ESA Climate Change Initiative – Fire_cci
D2.4.4 Product User Guide – Small Fire Database (PUG-SFD)

<table>
<thead>
<tr>
<th>Project Name</th>
<th>ECV Fire Disturbance: Fire_cci</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract N°</td>
<td>4000126706/19/I-NB</td>
</tr>
<tr>
<td>Issue Date</td>
<td>21/09/2021</td>
</tr>
<tr>
<td>Version</td>
<td>2.0</td>
</tr>
<tr>
<td>Author</td>
<td>M. Lucrecia Pettinari, Ekhi Roteta</td>
</tr>
<tr>
<td>Document Ref.</td>
<td>Fire_cci_D2.4.4_PUG-SFD_v2.0</td>
</tr>
<tr>
<td>Document type</td>
<td>Public</td>
</tr>
</tbody>
</table>

Project Partners
Prime Contractor/
Scientific Lead & Project
Management
UAH – University of Alcala (Spain)
Earth Observation Team
UAH – University of Alcala (Spain)
UPM – Universidad Politécnica de Madrid (Spain)
CNR-IREA - National Research Council of Italy – Institute for
Electromagnetic Sensing of the Environment (Italy)
System Engineering
BC – Brockmann Consult (Germany)
Climate Modelling Group
MPIM – Max Planck Institute for Meteorology (Germany)
CNRS - National Centre for Scientific (France)

Distribution
<table>
<thead>
<tr>
<th>Affiliation</th>
<th>Name</th>
<th>Address</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESA</td>
<td>Clément Albergel (ESA)</td>
<td>clement.albergel@esa.int</td>
<td>electronic copy</td>
</tr>
<tr>
<td>Project Team</td>
<td>Emilio Chuvieco (UAH)</td>
<td>emilio.chuvieco@uah.es</td>
<td>electronic copy</td>
</tr>
<tr>
<td></td>
<td>M. Lucrecia Pettinari (UAH)</td>
<td>mlucrecia.pettinari@uah.es</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Joshua Lizundia (UAH)</td>
<td>joshua.lizundia@uah.es</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amin Khaïroun (UAH)</td>
<td>amin.khaïroun@uah.es</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gonzalo Otón (UAH)</td>
<td>gonzalo.oton@uah.es</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mihai Tanase (UAH)</td>
<td>mihai.tanase@uah.es</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Consuelo Gonzalo (UPM)</td>
<td>consuelo.gonzalo@upm.es</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dionisio Rodríguez Esparragón (UPM)</td>
<td>dionisio.rodriguez@ulpgc.es</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ángel García Pedrero (UPM)</td>
<td>angelmario.garcia@upm.es</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Daniela Stroppiana (CNR)</td>
<td>stroppiana.d@irea.cnr.it</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mirco Boschetti (CNR)</td>
<td>boschetti.m@irea.cnr.it</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thomas Storm (BC)</td>
<td>thomas.storm@brockmann-consult.de</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Martin Böttcher (BC)</td>
<td>martin.boettcher@brockmann-consult.de</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grit Kirches (BC)</td>
<td>grit.kirches@brockmann-consult.de</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Angelika Heil (MPIM)</td>
<td>angelika.heil@mpimet.mpg.de</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Idir Bourarar (MPIM)</td>
<td>idir.bourarar@mpimet.mpg.de</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Florent Mouillot (CNRS)</td>
<td>florent.mouillot@cefe.cnrs.fr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Philippe Ciais (CNRS)</td>
<td>philippe.ciais@lse.ipsl.fr</td>
<td></td>
</tr>
</tbody>
</table>
Summary

This document is the version 2.0 of the Product User Guide for the Small Fire Database of the Fire_cci project version 2.0 (FireCCISFD20). It provides practical information about the use of this product, available for Sub-Saharan Africa for the year 2019, and based on the Sentinel-2 MSI sensor.

Document Status Sheet

<table>
<thead>
<tr>
<th>Issue</th>
<th>Date</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>23/03/2017</td>
<td>First Issue of the document.</td>
</tr>
<tr>
<td>1.1</td>
<td>01/10/2018</td>
<td>Addressing comments on CCI-FIRE-EOPS-MM-17-0042.</td>
</tr>
<tr>
<td>1.2</td>
<td>12/02/2019</td>
<td>New sections added to include the grid product.</td>
</tr>
<tr>
<td>2.0</td>
<td>21/09/2021</td>
<td>Update of the document to apply it to FireCCISFD20. Change of the number of the document.</td>
</tr>
</tbody>
</table>

