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Summary 

This Algorithm Theoretical Basis Document describes the analyses that were made to 

select the most suitable product to generate a moderate spatial resolution global burned 

area product for the Fire_cci project based on Sentinel-3 data.  
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1 Executive Summary 

This is the first version of the Algorithm Theoretical Basis Document (ATBD) describing 

the algorithm to be used to generate the Fire_cci Sentinel-3 Synergy product version 1.0 

(FireCCIS310) global burned area (BA) product. As a result of the problems faced to obtain 

good quality Synergy (SYN) data to comply with the time series (2017-2019), this 

document explores different alternatives to obtain BA data from the Sentinel-3 sensors. 

The current version shows all the analyses that have been performed to identify and select 

the most suitable product that will be used to generate the FireCCIS310 product. The next 

version of the ATBD will focus on the description of the final BA algorithm. 

2 Introduction and objectives 

The ESA Climate Change Initiative (CCI) stresses the importance of providing a higher 

scientific visibility to data acquired by ESA sensors, especially in the context of the 

Intergovernmental Panel on Climate Change (IPCC) reports. This implies producing 

consistent time series of accurate Essential Climate Variable (ECV) products, which can 

be used by the climate, atmospheric and ecosystem scientists for their modelling efforts. 

The importance of keeping long-term observations and the international links with other 

agencies currently generating ECV data is also stressed. 

Fire Disturbance is one of the ECVs mainly due to fire impacts on emissions calculation 

and carbon budgets. The Fire disturbance ECV identifies BA as the primary fire variable. 

Accordingly, the Fire_cci project focuses on developing and validating algorithms to meet 

the Global Climate Observing System (GCOS) ECV requirements for (consistent, stable, 

error-characterised) global satellite data products from multi-sensor data archives.  

The first algorithm developed within the project used images from the MERIS sensor 

(Alonso-Canas and Chuvieco 2015). Due to the availability of images from this sensor, the 

time series of the MERIS Fire_cci v4.1 (FireCCI41 to simplify) product only covered the 

years 2005-2011 (Chuvieco et al., 2016). A new product was released two years later, based 

on the MODIS sensor (FireCCI50) that extended that time series to the period 2001-2016 

(Chuvieco et al., 2018). The algorithm to obtain this product was developed for the two 

highest-spatial resolution bands of the MODIS sensor (Red and Near Infrared, NIR) and 

followed a similar approach to the MERIS hybrid algorithm, as it combined information 

from hotspots and temporal reflectance changes to detect burned pixels. Differences in the 

characteristics of both sensors and their derived products (spatial and temporal resolution, 

view angles, bands characteristics, etc.) and problems found with FireCCI41 product 

advised to extend previous developments and introduce some adaptations for that MODIS 

BA algorithm, which improved both the thematic and temporal accuracy of the product. 

Nevertheless, a few artefacts were still observed in the FireCCI50 product, which were 

related to the tile-based thresholding approach. Thus, the last version of the algorithm 

introduced a cluster-based thresholding approach (Lizundia-Loiola et al., 2020). This 

algorithm was the basis to produce the latest version of the global BA product (FireCCI51), 

which showed better accuracy than previous versions. 

The FireCCI51 algorithm is the starting point for the development of the new FireCCIS310 

algorithm that initially was going to be applied to the 2017-2019-time series of Sentinel-3 

Synergy (SYN) data, following the technical annex submitted to ESA.  However, on April 

2019, when the kick off meeting of the Fire_cci project was held in Alcalá de Henares 

(Spain), doubts were expressed on whether SYN data had enough quality and temporal 

availability to proceed with the original plans. At that moment, SYN was only available 

since October 2018. After several discussions with ESA officers in charge of the SYN 
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processing chain in the following months, still SYN data was not yet readily available and 

with the acceptable level of input quality. Therefore, it was decided to explore other 

alternatives from Sentinel-3 sensors in October 2019, during the first Progress Review 

Meeting (PRM). Two decisions were made to advance on the generation of the global 

moderate resolution BA product for the current Fire_cci contract: the time series of the 

FireCCIS310 was changed from 2017-2019 to 2019-2020 and two alternatives to SYN data 

were going to be explored (OLCI and SLSTR). The former decision implied that the golden 

year initially decided to compare coarse and medium resolution products was changed from 

2018 to 2019. This also implied that the FireCCI51 product had to be extended to 2019 to 

compare outputs with S-3 and AVHRR Long-Term Data Record (LTDR) based products. 

As for the alternative inputs for the new S-3 BA product, it was decided to perform an 

analysis on which of the following three Sentinel-3 products was the most suitable to be 

the input for the FireCCIS310 algorithm: OLCI with iCOR atmospheric correction (Level 

2), SLSTR Top-Of-Atmosphere (TOA) reflectance (Level 1B), or SYN data (Level 2).  

The objective of comparing those three datasets was to check whether SYN data were 

stable, but sensitive enough, to detect BA and compare the stability and sensitivity of these 

data to those offered by OLCI and SLSTR. The final goal was to select which input product 

was more suitable for detecting burned pixels and therefore which one should be used to 

generate the FireCCIS310 global BA algorithm. This version of the ATBD presents the 

results of that analysis and the conclusions that have been reached about which of the above 

mentioned products will be used to generate the FireCCIS310 product. 

