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Summary 

This Product Validation Report (PVR) describes the approaches and methods used to 

assess the quality of BA products coming from the Fire_cci algorithms. The report 

presents validation results that are representative at global and regional scale and for a 

multi-year time period.  
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1 Executive Summary 

The Product Validation Report (PVR) describes the approaches and methods used to 

assess the quality of burned area (BA) products coming from the Fire_cci algorithms. 

The current report presents validation results that are representative at global scale for 

the multi-year time period 2003-2014 and for Africa for year 2016.  

For a sample of validation sites, BA reference data were generated from Landsat data 

and compared with BA algorithm outputs, with common temporal interval and spatial 

coverage. CEOS LPV protocols were used (Boschetti et al. 2010) to generate the 

reference data and peer-reviewed standard methods (Padilla et al. 2017) were used to 

summarize and express the validation results. Novel methods in BA validation were 

developed to cover a multi-year time period with reference data, using a stratified 

random sampling of spatio-temporal clusters to maximize the precision of accuracy 

estimates. A validation sample was specifically designed for the small fire dataset (a 

burned area product derived from Sentinel-1 and -2 images) using Landsat data. 

Sampling units were defined with long temporal extents (where the temporal extent is 

the time period covered by the respective reference data), covering over 100 days, 

ensuring therefore large temporal overlaps with Sentinel-1 and -2 BA estimates. The 

resulting dataset are novel in BA validation.  

At global scale, the FireCCI41, the FireCCI50, the FireCCI51, the FireCCILT10 

products, and additionally the MODIS MCD64 product were validated at global scale 

from 2003 to 2014, with a sample of 1200 30x20 km spatial windows of pairs of 

Landsat images separated by 8-16 days (a short temporal extent). FireCCI51, with a 

Dice Coefficient (DC) of 38.2% and relative bias (relB) of -28.0%, was the most 

accurate among Fire_cci products. DC values were lower than for the MCD64A1 

product (DC 47.8% and relB -41.5%), but it showed better relative bias. The lower DC 

values of FireCCI51 and 50 products are partly caused by the lower temporal reporting 

accuracy, as the higher performance at long (in time) sampling units indicates.   

The FireCCISFD11 and FireCCI50, FireCCI51, FireCCILT10 and MCD64A1 were 

validated in Africa using 50 long temporal sampling units from 2016 made by 

consecutive image pairs (referred here as short sampling units). FireCCISFD11 was 

clearly the most accurate product at long sampling units (DC 77.0% and relB -9.0%), 

although one of the least accurate at short sampling units (DC 34.2% and relB -9.0%). 

FireCCI51 and MCD64A1 had similar accuracies at long sampling units, the former 

slightly higher.  

2 Introduction 

2.1 Purpose of the document 

The objective of this Product Validation Report version 2.0 is to describe and report the 

validation of MERIS Fire_cci version 4.1 (FireCCI41), MODIS Fire_cci versions 5.0 

(FireCCI50), MODIS Fire_cci version 5.1 (FireCCI51), the AVHRR LTDR Fire_cci 

version 1.0 (FireCCILT10), the Sentinel-2 Small Fire Dataset Fire_cci v1.1 

(FireCCISFD11) and the Sentinel-1 Fire_cci v1.0 for Africa (FireCCIS1A10). 

2.2 Background 

Validation is a critical step of every remote sensing project, as it provides a quantitative 

assessment of the reliability of results, while facilitating critical information for end 
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users (Congalton and Green 1999). The Committee on Earth Observation Satellites’ 

Land Product Validation Subgroup (CEOS-LPVS) defines validation as: “The process 

of assessing, by independent means, the quality of the data products derived from the 

system outputs” (European Space Agency, 2007; Morisette et al. 2006).  

CEOS-LPVS defined four stages of validation, based on the coverage and type of 

reference data sampling (http://lpvs.gsfc.nasa.gov, accessed October 2018): 

1. Product accuracy is assessed from a small (typically < 30) set of locations and 

time periods by comparison with in-situ or other suitable reference data. 