Document Change Record

<table>
<thead>
<tr>
<th>Issue</th>
<th>Date</th>
<th>Request</th>
<th>Location</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>01/10/2018</td>
<td>ESA</td>
<td>List of figures</td>
<td>Deleted. Reduced. Small changes in the text</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESA</td>
<td>Section 1</td>
<td>Text reduced</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESA</td>
<td>Sections 1.1, 1.2, 2.1, 2.3</td>
<td>Text and figure updated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ESA</td>
<td>Section 1.3</td>
<td>Naming convention updated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UL</td>
<td>Sections 2, 2.4</td>
<td>Figure updated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UAH</td>
<td>Section 2.5</td>
<td>Text and table updated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UL</td>
<td>Section 2.6.1</td>
<td>Sections updated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UAH</td>
<td>Sections 2.6.3, 3, 4, 5</td>
<td>Small changes in the text</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UAH, UL</td>
<td>Document number</td>
<td>Change in the name of the section</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>All text</td>
<td>Table updated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sections 1.1, 1.3, 2.6.3</td>
<td>New section and sub-sections describing the grid product have been added</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Section 2</td>
<td>Text expanded</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Section 2.6.1</td>
<td>New references added</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Section 3</td>
<td>New annex added</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sections 4, 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Annex 2</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>12/02/2019</td>
<td>UAH</td>
<td>Document number</td>
<td>Small changes in the text</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>All text</td>
<td>Change in the name of the section</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sections 1.1, 1.3, 2.6.3</td>
<td>Table updated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Section 2</td>
<td>New section and sub-sections describing the grid product have been added</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Section 2.6.1</td>
<td>Text expanded</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Section 3</td>
<td>New references added</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sections 4, 6</td>
<td>New annex added</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Annex 2</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>21/09/2021</td>
<td>UAH</td>
<td>Document number</td>
<td>The number of the document has been updated to 2.4.4 as corresponding to the deliverables numbers of CCI+ Phase 1. Small changes to adapt it to FireCCISFD20, and all Figures updated. Sections updated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>All text</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sections 1.2, 2.6.3, 3.5.2, 3.5.5, 4, 5, 6, 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Section 3.5.5</td>
<td></td>
</tr>
</tbody>
</table>

This document is not signed. It is provided as an electronic copy.
Table of Contents

1. General overview ... 5
 1.1. Introduction ... 5
 1.2. Input data .. 5
 1.3. BA algorithm ... 6

2. Pixel BA product .. 6
 2.1. Temporal compositing .. 6
 2.2. Spatial Resolution ... 6
 2.3. Product projection system .. 7
 2.4. Subsets ... 7
 2.5. Product file naming conventions ... 7
 2.6. Pixel attributes ... 8
 2.6.1. Layer 1: Date of the first detection ... 8
 2.6.2. Layer 2: Confidence level ... 9
 2.6.3. Layer 3: Land cover of burned pixels .. 10
 2.7. File metadata ... 12

3. Grid BA product .. 12
 3.1. Temporal compositing .. 12
 3.2. Spatial Resolution ... 13
 3.3. Product projection system ... 13
 3.4. Product file naming conventions ... 13
 3.5. Grid attributes .. 14
 3.5.1. Attribute 1: Sum of burned area ... 14
 3.5.2. Attribute 2: Standard error ... 15
 3.5.3. Attribute 3: Fraction of burnable area ... 15
 3.5.4. Attribute 4: Fraction of observed area ... 16
 3.5.5. Attributes 5-22: Sum of burned area for each land cover category 17
 3.7. File metadata .. 19

4. Comparison with other burned area products .. 19

5. Data limitations and constraints .. 20

6. Data dissemination ... 20

7. References ... 20

Annex 1: Metadata of the pixel product (XML file) ... 21
Annex 2: Metadata of the grid product ... 22
Annex 3: Acronyms and abbreviations ... 26
1. General overview

This document contains practical information on how to use the Fire_cci Small Fire Database (SFD) product version 2.0 of the Fire_cci project, which is based on the Multi Spectral Instrument (MSI) on board the ESA Sentinel-2 (S2) satellites A & B. This document applies to the SFD Fire_cci v2.0 (FireCCISFD20) corresponding to 2019.

1.1. Introduction

The SFD products comprise maps of burned area of Sub-Saharan Africa (Figure 1). They were developed and tailored for their use by climate, vegetation and atmospheric modellers, as well as by fire researchers or fire managers interested in spatially detailed burned patterns.

![Sub-Saharan Africa](image)

Figure 1: Sub-Saharan Africa, showing the area of processing of the SFD product.