3 Methodology 

3.1 Input data 

Sentinel-3 is primarily an ocean mission, but it is able to provide atmospheric and land 

applications as well, providing data continuity to the ERS, ENVISAT, SPOT and PROBA-

V satellites (https://sentinel.esa.int/web/sentinel/missions/sentinel-3, last accessed March 

2020). The first Sentinel-3 (A) was launched on February 2016 and the second (B) was 

launched on April 2018 on the same orbit but flown +/-140° out of phase. The orbit is sun-

synchronous, with a height of 814.5 km, an inclination of 98.65° and a repeat cycle of 27 

days, crossing the equator at around 10:00 am. It includes seven main instruments: OLCI, 

SLSTR, SRAL, MWR, DORIS, LRR and GNSS. 

As mentioned in the previous section two Sentinel-3 datasets were proposed as alternatives 

for SYN data (Section 3.1.3): OLCI reflectance with iCOR atmospheric correction (Section 

3.1.1) and SLSTR TOA reflectance (Section 3.1.2).  

3.1.1 Sentinel-3 OLCI with iCOR atmospheric correction (OLCI iCOR)  

OLCI simultaneously measures the solar radiation reflected by the Earth in 21 spectral 

bands from 400 nm to 1020 nm (Table 1). Each of these bands is programmable in position 

and width. Like its predecessor MERIS, OLCI was originally conceived for oceanographic 

applications, particularly to retrieve ocean colour. For this reason, the sensor incorporates 

several bands in the blue and green regions of the electromagnetic spectrum, as they are 

closely related to chlorophyll content. As OLCI was mainly designed for ocean monitoring, 

the instrument is capable of detecting the low levels of radiation emerging from the water 

constituents. However, at the same time, the instrument has a high dynamic range to detect 

bright objects (clouds, snow). 

https://sentinel.esa.int/web/sentinel/missions/sentinel-3
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It is a push-broom instrument with 5 camera modules sharing the field of view (FOV), each 

one with a FOV of 14.2° and 0.6° overlap with its neighbours. The whole FOV is shifted 

across track by 12.6° away from the Sun to minimise the impact of sun glint. It has a swath 

of 1270 km (FOV = 68.6º), and a native spatial resolution of ~300 m. OLCI allowed global 

coverage of the Earth land colour in 2.2 days with one satellite and 1.1 with two. 

 

Table 1. Bands of the Sentinel-3 OLCI (https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-

olci/resolutions/radiometric, last accessed March 2020).  MERIS heritage bands in orange.  

Band λ centre 

(nm) 

Width 

(nm) 

Function 

Oa01 400 15 Aerosol correction, improved water constituent retrieval 

Oa02 412.5 10 Yellow substance and detrital pigments (turbidity) 

Oa03 442.5 10 Chlorophyll absorption maximum, biogeochemistry, vegetation 

Oa04 490 10 High Chlorophyll, 

Oa05 510 10 Chlorophyll, sediment, turbidity, red tide 

Oa06 560 10 Chlorophyll reference (Chlorophyll minimum) 

Oa07 620 10 Sediment loading 

Oa08 665 10 
Chlorophyll (2nd Chlorophyll absorption maximum), sediment, 

yellow substance/vegetation 

Oa09 673.75 7.5 
For improved fluorescence retrieval and to better account for 

smile together with the bands 665 and 680 nm 

Oa10 681.25 7.5 Chlorophyll fluorescence peak, red edge 

Oa11 708.75 10 Chlorophyll fluorescence baseline, red edge transition 

Oa12 753.75 7.5 O2 absorption/clouds, vegetation 

Oa13 761.25 2.5 O2 absorption band/aerosol correction. 

Oa14 764.375 3.75 Atmospheric correction 

Oa15 767.5 2.5 O2A used for cloud top pressure, fluorescence over land 

Oa16 778.75 15 Atmos. corr./aerosol corr. 

Oa17 865 20 
Atmospheric correction/aerosol correction, clouds, pixel co-

registration 

Oa18 885 10 
Water vapour absorption reference band. Common reference band 

with SLSTR instrument. Vegetation monitoring 

Oa19 900 10 
Water vapour absorption/vegetation monitoring (maximum 

reflectance) 

Oa20 940 20 
Water vapour absorption, Atmospheric correction/aerosol 

correction 

Oa21 1 020 40 Atmospheric correction/aerosol correction 

 

OLCI has the capability to output data sampled at the Full Resolution (FR) with the spatial 

sampling described above, and Reduced Resolution (RR) data sub-sampled at 1.2 km 

(averaging the signal of a grid of 16 FR pixels). The following Level 1B products are 

available at ESA: 

 OLCI Full Resolution calibrated, ortho-geolocated and spatially re-sampled TOA 

radiances (OL_1_EFR). 
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 OLCI Reduced Resolution calibrated, ortho-geolocated and spatially re-sampled 

TOA radiances (OL_1_ERR). 

In our case, the OL_1_EFR was atmospherically corrected using the iCOR software 

(https://remotesensing.vito.be/case/icor, last accessed march 2020). A validation of the 

software can be found in De Keukelaere et al. (2018). To extend the original state QA flags 

the pixel identification tool of Brockman Consult (BC) called idepix was also applied. This 

allowed to filter out, in addition to clouds, cloud shadows. 

3.1.2 Sentinel-3 SLSTR Top-of-Atmosphere reflectance (SLSTR TOA)  

The Sea and Land Surface Temperature Radiometer (SLSTR) is a dual view (near-nadir 

and backward views) conical imaging radiometer aboard Sentinel-3 satellites, which 

provides continuity to the ENVISAT AATSR instrument. Its dual view scan has a swath 

width of 1420 km at nadir and 750 km backwards allowing two simultaneous observations 

in nadir view and oblique view, respectively. 