2. Product accuracy is estimated over a significant set of locations and time periods 

by comparison with reference in situ or other suitable reference data. Spatial and 

temporal consistency of the product and consistency with similar products has been 

evaluated over globally representative locations and time periods. Results are 

published in the peer-reviewed literature. 

3. Uncertainties1 in the product and its associated structure are well quantified from 

comparison with reference in situ or other suitable reference data. Uncertainties are 

characterized in a statistically rigorous way over multiple locations and time 

periods representing global conditions. Spatial and temporal consistency of the 

product and with similar products has been evaluated over globally representative 

locations and periods. Results are published in the peer-reviewed literature. 

4. Validation results for stage 3 are systematically updated when new product 

versions are released and as the time-series expands. 

Through the first decade of the 2000s, BA products were typically subjected to a first 

stage validation. Globcarbon (Plummer et al. 2007) and L3JRC (Tansey et al. 2008) 

were validated with independent data derived from 72 Landsat scenes globally 

distributed mostly from the year 2000; this can be referred to as stage 1.5 (i.e. better 

than stage 1 but not at stage 2). Stage 1 validation results were reported by Roy and 

Boschetti (2009) for the MODIS-MCD45 (Roy et al. 2008) product in southern Africa 

using 11 Landsat scenes, while Chuvieco et al. (2008) validated a regional product for 

Latin America using 19 Landsat scenes and 9 China–Brazil Earth Resources Satellite 

(CBERS) scenes. GFED3, which has a coarser spatial resolution of 0.5°, was not 

formally validated, but some quantification of uncertainty was provided (Giglio et al. 

2018; Giglio et al. 2009; 2010). Recently, the most common BA products were 

validated with reference data collected by means of probabilistic sampling on a single 

year, 2008 (Padilla et al. 2014b; Padilla et al. 2015). Later, Boschetti et al. (2016) 

improved the sampling by specifically including the temporal dimension at the sampling 

units, but leaving unsolved the stratification design and sampling allocation to optimally 

obtain precise accuracy estimates, and further did not report on any validation results 

with any reference data arising from the study. This was addressed by Padilla et al. 

(2017) and the main findings were implemented here. The sampling is critical in any 

validation, to make the most of the resources dedicated to generate reference data. It is 

particularly critical for the current Fire_cci Phase 2, as validation is intended to cover 

several years.  

                                                 

1 In the context of the CEOS-LPVS guidelines, here uncertainty refers to accuracy obtained from a 

validation exercise. Commonly uncertainty may be relates to the precision of an estimate. 

http://lpvs.gsfc.nasa.gov/
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As part of an effort to promote the acceptance of the remote sensing products by 

external communities, here we provide an independent validation analysis, including the 

assessment of temporal trends of accuracy. The independence is a critical characteristic 

of any validation assessment, since it assures that unbiased accuracies are obtained 

among products. Independence implies that validation datasets are not used during the 

design of BA algorithms, either for calibration or “tuning” processes. The temporal 

variability of algorithm performance is one of the key validation aspects to be assessed 

according to end-user requirements (Heil et al. 2016). The validation then should 

provide a measure of whether results include temporal trends or not. For the current 

Fire_cci Phase 2, the reference datasets were generated to cover twelve years following 

a probability sampling, achieving therefore CEOS-LPV validation stage 3.  

For burned area assessment globally or regionally, the use of in-situ reference field data 

is not feasible. Therefore, remote sensing validation projects rely on images of medium 

spatial resolution of around 30 m. Moreover, this spatial resolution corresponds to that 

used by GCOS (2016) to define end-user requirements on product accuracies. 

Reference images are acquired simultaneously as to portray the same ground conditions 

as the input images from which the validating product is generated. Standard methods 

on the generation of BA reference data are described in detail by CEOS-LPV (Boschetti 

et al. 2009; Boschetti et al. 2010).  

Accuracy is characterized through cross-tabulation, by accounting for the spatio-

temporal coincidences and disagreements on estimates of location and timing of burns 

between a reference map and the target map. This is the most widely used approach 

(Padilla et al. 2017; Padilla et al. 2014b; Padilla et al. 2015).  