The Fire_cci project produces burned area (BA) products that are available at different spatial resolutions: the PIXEL product (L3S) and the GRID product (L4), which is derived from the pixel one (see Chuvieco et al. 2017).

1.2. Input data

The input images for the FireCCISFD20 product were Multi Spectral Instrument (MSI) Level-2A images, acquired by the Sentinel-2 A&B satellites (https://sentinel.esa.int/web/sentinel/missions/sentinel-2). Images were acquired every 5 days (revisit time considering both satellite). Bands 8A (Near Infrared), 11 (Short SWIR) and 12 (Long SWIR) at their original 20m resolution were used to generate the BA product. The time series covers the period from January to December 2019 to produce the final BA product. The original tiling system (100x100km tiles) was maintained throughout the processing chain of the BA algorithm; original tiles were reprojected and aggregated into 5x5 degrees tiles after detecting burned areas.

The active fire (AF) information was obtained from the Visible Infrared Imaging Radiometer Suite (VIIRS) VNP14IMGML fire location product (https://lpdaac.usgs.gov/)
documents/427/VNP14_User_Guide_V1.pdf), which provides global monthly coordinates of detected active fires in ASCII format. Only AF points with type 0 (presumed vegetation fire) were used for the algorithm.

1.3. BA algorithm

The BA algorithm used for producing the FireCCISFD20 BA product is described in the Algorithm Theoretical Basis Document (Roteta, 2021) and the individual-sensor steps are also detailed in Roteta et al. (2019).

2. Pixel BA product

The FireCCISFD20 product is a GeoTIFF file with three layers indicating the date of detection (Figure 2), the confidence level and the land cover in the pixel detected as burned (see Section 2.6 for further detail).

![Figure 2: Day of detection or of burn for all the subsets in 2016, derived from the pixel product.](image)

2.1. Temporal compositing

The pixel products are released as monthly composites so they can encompass those pixels that burn more than once during a calendar year. This may occur in the Northern Tropical areas, where the dry season (and hence the burn season) and the fire period commonly occur between December and February.

2.2. Spatial Resolution

The Spatial resolution of this BA product is 0.000179663 degrees (approximately 20 m at the Equator), the original resolution of both SWIR bands in the MSI images.
2.3. Product projection system

The Coordinate Reference System (CRS) used for the global BA products is a geographic coordinate system (GCS) based on the World Geodetic System 84 (WGS84) reference ellipsoid and using a Plate Carrée projection with geographical coordinates of equal pixel size. The coordinates are specified in decimal degrees. Information on product projection, ellipsoid and pixel size is included in the GeoTIFF file header, so every pixel in the file can be geographically referenced without the need of adding specific pixel indicators of geographical position.

2.4. Subsets

The BA product is distributed in 5x5-degree tiles, each one a non-overlapping region. They cover Sub-Saharan Africa from the southernmost point of the continent (latitude 35°S) to beyond the Tropic of Cancer (latitude 25°N), between longitudes 20°W and 55°E. Figure 3 shows the extent of these tiles.

![Figure 3: Geographical distribution of subsets of the FireCCISFD20 product.](image)

2.5. Product file naming conventions

The files for each sensor and month are named as follows:

<Indicative_Date>-ESACCI-L3S_FIRE-BA-<Indicative_Sensor>-<Additional_Segregator>-fv<File_Version>-<Layer>.tif

<Indicative_Date>

The identifying date for this data set:

Format is YYYYMMDD, where YYYY is the four-digit year; MM is the two-digit month from 01 to 12 and DD is the two-digit day of the month from 01 to 31. For monthly products DD=01.
For version 2.0 of the product, the sensor is MSI.

This is AREA_<TILE_NUMBER> being the tile number the subset index described in Section 2.4.

File version number in the form n{1,}.{n{1,}} (That is 1 or more digits followed by optional . and another 1 or more digits). The most recent version is fv2.0.

As each layer is provided as an individual GeoTIFF file, the code of each layer is:

- JD: layer 1, corresponding to the Julian day, or day of the year of detection of the BA.
- CL: layer 2, corresponding to the confidence level
- LC: layer 3, corresponding to the land cover

Example:
20190701-ESACCIL3S_FIRE-BA-MSI-AREA_h39v20-fv2.0-JD.tif

2.6. Pixel attributes

The following sub-sections describe each of the layers of the pixel product (Annex 1), including the name of the attributes in the GeoTIFF file, the units of the attributes and the data type, and some information useful for the correct use of the product. They also include examples of the pixel product layers.