The SLSTR has 6 bands in the visible and Short-Wave Infrared (SWIR) bandwidths with 

a resolution of 500 m, and another 3 bands in the medium and thermal infrared with 1000 

m of spatial resolution. Also, the F1 and F2 fire bands are based on the same detectors as 

S7 and S8 but with an increased dynamic range to minimise saturation over fires (Table 2). 

The following Level 1B products are available at ESA: 

 Level-1B product: provides TOA radiances and brightness temperatures for each 

pixel in the instrument grid, each view (nadir and oblique), and each SLSTR 

channel, plus annotations data associated with SLSTR pixels (SL_1_RBT). 

Table 2. Bands of the Sentinel-3 SLSTR (https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-

slstr/resolutions/radiometric, last accessed march 2020). AATSR heritage bands in orange. 

Band λ centre 

(nm) 

Width 

(nm) 

Function Comments Spatial 

resolution 

(metres) 

S1 554.27 19.26 Cloud screening, vegetation 

monitoring, aerosol 
VNIR Solar 

Reflectance 

Bands 

500 

S2 659.47 19.25 NDVI, vegetation 

monitoring, aerosol 

S3 868.00 20.60 NDVI, cloud flagging, Pixel 

co-registration 

S4 1374.80 20.80 Cirrus detection over land SWIR 

S5 1613.40 60.68 loud clearing, ice, snow, 

vegetation monitoring 

S6 2255.70 50.15 Vegetation state and cloud 

clearing 

S7 3742.00 398.00 SST, LST, Active fire Thermal IR 

Ambient bands 

(200 K -320 K) 

1000 

S8 10854.00 776.00 SST, LST, Active fire 

S9 12022.50 905.00 SST, LST 

F1 3742.00 398.00 Active fire Thermal IR fire 

emission bands F2 10854.00 776.00 Active fire 

 

This product was transformed from TOA radiances to TOA reflectance by BC. Initially, in 

the Visible/NIR/SWIR channels ESA official calibration process the digital numbers are 

first converted to reflectance, because the cloud identification step performs processing on 

brightness temperatures and reflectance (https://sentinel.esa.int/web/sentinel/technical-

https://remotesensing.vito.be/case/icor
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-slstr/level-1/signal-calibration
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guides/sentinel-3-slstr/level-1/signal-calibration, last accessed March 2020). However, 

these reflectance values are converted to radiance in the next step and delivered as 

radiances to the final user. Therefore, BC needed to apply a backwards conversion using 

formulas given on the SLSTR ATBD (Birks et al., 2011) to obtain “again” the reflectance, 

which is the variable used as inputs in the BA algorithms.  

3.1.3 Sentinel-3 Synergy (SYN)  

The Synergy data was created with the aim of ensuring continuation of the SPOT-VGT 

products. For doing so, both OLCI and SLSTR bands are resampled to a common OLCI 

grid at ~300m, atmospherically corrected and included in a unique Level 2 product. Since 

none of the previously mentioned sensors have its own surface directional reflectance 

product, Synergy was also a way of providing such information to the user. Several SYN 

products are delivered: 

 Level-2 SYN product (SY_2_SYN): contains surface reflectance and aerosol 

parameters over land, provided on the OLCI image grid (~300m), for the sun-

reflective channels of SLSTR (both in nadir and oblique view), except band S4, and 

all OLCI channels, except bands Oa14, Oa15 and Oa20. 

 Level-2 VGP product (SY_2_VGP): contains TOA reflectances at 1 km spatial 

resolution, provided on a regular latitude-longitude grid (called 1 km VGT-like 

product). 

 Level-2 VG1 product (SY_2_VG1): contains a daily synthesis of surface 

reflectance, with the spatial resolution of the 1 km VGT-like product, based on 

information of the same channels of SPOT-VGT (B0, B2, B3 and Middle Infrared) 

produced with OLCI and SLSTR data. It also contains Normalized Difference 

Vegetation Index (NDVI) information. 

 Level-2 VG10 product (SY_2_VG10): similar to the VG1, but with a 10-day 

synthesis surface reflectances and NDVI. 

In our case, the scientific content SY_2_SYN is not modified since the product already 

offers what is required by the algorithm (surface directional reflectance). 

3.2 Test datasets design 

The decision to perform the comparison among the three alternatives was made after the 

first PRM (October 2019) and, hence, the temporal coverage of the test datasets was set 

from January to September of 2019. The idea was to produce BA results from March to 

August, although the most stable results belonged to summer of that year (June, July and 

August), which partially matches the fire season of most of the testing sites. 

Regarding the spatial distribution of the data, since ESA provides all the aforementioned 

products in strips, an internal tiling system that divides the Earth burnable areas in 273 tiles 

of 10x10º degrees was proposed within the Fire_cci project based on the knowledge 

acquired during the MERIS processing (Figure 1). Therefore, the original data was pre-

processed by BC to split the information into those tiles. When more than one valid 

observation was available for the same pixel, e.g. when Sentinel-3 A and B observations 

are available or in high latitudes, the most nadiral observation was selected based on the 

sensor’s View Zenith Angle (VZA), that is, OLCI VZA in the case of OLCI iCOR and 

SLSTR VZA in the case of SLSTR TOA. In the case of Synergy, which includes both 

OLCI and SLSTR bands, the OLCI VZA was used in all the cases. The SLSTR VZA might 

have been used for the corresponding SLSTR bands. However, the combination of OLCI 

and SLSTR measurements from different observations could have resulted in artificial not 

https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-slstr/level-1/signal-calibration
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occurring spectra, e.g. OLCI measurements from vegetated area and SLSTR measurement 

from shaded or rained vegetated area. Furthermore, the BRDF effect and also the 

geolocation accuracy could influence the resulting spectra in this case. 

