale vegetation 
moisture stress across different biomes and regions? 

2. What quality information can be learned from the ancillary ECVs used in this study? 

 

Key features 

1. Understand how LST to (near surface) air temperature differences vary across biomes 
and to different biomes. 

2. Understand how vegetation moisture stress effects LST to (near surface) air temperature 
differences to give indicators of moisture stress for particular biomes. 

Summary of Work and Results 

We have carried out some preliminary investigations and familiarisation with the soil moisture 
CCI data that is currently available and have started looking at the beta CCI LST data that has 
just become available. 



CMUG CCI+ Deliverable  
Reference:  D4.1: Exploiting CCI products in MIP experiments 
Submission date:  April 2021 
Version:  1.3 

 
 

38 of 45 

Publications 

None so far, but the interest in the results leading to a journal or conference publication will be described 
in the next version of this report. 

 

Interactions with the ECVs used in this experiment 

In the first 12 months of this phase of CMUG work there have been interactions with the LST,  AGB, 
SM and LC CCI ECV projects at the quarterly CSWG meetings and the Integration meetings. Contact 
outside that has been with LST who have already produced a beta dataset, and AGB (by email) to discuss 
data specifications and access, and the wider question of coordinated work on using the AGB data in a 
land surface climate model. Interactions with SM and LC have been to learn about the continuation 
datasets they will be producing in CCI+. Interactions with the LUMIP and Decadal Climate Prediction 
projects are planned for 2020. 

 

Consistency between data products 

This section will provide a record of any inconsistencies found between ECV products, and will be 
completed in the next version of this report. 

 

Recommendations to the CCI ECV teams 

To be completed in next version of this report. 
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4.9 Use CCI+ products and simple models developed in WP4.8 to 
evaluate performance of modelled LST versus air temperature, 
using multiple up-to-date land surface and Earth System models 

 

Lead partner: Met Office 

Authors: Rob King 

 

Aim 

The aim of this research is to evaluate how well the observed relationships between LST and 
Temperature across different vegetation types and moisture regimes are captured by the JULES 
land surface model, UKESM1 and other CMIP5 and 6 (where available) Earth System Models. 
It will address the following scientific question: 

1. Can models capture the LST versus Temperature (near surface) relationships observed 
with satellite products across different vegetation types and moisture regimes? 

 

Key features 

1. Identify biome specific relationships between LST and near-surface air temperatures 
in LST CCI data 

2. Evaluate the models (listed above) in their LST and air temperature, to understand 
how they capture the relationship seen in the CCI data. This evaluation will cover 
different biomes to capture both differing vegetation types (land cover) and (soil) 
moisture regimes. 
 

Summary of Work and Results 

We have some insights from a preliminary investigation about the behaviour of JULES in 
particular biomes when skin temperatures (LST) are compared with the driving air 
temperatures.  
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Publications 

None so far, but a paper on the evaluation of modelled seasonality in vegetation is planned. 

 

Interactions with the ECVs used in this experiment 

In the first 12 months of this phase of CMUG work there have been interactions with the LST,  AGB, 
SM and LC CCI ECV projects at the quarterly CSWG meetings and the Integration meetings. Contact 
outside that has been with LST who have already produced a beta dataset, and AGB (by email) to discuss 
data specifications and access, and the wider question of coordinated work on using the AGB data in a 
land surface climate model. Interactions with SM and LC have been to learn about the continuation 
datasets they will be producing in CCI+. Interactions with the LS3MIP, C4MIP, LUMIP and Decadal 
Climate Prediction projects are planned for 2020. 

 

Consistency between data products 

This section will provide a record of any inconsistencies found between ECV products, and will be 
completed in the next version of this report. 

 

Recommendations to the CCI ECV teams 

To be completed in next version of this report. 
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4.10 Comparison of CCI products for studying vegetation variations 
with other satellite products and land surface models 

 

Lead partner: Met Office 

Authors: Rob King 

 

Aim 

The aims of this research are to: 1) Compare the seasonal timing and magnitude of vegetation-
relevant CCI products with other satellite products (including MODIS) and vegetation variables 
from existing historic model runs (of JULES, UKESM1, CMIP5/6). 2) Identify significant 
differences in the timing, location and vegetation types between CCI products and other satellite 
and model data. 3) Suggest key areas for model development to improve vegetation seasonality. 
4) Contribute results to a multi-model evaluation conducted in the CRESCENDO project. It 
will address the following scientific question: 

1. Can the large-scale CCI ECV satellite products be used to improve representation of 
sensitivities and thresholds between vegetation productivity (and other carbon cycle 
processes) and climate in land surface/Earth System Models? 