2.6.1. Layer 1: Date of the first detection

<table>
<thead>
<tr>
<th>Layer</th>
<th>Attribute</th>
<th>Units</th>
<th>Data Type</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 1 (JD) | Date of the first detection | Day of the year, from 1 to 366 | Integer | Possible values:
• 0 (zero): when the pixel is not burned.
• 1 to 366: day of the first detection when the pixel is burned.
• -1: when the pixel is not observed in the month.
• -2: used for pixels that are not burnable: water bodies, bare areas, urban areas, permanent snow and ice. |

When the pixel is characterized as burned, it is assumed that the complete pixel was burned, as for most BA products. All pixels with confidence level higher than 50% (Layer 2, section 2.6.2) have a day of detection.

The date of detection of the burned pixel (usually also called day of the year or Julian day) may not be coincident with the actual burning date, and it could correspond to several days afterwards, depending on image availability and cloud coverage. For areas with low cloud coverage, the detected date of burn should be very close to the actual date of burn, while for equatorial latitudes or those with high cloud coverage the date might be up to weeks after the fire is over.

An example of this layer corresponding to the month of July for Area h39v20 is shown in Figure 4.
2.6.2. Layer 2: Confidence level

<table>
<thead>
<tr>
<th>Layer</th>
<th>Attribute</th>
<th>Units</th>
<th>Data Type</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 2 (CL)| Confidence level| 0 to 100| Integer | Probability of detecting a pixel as burned. Possible values:
- 0 (zero): when the pixel is not observed in the month, or it is not burnable.
- 1: value assigned when the pixel was observed, but the probability of burn was lower than 50.
- 50 to 100: Probability values. The closer to 100, the higher the confidence that the pixel is actually burned. |

The confidence level was based on spectral properties of initial burned areas, which were detected near thermal anomalies hotspots from the VNP14IMGML product. The original probability values were rescaled, in order to provide values easier to understand by users. The technical details are explained in Roteta (2021).

An example of this layer corresponding to the month of July for Area h39v20 is shown in Figure 5.
Figure 5: Example of the confidence level layer for the Area h39v20 tile during July 2019. The figure shows the extent of the whole Area in the left panels, and a zoomed region in the right panel.

2.6.3. Layer 3: Land cover of burned pixels

<table>
<thead>
<tr>
<th>Layer</th>
<th>Attribute</th>
<th>Units</th>
<th>Data Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 (LC)</td>
<td>Land cover of burned pixels</td>
<td>0 to 180</td>
<td>Byte</td>
<td>Land cover of the pixel detected as burned, extracted from the C3S Land Cover map of 2018. Possible values: 0 (zero): when the pixel is not observed in the month, it is observed and classified as not burned or it is not burnable (i.e. values of layer 1 between -2 and 0) - 1-180: number of the land cover class in the reference map.</td>
</tr>
</tbody>
</table>

The land cover assigned to the pixel detected as burned was extracted from the C3S Land Cover map of 2018 (available at https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover); unburned pixels are assigned the value 0. The land cover categories included in the BA product are listed in Table 1. Further information regarding the land cover map is available in Defourny et al. (2021).
Table 1: Land cover categories in Layer 3.

<table>
<thead>
<tr>
<th>LC number</th>
<th>Class name</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Cropland, rainfed</td>
</tr>
<tr>
<td>20</td>
<td>Cropland, irrigated or post-flooding</td>
</tr>
<tr>
<td>30</td>
<td>Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (50%)</td>
</tr>
<tr>
<td>40</td>
<td>Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)</td>
</tr>
<tr>
<td>50</td>
<td>Tree cover, broadleaved, evergreen, closed to open (>15%)</td>
</tr>
<tr>
<td>60</td>
<td>Tree cover, broadleaved, deciduous, closed to open (>15%)</td>
</tr>
<tr>
<td>70</td>
<td>Tree cover, needleleaved, evergreen, closed to open (>15%)</td>
</tr>
<tr>
<td>80</td>
<td>Tree cover, needleleaved, deciduous, closed to open (>15%)</td>
</tr>
<tr>
<td>90</td>
<td>Tree cover, mixed leaf type (broadleaved and needleleaved)</td>
</tr>
<tr>
<td>100</td>
<td>Mosaic tree and shrub (>50%) / herbaceous cover (<50%)</td>
</tr>
<tr>
<td>110</td>
<td>Mosaic herbaceous cover (>50%) / tree and shrub (<50%)</td>
</tr>
<tr>
<td>120</td>
<td>Shrubland</td>
</tr>
<tr>
<td>130</td>
<td>Grassland</td>
</tr>
<tr>
<td>140</td>
<td>Lichens and mosses</td>
</tr>
<tr>
<td>150</td>
<td>Sparse vegetation (tree, shrub, herbaceous cover) (<15%)</td>
</tr>
<tr>
<td>160</td>
<td>Tree cover, flooded, fresh or brackish water</td>
</tr>
<tr>
<td>170</td>
<td>Tree cover, flooded, saline water</td>
</tr>
<tr>
<td>180</td>
<td>Shrub or herbaceous cover, flooded, fresh/saline/brackish water</td>
</tr>
</tbody>
</table>