Thirteen of those tiles that represent a wide range of vegetation types and fire regimes 

(Figure 1) were selected to test the quality of the three input products and their aptitude for 

BA detection. These areas are the equivalent of the 10 MODIS sinusoidal tiles that were 

used for the FireCCI51 algorithm development (Lizundia-Loiola et al., 2020). 

Two tiles were located in the North Australian region (h30v10 and h31v10). This region is 

strongly dominated by tropical savannah, in which fire is a fundamental management tool 

(Stroppiana et al. 2003). As an example of the boreal forest, two test tiles were located in 

Canada (h06v03 and h07v03). In the case of temperate forests, two tiles from the western 

coast of the United States were chosen (tile h05v05 and h06v05).  

Another seven tiles were used from areas that were identified in previous phases as 

particularly problematic. One of the problems identified in those tiles was the sensitivity 

of tile-based thresholds to different land covers (Angola, h19v10). Potential border effects 

were analysed between tiles in Central Africa (h19v07 and h19v08). A Kazakhstan tile 

(including regions of Uzbekistan and Turkmenistan) (h24v04) was selected as it may cause 

region-growing problems because of the high BA/HS ratio found in that area (Hantson et 

al. 2013). A tile in Colombia (h10v08) was chosen because of being a transition zone 

between grasslands and the Andean forest. Finally, two tiles located in the Russian far 

eastern area (h30v03 and h31v03), in the north border with China, were selected, which is 

affected by huge fires almost every year during spring (Kobayashi et al. 2007).  

 

Figure 1. The 13 study sites (in orange) used for the testing of the three datasets. A total of 273 tiles 

will be processed in the final global BA product (marked with the squares). 

As mentioned in Section 3.1 both OLCI and SLSTR data provide more bands than those 

that are actually needed for BA detection. Therefore, some specific bands that have the 

potential to detect BA were selected to reduce the size of the input images (Table 3). 
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Table 3. Bands selected from each input dataset for BA detection. 

Band 
λ centre 

(nm) 

Spectral 

region 
Justification 

Dataset 

OLCI 

iCOR 

SLSTR 

TOA 
SYN 

Oa12 753.75 

NIR 

 

Used by FireCCI41 (Alonso-

Canas and Chuvieco 2015) 
X  X 

Oa17 865.00 
Used by FireCCI51 

(Lizundia-Loiola et al., 2020) 
X  X 

S3 868.00 Similar to Oa17  X X 

S5 1613.40 

SWIR 

Used by FireCCISFD11 

(Roteta et al., 2019) 
 X X 

S6 2255.70 
Used by FireCCISFD11 

(Roteta et al., 2019) 
 X X 

3.3 FireCCI51 global BA algorithm 

To test the suitability of the different input datasets, we followed the same approach applied 

to the previous version of the algorithm (the one used to create the FireCCI51 product). 

The structure of this algorithm follows a hybrid approach, using both thermal anomalies 

information and NIR reflectance values from Terra satellite’s MODIS sensor. Thermal 

anomalies are used to identify active fires, as they have high thermal contrast with the 

background. The change in reflectance is used to detect the whole burned patch since it is 

temporally more persistent.  

The algorithm uses a two-phase methodology. First, pixels that have a high probability of 

being burned, called ‘seeds’, are chosen using restrictive spectral conditions (to reduce 

commission errors). Those candidate ‘seed’ pixels are derived from MODIS thermal 

anomalies considering the relative drop in NIR reflectance. Then a contextual region 

growing is applied from the ‘seeds’ to entirely detect the burned patch, in order to reduce 

the omission errors. Before selecting the seeds, monthly temporal NIR composites are 

created to reduce noise caused by clouds, cloud shadows, and different artefacts. Two 

variables are used for BA detection: NIR post-fire values, given by the monthly 

composites, and the relative change between consecutive NIR composites values.  

To guide both the seed and region-growing phases FireCCI51 uses a cluster-based 

thresholding, which identifies burned-unburned thresholds of reflectance from values of 

spatially-aggregated active fires and its surroundings.  

More information about the algorithm can be found in Lizundia-Loiola et al., 2020. 

3.4 Criteria to assess the suitability of input datasets 

Two different assessments were performed with the three datasets provided by BC. In a 

first step, the quality of the dataset itself was analysed by computing the stability of the 

reflectance time series, its sensitivity to the burn signal, and the number of valid 

observations that were available for each dataset. In a second step, the quality of the BA 

detection was assessed by applying the FireCCI51 algorithm to the different input bands of 

different datasets and then comparing the results with validation data. 

The analysis of reflectance was visually done by checking the time series (01/01/2019 – 

30/09/2019) of some points distributed among spectrally stable land covers (e.g. deserts or 

locations with spare vegetation). This allowed comparing between datasets to verify which 

of them was more affected by angular effects (BRDF related problems). To visually check 
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the sensitivity of the inputs to the burned signal, reflectance time series of some burned 

pixels were extracted. The location of those pixels was guided by the validation dataset 

described in the following paragraph. 