 

Key features  

 Evaluate modelled vegetation phenology (seasonal timing and magnitude) for JULES 
UKESM1 and CMIP5/6 historic runs using CCI (and other e.g. MODIS) vegetation 
products. 

 Contribute to multi-model ensemble evaluation for CRESCENDO project. 

Summary of Work and Results 

Preliminary evaluation of vegetation phenology peak of season modelled with CRESCENDO 
project models has been conducted using Leaf Area Index monthly products from MODIS and 
Copernicus Global Land Surface (GLS). Results show significant differences (up to 5) in the 
magnitude, and variations (of 1-3 months) in the timing of peak LAI between models. Models 
showed generally later peaks in LAI than the MODIS and GLS satellite products, which were 
consistent with each other. Other vegetation variables, including Biomass CCI, will be used to 
assess the magnitude and timing of peak productivity. Initial contact has been made with the 
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Biomass CCI project lead, and a review of the Biomass CCI reports - Product Validation Plan 
and Uncertainty Budget, was submitted as part of other CMUG work. 

 

Publications 

None so far, but a paper on the evaluation of modelled seasonality in vegetation is planned. 

 

Interactions with the ECVs used in this experiment 

In the first 12 months of this phase of CMUG work there have been interactions with the LST,  AGB, 
SM and LC CCI ECV projects at the quarterly CSWG meetings and the Integration meetings. Contact 
outside that has been with LST who have already produced a beta dataset, and AGB (by email) to discuss 
data specifications and access, and the wider question of coordinated work on using the AGB data in a 
land surface climate model. Interactions with SM and LC have been to learn about the continuation 
datasets they will be producing in CCI+. Interactions with the LS3MIP, C4MIP, LUMIP and Decadal 
Climate Prediction projects are planned for 2020. 

 

Consistency between data products 

This section will provide a record of any inconsistencies found between ECV products, and will be 
completed in the next version of this report. 

 

Recommendations to the CCI ECV teams 

To be completed in next version of this report. 
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4.11 Assess the land-surface interaction related biases in AMIP 
simulations with CCI and other products 

 

Lead partner: IPSL 

Author: Frederique Cheruy 

 

Aim 

The aim of this research is to identify biases in the surface state and surface fluxes in AMIP 
simulations and understanding the origin of these biases in present day simulations 
(temperature, albedo, fluxes). It will address the following scientific question: What is the 
potential for exploring multiple satellite derived products to try to relate existing and identified 
biases (surface state and surface fluxes) to missing or incorrectly represented processes, thus 
offering solutions for model improvement by revisiting the process representation? 

Summary of Work and Results 

The soil-moisture atmosphere couplings have been assessed for the IPSL-CM in AMIP configuration. 
An evaluation of the snow cover has been done with alternative products since the snow product was 
not yet available. The new versions of atmospheric and soil physics of the IPSL model implemented for 
CMIP6 leads to an image of the interactions between soil moisture and atmosphere that is more 
consistent with observations. This is particularly true in “hot-spot” regions of strong land-atmosphere 
coupling and for the driest soils where evaporation and precipitation distributions are closer to those of 
the observations for the driest soil moisture quartile. Spurious multi-modality in the regional distribution 
of the superficial soil moisture has been documented over some regions, and is probably related to 
contrasted field capacities and wilting points as a function of soil texture in our land surface model. This 
multi-modality is not present in the CCI product, which needs to be investigated by comparing SSM 
spatio-temporal variability in the three ESA CCI SM products: active (in % saturation), passive (in 
m3/m3) and combined (which imposes the dynamic range of the GLDAS-Noah SSM product, making 
this product unfit for bias and RMSD analyses, cf. Dorigo et al, 2017). The effect of input soil texture 
on the distributions of SSM in the ISPL model can also be explored owing to a set of idealized 
simulations with uniform soil texture over land, recently performed for the Soil Parameter MIP 
international project (Tafasca et al., 2020).   

Publications 

None so far, but a paper on the results is planned if they are of sufficient interest. 
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Interactions with the ECVs used in this experiment 

In the first 12 months of this phase of CMUG work there have been interactions with the LST and Snow 
CCI ECV projects at the quarterly CSWG meetings and the Integration meetings. Contact outside that 
has been with LST who have already produced a beta dataset. Interactions with the LS3MIP, SPMIP, 
AMIP, HighResMIP and SnowMIP projects are planned for 2020. 

Consistency between data products 

This section will provide a record of any inconsistencies found between ECV products, and will be 
completed in the next version of this report. 

Recommendations to the CCI ECV teams 

To be completed in next version of this report. 
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