Since the land cover product has a spatial resolution of approx. 300 m, and the BA information is at approx. 20-m resolution, in large burned patches the shapes of the pixels of the different land cover classes can be observed. This is unavoidable due to the difference in resolution. Still, this land cover map was preferred by the users due to its better accuracy compared to other existing product (such as the one used for FireCCISFD11), and to keep consistency between Fire_cci BA products, as described in Heil and Pettinari (2021).

Obviously, errors included in this land cover map also affect the information contained in the BA product, and hence the calculation of emissions using land-cover-based emissions factors would be affected.

An example of this layer corresponding to the month of July for Area h39v20 is shown in Figure 6.
Figure 6: Example of the Land Cover layer for the Area h39v20 tile during July 2019 (class numbers detailed in Table 1). The figure shows the extent of the whole Area in the left panels, and a zoomed region in the right panel.

2.7. File metadata

For each BA file product, an additional xml file with the same name is created. This file holds the metadata information following the ISO 19115 standard. The description of the populated fields is included in Annex 1.

3. Grid BA product

The grid product is the result of summing up burned area pixels within each cell of 0.05 degrees in a regular grid covering the whole Earth in monthly composites. Since FireCCISFD20 only covers sub-Saharan Africa, only the cells in that area have BA information, and the rest of the world has a value of 0.

In addition to this variable, other attributes are stored in the NetCDF file: standard error of the estimations, fraction of burnable area, fraction of observed area, and the burned area for the different land cover classes described in Section 2.6.3. Figure 7 shows the total BA from this product for 2019.

3.1. Temporal compositing

Grid products are released in monthly files, covering from the start to the end of the month. They are named assigning the day 1 of the month in the naming convention (see Section 3.4).
3.2. Spatial Resolution

The spatial resolution of the grid product is 0.05 x 0.05 degrees (approx. 5 km at the equator). Grid attributes are computed from all pixels included in each cell of that size within the time period previously indicated. As the product only covers sub-Saharan Africa, the other areas of the world have a value of 0 in all layers.

3.3. Product projection system

The grid product is stored in geographical coordinates. Each cell has a latitude and longitude assignment that is tied to the centre of the grid cell. For example, a series of adjacent grid cells have longitude references of 16.025°, 16.075°, 16.025°, etc. Similarly, a series of latitude references are -12.775°, -12.825°, -12.875°, etc.

The product format is NetCDF-CF (see http://www.unidata.ucar.edu/software/netcdf/docs for detailed information about this format).

3.4. Product file naming conventions

The grid files are named as following:

<Indicative_Date>-ESACCI-L4_FIRE-BA-<Indicative_sensor>-fv<xx.x>.nc

<Indicative_Date>

The identifying date for this data set:

Format is YYYYMMDD, where YYYY is the four-digit year; MM is the two-digit month from 01 to 12 and DD is the two-digit day of the month from 01 to 31. For monthly files the day is set to 01.

<Indicative_sensor>

In this version of the product, it is MSI.

fv<File_version>
Version number of the Fire_cci BA algorithm. It is in the form \(n\{1,\}[.n\{1,\}]\) (That is 1 or more digits followed by optional . and another 1 or more digits.). Current version is fv2.0.

Example:

20190701-ESACCI-L4_FIRE-BA-MSI-fv2.0.nc

3.5. Grid attributes

The following sub-sections describe each of the grid attributes, including the name of the variables (attributes) in the NetCDF file, the unit of the attributes and the data type, and some information useful for the correct use of the product.

They also include an example of the grid product attributes.

3.5.1. Attribute 1: Sum of burned area

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Units</th>
<th>Data Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>burned_area</td>
<td>Square metres</td>
<td>Float</td>
<td>Sum of area of all pixels detected as burned within each grid cell and period.</td>
</tr>
</tbody>
</table>

In common with other global BA products, it is assumed that a pixel at the native spatial resolution of the detecting instrument was totally burned. The value in this layer indicates the sum of all the burned area within each 0.05-degree cell. Further description on the methodology to obtain the burned area from the BA detections is included in the Algorithm Theoretical Basis Document (Roteta 2021).

An example of this layer corresponding to July 2019 is shown in Figure 8.