For assessing the BA results, three analyses were performed. On the one hand, the BA 

results of each band and dataset were compared with a proper validation dataset that was 

generated for the study sites. Following the approach described in Stroppiana and Boschetti 

(2019) 44 validation sites of 100x100 km were generated based on Landsat 8 OLI images 

at 30 m resolution (Figure 2). All the reference perimeters were derived from the April-

August period, when possible. The validation sites were not statistically sampled, but 

visually selected to ensure interpretability of the Landsat scenes. The mathematical 

expressions of the accuracy metrics that are used in the validation can be found in 

Stroppiana and Boschetti (2019), i.e. commission error (Ce), omission error (Oe), Dice 

coefficient (DC) and relative bias (relB). No reference perimeters were available for 

Colombia (h10v08) since the fire season lasts from December to March. On the other hand, 

the BA results of the March – August period derived from different bands and datasets 

were compared taking into account the amount of BA detected and the spatial correlation 

of burned patches in 0.05x0.05-degree grid cells. Finally, an intercomparison with an 

existing global BA product was made. For that purpose, the new operational global BA 

product of the Copernicus Climate Change Service (C3S) was selected, which time series 

goes from January 2017 to October 2019. This product, called C3SBA10, is based on the 

algorithm described on Section 3.3 and it uses the MODIS active fires as well as Sentinel-

3’s OLCI 300m resolution 865 nm NIR band to detect BA. The difference between the 

OLCI reflectance used by this global BA product and the one considered in this document 

is the atmospheric correction (AC). In the case of the C3S project, the MERIS AC approach 

was adapted to correct OLCI data. This method was developed during the GlobAlbedo 

project (Lewis et al. 2012). A major difference between the iCOR and the C3S AC methods 

is the aerosol retrieval. C3S OLCI AC retrieves the aerosol optical depth (AOD) from the 

measurements itself and provides an AOD per pixel. The OLCI iCOR uses one retrieved 

AOD per tile. The C3SBA10 product can be downloaded from the Climate Data Store 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-fire-burned-

area?tab=overview, last accessed March 2020). 

 

Figure 2. Validation sites distributed among the thirteen study sites. 

  

https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-fire-burned-area?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-fire-burned-area?tab=overview
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4 Results and discussion 

4.1 Availability and stability of the time series 

The box plots in   

Figure 3 show the number of valid observations for OLCI iCOR (top), SYN (middle) and 

the difference between them (bottom), computed analysing each of the pixels (3600x3600) 

of each tile. The maximum number of valid images is 273 (01/01/2019 - 30/09/2019), 

meaning that a particular pixel was observed during all the days of that period. If the value 

is lower, it represents that that pixel was not observed in some of those dates, due to cloud 

cover, sensor failure, etc. Trends are similar for both products. Tiles located at the tropical 

savannah of Northern Australia (h30v10, h31v10), Central Africa (h19v07) and Angola 

(h19v10), at the shrublands of Kazakhstan (h24v04), and the temperate area of California 

(h05v05, h06v05) have the highest number of observations. Conversely, the boreal areas 

(h06v03, h07v03) of North America and Amur, Far East Russia (h30v03, h31v03), along 

with the tropical forested areas of Colombia (h10v08) and Cameroun (h19v08) have the 

lowest.  

  

Figure 3. Number of valid observations of OLCI iCOR and SYN and their difference per tile. Each 

tile boxplot shows the distribution of all its pixels (3600x3600 pixels) 

If we observe the median values of the available images for each site, OLCI iCOR presents 

239, 239, 207, 231, 185, 188, 208, 113, 100, 100, 78, 78, and 144 valid observations, 

respectively, while SYN data show -54, -56, -59, -48, -23, -17, -34, -2, +2, +7, +12, -10, 

and -47 less (-) or more (+) images for the same areas. It is worth mentioning the special 

case of the two tiles located at Amur (h30v03, h31v03) where SYN presents more 

observations than OLCI iCOR because in the latter the wintry snow is filtered as cloud. 

The case of boreal North America, which practically presents the same coverage for both 

products, is interesting as well. Therefore, in general terms, SYN data have lower temporal 
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frequency than OLCI iCOR. It seems that, although the original Level 1B data for both 

products is the same, the complex processing of SYN data applies a more restrictive 

approach to get the final product.  

Regarding SLSTR TOA, BC found several problems to provide the dataset. The most 

important was the fact that most of the Level 1B images were found to be broken. Only 17 

images were delivered for three tiles and 5 images for another one. The rest of tiles were 

not provided. Taking this into account it was decided to drop this dataset from the analysis. 

Regarding the stability of the reflectance trends, the full time series extracted for some 

deserted and sparsely vegetated areas of the Saharan region showed quite stable reflectance 

values for both SYN and OLCI iCOR bands in most of the cases. However, some cases 

were found where SYN data showed a higher variability than OLCI iCOR. Figure 4 

contains the time series of two points that represent these two situations. In the case of 

Point 1, a stable time series can be observed for both SYN and OLCI iCOR bands. 

However, Point 2 presents much higher variability in the case of the former than in the 

latter. The same trend can be observed for all NIR (a, b and c) and SWIR (d) bands of SYN. 

One of the hypotheses of such variability could be that SYN AC uses a more accurate AC 

when SLSTR oblique view is available, so this could be affecting the reflectance values. 

Besides, it was noticed that there was no significant difference between the reflectance 

values among NIR bands of different wavelengths within a same product. In the case of 

OLCI iCOR using 753.75nm (a) reflectance seemed to be similar to using the 865nm (b) 

one. The same was observed for the SYN data where three NIR bands can be found: OLCI’s 

753.75nm (a) and 865nm (b, c), and SLSTR’s 868nm (c). The reflectance trends of the 

three bands were found to be quite similar. 

 

 

 

a 

b 

c 

Point 1 Point 2 
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Figure 4. Reflectance time series for the bands listed on Table 3 from the 1st of January to the 31st of 

May of 2019 of the two points indicated in (e). The points are located on deserted areas. 

4.2 Sensitivity to burned pixels’ detection 

Regarding the sensitivity of the different input products to BA detection, Figure 5 presents 

two time series of two distinct burned pixels. The Point 1 belongs to a fire that took place 

on 5th of May in Amur region. Two phenomena can be detected in the time series: a first 

drop in NIR and increase in SWIR related to the melting of the wintry snow and a second 

drop in both bands that belongs to the fire. The point 2 shows a different scenario where 

the drop (25th April) is much subtler, but the reflectance is homogenised after the event. 

The response of the BA was found similar in both products. 

 

 

a 

b 

Point 1 Point 2 

d 

P2 

P1 

e 
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Figure 5. Reflectance time series for the bands listed on Table 3 from the 1st of January to the 31st of 

May of 2019 of two points indicated in (e). The points were located in burned areas during that 

period. 

4.3 BA classification 

The FireCCI51 algorithm was applied without changes to all the bands listed in Table 3, 

except from those provided by the SLSTR TOA product. The results were validated against 

44 validation sites distributed through the study sites (Section 3.4). Besides, they were 

compared to each other and also to the C3SBA10 global BA product.   

Figure 6 compares the accuracy of the results derived from the NIR band centred at 865 

nm (868 in the case of SYN SLSTR) provided by different products, i.e. OLCI iCOR, SYN 

OLCI, SYN SLSTR and OLCI C3S. Figure 7 compares the same datasets but taking into 

account the amount of BA in km2. More information about the validation and 

intercomparison can be found in Annex 2 and Annex 3, respectively. 

Both the validation and intercomparison confirmed that there is no significant difference 

between using NIR bands centred at different wavelengths that are provided by the same 

sensor (0, Figure 8 and Figure 9). In the case of OLCI iCOR, the global difference of the 

Dice coefficient of the NIR bands was lower than 0.2% while for SYN was found to be 

lower than 0.8% when using any of the three NIR bands (Annex 2, Table 4).  

The global accuracy metrics showed a higher capability of SYN NIR data for detecting BA 

than OLCI iCOR NIR, being the difference on the Dice coefficient of almost 3%. Although 

OLCI iCOR has more valid observations per pixel than SYN, it seems that the use of 

composites for BA detection reduces the impact of the mentioned issue. Besides, SYN 

showed a similar performance of that presented by the global BA product C3SBA10, with 

c 

d 

P2 

P1 
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a Dice coefficient of 70.26% and 71.54%, respectively. Although the SYN SWIR bands 

performed poorly through the study sites, this was expected since the FireCCI51 algorithm 

was developed to be based on NIR. 

  

Figure 6. Dice coefficient of the results derived from applying the FireCCI51 algorithm (Section 3.3) 

to the 865 nm band, which is provided by different products. Accuracy metrics can be found in 

Annex 2, Table 4. 

 

 

Figure 7. BA in km2 per tile (top) and month (down) detected by the NIR band centred at 865 nm 

(868 nm for SYN SLSTR) provided by OLCI iCOR, SYN OLCI, SYN SLSTR and OLCI C3S. 

It is worth noting that the SYN NIR band centred at 868 nm, which has an original 

resolution of 500 m, shows a similar performance of the 865 nm channel, which has an 

original resolution of 300 m. In fact, the 868 nm band, which is sensed by SLSTR, detects 

a total of 280,516 km2, 23,017 km2 more than SYN 865 nm and 18,932 km2 more than 
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C3SBA10. It is reasonable to think that, while keeping the same accuracy, it is better to 

select the band that detects more BA. However, the geolocation errors that might be derived 

from the resampling of the original SLSTR 500 m into the SYN 300 m grid should be 

analysed since they could be affecting the accuracy of the delimitation of the burned 

patches. 

Finally, the spatial correlations among datasets were found to be very high (0, Table 5 and 

Table 6) independently of the bands or datasets that were compared. The lowest spatial 

correlation was found between OLCI iCOR 753.75 nm and SYN 865 nm (r2=0.91, 

slope=0.94). Conversely, the highest correlations were found, as expected, between OLCI 

iCOR 753.75 nm and OLCI iCOR 865 nm (r2=0.98, slope=0.99) and SYN 753.75 nm and 

SYN 865 nm (r2=0.98, slope=0.99). The high correlations of the NIR band centred at 865 

nm of both OLCI iCOR (r2=0.93, slope=0.97) and SYN (r2=0.95, slope=1.00) with the 

C3SBA10 shows the high probability of generating a quite similar global BA product if 

the FireCCI51 algorithm is applied without changes to any of them.  

5 Conclusion 

As it was already mentioned in the introduction, the aim of this document was to see if 

there were enough arguments to believe that SYN data was not a suitable input for a global 

BA product. Therefore, its performance was compared to other datasets: OLCI iCOR and 

C3SBA10, SLSTR TOA discarded from the analysis due to problems with the dataset (see 

Section 4.1). The results presented in the previous section suggested that SYN data is the 

best alternative to be the input of the FireCCIS310 global BA product. That decision was 

based on the following conclusions: 

1. Although OLCI iCOR has more valid observations per pixel than SYN, this can 

be overcome using monthly composites as is shown by the higher accuracy 

metrics of SYN over OLCI iCOR. 

2. Since C3SBA10 already uses OLCI as main input, the use of OLCI iCOR may be 

considered as redundant. This is due to the fact that the differences of the AC did 

not significantly affect BA detection. 