![Figure 8: Example of the Burned Area attribute of the 20190701-ESACCI-L4_FIRE-BA-MSI-fv2.0.nc file. The panel on the right corresponds to the area of the h39v20 tile of the pixel product.](image-url)
3.5.2. Attribute 2: Standard error

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Units</th>
<th>Data Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>standard_error</td>
<td>Square metres</td>
<td>Float This value is the standard error of the estimation of BA in each grid cell, based on the aggregation of the confidence level of the pixel product.</td>
</tr>
</tbody>
</table>

The standard error is modelled from the confidence level (p_b) of the pixel product, using a Poisson Binomial Distribution. The details of the methodology are explained in the End-to-End Uncertainty Budget document (Khaïroun et al., 2021).

An example of this layer corresponding to July 2019 is shown in Figure 9.

![Figure 9: Example of the Standard Error attribute of the 20190701-ESACCI-L4_FIRE-BAMSI-fv2.0.nc file. The panel on the right corresponds to the area of the h39v20 tile of the pixel product.](image)

3.5.3. Attribute 3: Fraction of burnable area

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Units</th>
<th>Data Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Fraction of burnable area</td>
<td>0 to 100</td>
<td>Float The fraction of area in the grid that corresponds to land covers that could be affected by fire.</td>
</tr>
</tbody>
</table>

This variable includes all land cover categories that can be burned. Land cover information was extracted from the C3S Land Cover map of 2018 (see Section 2.6.3).

An example of this layer corresponding to July 2019 is shown in Figure 10.
3.5.4. Attribute 4: Fraction of observed area

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Units</th>
<th>Data Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 Fraction of observed area</td>
<td>0 to 100</td>
<td>Float</td>
<td>The fraction of the total burnable area in the grid that was observed during the month (without cloud cover / haze or low quality pixels)</td>
</tr>
</tbody>
</table>

The fraction of observed area is included as a layer in the grid product with the particular aim of providing information on the incomplete observation of the Earth surface by the input sensor. This may be caused by a sensor failure or by persistent cloud coverage.

Recommendation on product use: this is a very important attribute to consider, as it shows the proportion of each cell that was not observed in a particular month, and therefore it identifies the regions where the product may miss burned pixels. All grid cells with fraction of observed area lower than 80% should be used with care.

An example of this layer corresponding to July 2019 is shown in Figure 11.
Figure 11: Example of the Fraction of Observed Area attribute of the 20190701-ESACCI-L4_FIRE-BA-MSI-fv2.0.nc file. The panel on the right corresponds to the area of the h39v20 tile of the pixel product.

3.5.5. Attributes 5-22: Sum of burned area for each land cover category

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Units</th>
<th>Data Type</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 to 22 burned_area_in_vegetation_class*</td>
<td>Square metres</td>
<td>Float</td>
<td>Sum of all burned pixels of each land cover as defined by the C3L Land Cover product.</td>
</tr>
</tbody>
</table>

The vegetation_class categories are those described in Section 2.6.3.

As in the case of the pixel product, it is assumed that each burned pixel that adds to the total burned area in a grid cell corresponds to only one land cover, as in most land cover maps. This is a reasonable estimation for homogenous land cover areas, but it may imply errors for heterogeneous landscapes. The basic land cover map is the C3S Land Cover map of 2018 (see Section 2.6.3). Obviously, the errors of this map affect the estimation provided by the Fire_cci product.

It is assumed that the land cover source has accurately described the land cover type and is spatially consistent. We aim to provide readily available information for users on the type of vegetation that has burned. This information could be used, for example, with the vegetation type dependent fuel load data for calculation of the carbon emissions and other trace gas emissions in fires, or could be used to apply vegetation type relevant combustion completeness and emission factor information in climate modelling research.

Two examples of these types of layers corresponding to July 2019 are shown in the following figures. Figure 12 shows the sum of the burned area of rainfed croplands (class 10, see Table 1 in Section 2.6.3), while Figure 13 shows the sum of BA in broadleaved deciduous forests (class 60) for the same time period.
Figure 12: Example of the burned area in rainfed croplands (land cover class 10) attribute of the 20190701-ESACCI-L4_FIRE-BA-MSI-fv2.0.nc file. The panel on the right corresponds to the area of the h39v20 tile of the pixel product.

Figure 13: Example of the burned area in Tree cover, broadleaved, deciduous, closed to open (land cover class 60) attribute of the 20190701-ESACCI-L4_FIRE-BA-MSI-fv2.0.nc file. The panel on the right corresponds to the area of the h39v20 tile of the pixel product.
3.7. File metadata

The grid files follow the NetCDF Climate and Forecast (CF) Metadata Convention (http://cfconventions.org/). Annex 2 describes the fields included in the .nc files.