3. Although in this preliminary analysis the FireCCI51 algorithm was applied without 

changes, which made SWIR channels perform poorly, the idea is to adapt it to 

vegetation indices of the SWIR region since it is known to be the most sensitive 

spectral region for BA detection. 

In addition to the conclusions that can be extracted from this document, another reason for 

selecting SYN is the fact that it is an input for the merging reflectance that is being 

developed by UPM. Therefore, both BA detection and merging reflectance requirements 

can be fulfilled by a unique dataset.  
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Annex 1 Acronyms and abbreviations 

AATSR 
Advanced Along-Track 

Scanning Radiometer 

AC Atmospheric Correction 

AOD Aerosol Optical Depth 

ATBD 
Algorithm Theoretical 

Basis Document 

AVHRR 
Advanced Very High 

Resolution Radiometer 

BA Burned area 

BC Brockmann Consult GmbH 

BRDF 
Bidirectional reflectance 

distribution function 

C3S 
Copernicus Climate Change 

Service 

C3SBA10 
C3S Burned area product 

version 1.0  

CCI Climate Change Initiative 

Ce Commission error 

DC Dice coefficient 

DORIS 

Doppler Orbitography and 

Radiopositioning Integrated 

by Satellite 

ECV Essential Climate Variable 

ENVISAT Environmental Satellite 

ERS 
European Remote Sensing 

satellite 

ESA European Space Agency 

FireCCI41 Fire_cci MERIS version 4.1 

FireCCI50 
Fire_cci MODIS version 

5.0 

FireCCI51 
Fire_cci MODIS version 

5.1 

FireCCIS310 
Fire_cci Sentinel-3 version 

1.0 

FOV Field-of-View 

FR Full resolution 

GCOS 
Global Climate Observing 

System 

GNSS 
Global Navigation Satellite 

System 

HS Hotspot  

iCOR 

Scene generic tool for 

atmospheric image 

correction 

IPCC 
Intergovernmental Panel on 

Climate Change 

LRR Laser Retro-Reflector 

LTDR 
AVHRR Long-Term Data 

Record 

MERIS 
Medium Resolution 

Imaging Spectrometer 

MODIS 
Moderate Resolution 

Imaging Spectroradiometer 

MWR Microwave Radiometer 

NDVI 
Normalized Difference 

Vegetation Index 

NIR Near-InfraRed 

Oe Omission error 

OLCI 
Ocean and Land Colour 

Instrument 

PRM Progress Review Meeting 

QA Quality Assessment 

relB Relative Bias 

RR Reduced resolution 

S-3 Sentinel-3 

SLSTR 
Sea and land Surface 

Temperature Radiometer 

SPOT 
Satellite Pour l'Observation 

de la Terre 

SRAL SAR Radar Altimeter 

SWIR Short-Wave InfraRed 

SYN Synergy 

TOA Top of Atmosphere 

UPM 
Universidad Politécnica de 

Madrid 

VGT Vegetation 

VZA View Zenith Angle 
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Annex 2 Accuracy measures for the sample of 2019 

Table 4. Estimated accuracy of each dataset and band. 

Region Product Ce Oe DC relB 

California 

OLCI iCOR 75.75 nm 41.01% 40.79% 59.10% 0.37% 

OLCI iCOR 865 nm 42.54% 39.06% 59.15% 6.06% 

SYN SDR 753.75 nm 36.00% 42.59% 60.53% -10.31% 

SYN SDR 865 nm 34.94% 40.72% 62.04% -8.89% 

SYN SDR 868 nm 42.53% 40.16% 58.63% 4.11% 

SYN SDR 1613.4 nm 56.39% 84.06% 23.34% -63.46% 

SYN SDR 2255.7 nm 70.20% 92.21% 12.35% -73.86% 

OLCI C3SBA10 865 nm 35.41% 40.09% 62.16% -7.25% 

Canada 

OLCI iCOR 75.75 nm 32.64% 26.83% 70.14% 8.63% 

OLCI iCOR 865 nm 32.62% 27.91% 69.65% 6.98% 

SYN SDR 753.75 nm 34.07% 24.70% 70.30% 14.22% 

SYN SDR 865 nm 34.42% 26.90% 69.13% 11.47% 

SYN SDR 868 nm 36.15% 30.99% 66.33% 8.08% 

SYN SDR 1613.4 nm 31.55% 98.06% 3.78% -97.16% 

SYN SDR 2255.7 nm 100.00% 100.00% 0.00% -100.00% 

OLCI C3SBA10 865 nm 34.01% 21.54% 71.69% 18.90% 

Australia 

OLCI iCOR 75.75 nm 27.54% 42.68% 64.00% -20.89% 

OLCI iCOR 865 nm 28.81% 41.56% 64.19% -17.91% 

SYN SDR 753.75 nm 20.59% 37.94% 69.67% -21.85% 

SYN SDR 865 nm 21.12% 35.93% 70.71% -18.77% 

SYN SDR 868 nm 24.11% 31.02% 72.27% -9.11% 

SYN SDR 1613.4 nm 22.53% 57.64% 54.77% -45.32% 

SYN SDR 2255.7 nm 43.83% 98.24% 3.42% -96.86% 

OLCI C3SBA10 865 nm 19.96% 35.36% 71.52% -19.24% 

Colombia 

OLCI iCOR 75.75 nm ---- ---- ---- ---- 

OLCI iCOR 865 nm ---- ---- ---- ---- 

SYN SDR 753.75 nm ---- ---- ---- ---- 

SYN SDR 865 nm ---- ---- ---- ---- 

SYN SDR 868 nm ---- ---- ---- ---- 

SYN SDR 1613.4 nm ---- ---- ---- ---- 

SYN SDR 2255.7 nm ---- ---- ---- ---- 

OLCI C3SBA10 865 nm ---- ---- ---- ---- 

Central Africa 

OLCI iCOR 75.75 nm 5.77% 47.01% 67.84% -43.77% 

OLCI iCOR 865 nm 6.58% 46.65% 67.92% -42.89% 

SYN SDR 753.75 nm 4.75% 47.38% 67.79% -44.76% 

SYN SDR 865 nm 4.82% 47.54% 67.64% -44.88% 

SYN SDR 868 nm 7.81% 47.72% 66.72% -43.29% 

SYN SDR 1613.4 nm 4.22% 57.05% 59.31% -55.15% 

SYN SDR 2255.7 nm 0.94% 84.73% 26.45% -84.59% 

OLCI C3SBA10 865 nm 7.08% 46.36% 68.02% -42.28% 
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Region Product Ce Oe DC relB 

Angola 

OLCI iCOR 75.75 nm 24.10% 33.16% 71.08% -11.94% 

OLCI iCOR 865 nm 23.36% 33.10% 71.44% -12.71% 

SYN SDR 753.75 nm 23.51% 29.72% 73.26% -8.12% 

SYN SDR 865 nm 22.33% 29.73% 73.78% -9.53% 

SYN SDR 868 nm 28.46% 29.73% 70.90% -1.78% 

SYN SDR 1613.4 nm 18.98% 72.84% 40.69% -66.48% 

SYN SDR 2255.7 nm 39.18% 99.86% 0.29% -99.76% 

OLCI C3SBA10 865 nm 24.02% 28.34% 73.76% -5.68% 

Kazakhstan 

OLCI iCOR 75.75 nm 15.46% 38.69% 71.07% -27.48% 

OLCI iCOR 865 nm 15.28% 41.52% 69.20% -30.97% 

SYN SDR 753.75 nm 15.58% 51.61% 61.52% -42.69% 

SYN SDR 865 nm 17.95% 46.63% 64.67% -34.95% 

SYN SDR 868 nm 19.29% 39.04% 69.46% -24.47% 

SYN SDR 1613.4 nm 18.16% 73.05% 40.55% -67.07% 

SYN SDR 2255.7 nm 75.75% 99.76% 0.47% -99.02% 

OLCI C3SBA10 865 nm 13.89% 43.50% 68.23% -34.39% 

Amur 

OLCI iCOR 75.75 nm 13.46% 49.52% 63.76% -41.67% 

OLCI iCOR 865 nm 14.53% 46.87% 65.53% -37.84% 

SYN SDR 753.75 nm 20.63% 44.13% 65.58% -29.61% 

SYN SDR 865 nm 23.58% 41.31% 66.39% -23.20% 

SYN SDR 868 nm 25.73% 42.78% 64.64% -22.95% 

SYN SDR 1613.4 nm 39.59% 69.12% 40.87% -48.88% 

SYN SDR 2255.7 nm 29.75% 86.11% 23.19% -80.23% 

OLCI C3SBA10 865 nm 14.68% 41.30% 69.55% -31.20% 

Global 

OLCI iCOR 75.75 nm 26.06% 37.63% 67.66% -15.64% 

OLCI iCOR 865 nm 26.49% 37.60% 67.50% -15.12% 

SYN SDR 753.75 nm 23.70% 36.09% 69.56% -16.23% 

SYN SDR 865 nm 23.77% 34.84% 70.26% -14.53% 

SYN SDR 868 nm 26.87% 32.37% 70.27% -7.52% 

SYN SDR 1613.4 nm 21.62% 69.95% 43.45% -61.66% 

SYN SDR 2255.7 nm 40.69% 98.59% 2.76% -97.62% 

OLCI C3SBA10 865 nm 23.28% 32.99% 71.54% -12.65% 
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Annex 3 Intercomparison 

 

 

Figure 8. BA in km2 per tile (top) and month (down) detected by each band of the OLCI iCOR 

product. 

 

 

Figure 9. BA in km2 per tile (top) and month (down) detected by each band of the SYN product. 
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Table 5. R2 of the spatial correlation between datasets. 

R2 

OLCI 

iCOR 

753.75nm 

OLCI 

iCOR 

865 nm 

SYN 

753.75 

nm 

SYN 

865 nm 

SYN 

868 nm 

OLCI 

C3SBA10 

865 nm 

OLCI iCOR 753.75nm   0.98 0.92 0.91 0.92 0.92 

OLCI iCOR 865 nm     0.93 0.92 0.92 0.93 

SYN 753.75 nm       0.98 0.97 0.95 

SYN 865 nm         0.97 0.95 

SYN 868 nm           0.95 

OLCI C3SBA10 865 nm             

 

Table 6. Slope of the spatial correlation between datasets.  

Slope 

OLCI 

iCOR 

753.75nm 

OLCI 

iCOR 

865 nm 

SYN 

753.75 

nm 

SYN 

865 nm 

SYN 

868 nm 

OLCI 

C3SBA10 

865 nm 

OLCI iCOR 753.75nm   0.99 0.95 0.94 1.01 0.97 

OLCI iCOR 865 nm     0.95 0.94 1.01 0.97 

SYN 753.75 nm       0.99 1.05 0.99 

SYN 865 nm         1.06 1.00 

SYN 868 nm           0.93 

OLCI C3SBA10 865 nm             
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