4. Comparison with other burned area products

A preliminary comparison with FireCCI51 (Lizundia-Loiola et al., 2020) product shows that a considerably high number of small burned areas are being detected in FireCCISFD20 compared to the coarser FireCCI51 due to the different spatial resolution (20 m vs 250 m) (Figure 14).

The product is being validated, and the results will be detailed in the Product Validation and Intercomparison Report.

Figure 14: Intercomparison of FireCCISFD20 BA and FireCCI51 products for July (top) and December (bottom) 2019
5. Data limitations and constraints

At the moment of processing the algorithm, there was a lack of Level-2 images corresponding to the year 2018. Since the algorithm requires a pre-fire cloud-free image to compute the difference between different dates, the data of January 2019 might be affected due to the lack of December 2018 images.

Additionally to the not burnable mask derived from the C3S land cover product (corresponding to the land covers that are not vegetated), the land scene classification of the Sentinel-2 Level 2 product, corresponding to the water class, has also been masked. For this reason, in the pixel product the non-burnable areas can have finer or coarser shapes, depending of the origin of the land mask.

6. Data dissemination

7. References

Annex 1: Metadata of the pixel product (XML file)

In each XML file corresponding to the pixel product, the following fields are populated:

- Universal Unique Identifier
- Language
- Contact
- Date stamp
- Metadata Standard Name
- Reference System
- Citation
 - Title
 - Creation date
 - Publication date
 - DOI
 - Abstract (contains general information and information about each layer)
- Point of Contact
 - Resource provider
 - Distributor
 - Principal investigator
 - Processor
- Keywords
- Resource constraints
- Spatial resolution
- Extent:
 - Geographical extent
 - Temporal extent
Annex 2: Metadata of the grid product

Here is an example of the dimensions and variables of the gridded product for the 20190701-ESACCI-L4_FIRE-BA-MSI-fv2.0.nc file:

Global Attributes:
title = 'ESA Fire_cci Small Fire Database (SFD) Burned Area Grid product'
institution = 'University of Alcala'
source = 'MSI L1C, VIIRS FIRMS (VNP14IMGTML), C3S land cover map v2.1.1 of 2018'
history = 'Created on 2021-06-17 22:20:50'
references = 'See https://climate.esa.int/en/projects/fire/
tracking_id = 'e7e8c87b-cfe3-4af1-8f1a-ae530a44f7db7'
Conventions = 'CF-1.7'
product_version = '2.0'
summary = 'The grid product is the result of summing up burned area pixels within each cell of 0.05 degrees in a regular grid covering the whole Earth in monthly composites. For this product, only sub-Saharan Africa has burned area information. The attributes stored are sum of burned area, standard error, fraction of burnable area, fraction of observed area, and the burned area for 18 individual land cover classes.
keywords = 'Burned Area, Fire Disturbance, Climate Change, ESA, GCOS'
id = '20190701-ESACCI-L4_FIRE-BA-MSI-fv2.0.nc'
naming_authority = 'int.esa.climate'
keywords_vocabulary = 'NASA Global Change Master Directory (GCMD) Science keywords'
cdm_data_type = 'Grid'
comment = 'These data were produced as part of the ESA CCI programme.'
date_created = '20210617T222050Z'
creator_name = 'University of Alcala'
creator_url = 'https://climate.esa.int/en/projects/fire/
creator_email = 'emilio.chuvieco@uah.es'
project = 'ESA Fire_cci'
doi = '10.5285/01b00854797d44a59d57c8ccee08821eb'
publish_date = '2021-04-30'
geospatial_lat_min = '-90'
geospatial_lat_max = '90'
geospatial_lon_min = '-180'
geospatial_lon_max = '180'
geospatial_vertical_min = '0'
geospatial_vertical_max = '0'
time_coverage_start = '20190701T000000Z'
time_coverage_end = '20190731T235959Z'
time_coverage_duration = 'P1M'
time_coverage_resolution = 'P1M'
standard_name_vocabulary = 'NetCDF Climate and Forecast (CF) Metadata Convention'
licence = 'ESA CCI Data Policy: free and open access'
platform = 'Sentinel-2'
sensor = 'MSI'
spatial_resolution = '0.05 degrees'
geospatial_lon_units = 'degrees_east'
geospatial_lat_units = 'degree_north'
geospatial_lon_resolution = '0.05'
geospatial_lat_resolution = '0.05'

Dimensions:
vegetation_class = 18
lat = 3600
lon = 7200
nv = 2
strlen = 150
time = 1 (UNLIMITED)

Variables:
lat
 Size: 3600x1
 Dimensions: lat
 Datatype: single
 Attributes:
 units = 'degree_north'
 standard_name = 'latitude'
 long_name = 'latitude'
 bounds = 'lat_bounds'
lat_bounds
 Size: 2x3600
 Dimensions: nv,lat
 Datatype: single
lon
 Size: 7200x1
 Dimensions: lon
 Datatype: single
 Attributes:
 units = 'degree_east'
 standard_name = 'longitude'
 long_name = 'longitude'
 bounds = 'lon_bounds'
lon_bounds
 Size: 2x7200
 Dimensions: nv,lon
 Datatype: single
time
 Size: 1x1
 Dimensions: time
 Datatype: double
 Attributes:
 units = 'days since 1970-01-01 00:00:00'
 standard_name = 'time'
 long_name = 'time'
 bounds = 'time_bounds'
 calendar = 'standard'
time_bounds
Size: 2x1
Dimensions: nv, time
Datatype: single

vegetation_class
Size: 18x1
Dimensions: vegetation_class
Datatype: int32
Attributes:
 units = '1'
 long_name = 'vegetation class number'

vegetation_class_name
Size: 150x18
Dimensions: strlen, vegetation_class
Datatype: char
Attributes:
 units = '1'
 long_name = 'vegetation class name'

burned_area
Size: 7200x3600x1
Dimensions: lon, lat, time
Datatype: single
Attributes:
 units = 'm2'
 standard_name = 'burned_area'
 long_name = 'total burned_area'
 cell_methods = 'time: sum'

standard_error
Size: 7200x3600x1
Dimensions: lon, lat, time
Datatype: single
Attributes:
 units = 'm2'
 long_name = 'standard error of the estimation of burned area'

fraction_of_burnable_area
Size: 7200x3600x1
Dimensions: lon, lat, time
Datatype: single
Attributes:
 units = '1'
 long_name = 'fraction of burnable area'
 comment = 'The fraction of burnable area is the fraction of the cell that corresponds to vegetated land covers that could burn. The land cover classes are those from C3S land cover map v2.1.1 of 2018'

fraction_of_observed_area
Size: 7200x3600x1
Dimensions: lon, lat, time
Datatype: single
Attributes:
 units = '1'
 long_name = 'fraction of observed area'
comment = 'The fraction of the total burnable area in the cell (fraction_of_burnable_area variable of this file) that was observed during the time interval, and was not marked as unsuitable/not observable. The latter refers to the area where it was not possible to obtain observational burned area information for the whole time interval because of lack of input data (non existing data for that location and period).'
burned_area_in_vegetation_class
 Size: 7200x3600x6x1
 Dimensions: lon,lat,vegetation_class,time
 Datatype: single
 Attributes:
 units = 'm2'
 long_name = 'burned area in vegetation class'
 cell_methods = 'time: sum'
 comment = 'Burned area by land cover classes; land cover classes are from the C3S Land Cover map v2.1.1 of 2018'
Annex 3: Acronyms and abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF</td>
<td>Active fire</td>
</tr>
<tr>
<td>BA</td>
<td>Burned Area</td>
</tr>
<tr>
<td>CCI</td>
<td>Climate Change Initiative</td>
</tr>
<tr>
<td>CL</td>
<td>Confidence Level</td>
</tr>
<tr>
<td>CRS</td>
<td>Coordinate Reference System</td>
</tr>
<tr>
<td>DOI</td>
<td>Digital Object Identifier</td>
</tr>
<tr>
<td>ECV</td>
<td>Essential Climate Variables</td>
</tr>
<tr>
<td>ESA</td>
<td>European Space Agency</td>
</tr>
<tr>
<td>GCS</td>
<td>Geographic Coordinate System</td>
</tr>
<tr>
<td>JD</td>
<td>Julian Day (day of detection of the burned area)</td>
</tr>
<tr>
<td>LC</td>
<td>Land Cover</td>
</tr>
<tr>
<td>MSI</td>
<td>Multi Spectral Instrument</td>
</tr>
<tr>
<td>MSI-L2A</td>
<td>MSI Level-2A product</td>
</tr>
<tr>
<td>S2</td>
<td>Sentinel 2</td>
</tr>
<tr>
<td>SFD</td>
<td>Small Fire Database</td>
</tr>
<tr>
<td>SWIR</td>
<td>Short-Wave Infrared</td>
</tr>
<tr>
<td>VIIRS</td>
<td>Visible Infrared Imaging Radiometer Suite</td>
</tr>
<tr>
<td>WGS84</td>
<td>World Geodetic System 84</td>
</tr>
</tbody>
</table>