The main objective of this validation is to achieve a CEOS-LPV stage 3 validation. This 

implies that the generation of a reference dataset must cover a multi-year time period. 

Reference data was generated to cover 12 years, from 2003 to 2014. A CEOS-LPV 

Stage 4 validation can be achieved using the approach developed here as new product 

versions are released and as the time series expands.  

Additionally, a sample of reference data was specifically generated over Africa 2016 to 

validate the Small Fire Dataset (SFD). The SFD product is derived from S-1 and, 

independently, S-2 data. This separate sample uses consecutive images pairs ensuring 

large temporal overlaps with SFD BA estimates. Due to the lower temporal resolution 

of the SFDs; observations of the Earth are not normally every day or every other day 

such as is the case with the global burned area products, , and for this reason temporal 

errors of the detection date of the SFDs are mitigated through the long temporal 

reference data extents. 

The PVR includes the validation of the MERIS Fire_cci version 4.1 (hereinafter 

referred to as FireCCI41; available for 2005-2011), the MODIS Fire_cci versions 5.0 

and 5.1 (hereinafter referred to as FireCCI50 and FireCCI51 respectively), the AVHRR 

LTDR Fire_cci v1.0 (hereinafter referred to as FireCCILT10), the Sentinel-2 Small Fire 

Dataset Fire_cci v1.1 (hereinafter referred to as FireCCISFD11) and the Sentinel-1 

Fire_cci v1.0 for Africa (hereinafter referred to as FireCCIS1A10). Additionally, for 

reference, the MODIS-MCD64A1 Collection 6 (hereinafter referred to as MCD64) was 

also included. The product of the Copernicus Global Land Service was withdrawn from 

the  analysis as it is already known to have lower accuracy (Padilla et al. 2015) than the 

MCD64A1 Collection 6 product. 

  



 

Fire_cci 
Product Validation Report 

Ref.: Fire_cci_D4.1.1_PVR_v2.1 

Issue 2.1 Date 22/12/2018 

Page 11 
 

3 Methods on validation analysis 

3.1 Reference Data 

3.1.1 Reference data generation 

This section describes the protocol to generate and document reference information for 

BA validation. This document is based on the CEOS-CalVal protocol for the validation 

of burned area products (Padilla et al. 2014a). 

Reference perimeters were generated from multi-temporal comparison of medium 

resolution satellite imagery (Landsat TM), acquired from before and after the fire(s). 

After a semi-automatic mapping of burns, a systematic quality control was performed 

through visual inspection. Each reference dataset was reviewed by a ‘reviewer’ 

interpreter (M. Padilla) and perimeters with errors were rectified by the ‘author’ 

interpreter. The review process was done through visual inspection, alternatively 

displaying the pre- and post-images with the fire perimeters (derived from the semi-

automated algorithm) overlain with yellow lines, and no-data areas as blue non-

transparent areas. The reviews were done with the two interpreters (‘author’ and 

‘reviewer’) physically at front of the same desktop, to ensure a good and fluid 

communication and that the improvements needed are clearly understood. This 

procedure was repeated until no visible differences between perimeters and visual 

inspection were identified.   

Based on the experience in Phase 1, the software used to generate reference data, 

ABAMS, was expected to be found too slow to process the large number of sampling 

units planned for the current phase. Around 2200 pairs of Landsat images were to be 

processed for the global sample for 2003-2014 and for the sample specifically designed 

for the validation of the SFD. That is more than ten times than what was processed in 

the Fire_cci Phase 1, 200 pairs of images. ABAMS requires the user interaction in two 

separate times: one for pre-processing of the data and the other for the actual 

classification. The classification is the most time consuming part. Under a supervised 

classification, where several classifications might be required until a suitable one is 

achieved, the time the algorithm needs to do one classification is critical. More 

importantly, the algorithms of the last versions of ABAMS included large departures 

from its publication of reference (Bastarrika et al. 2011). The main departure consisted 

in the removal of the spatial regional algorithm, one of the most important aspects of the 

original algorithm described in the publication. The remaining algorithm consisted of a 

classification based on thresholds defined by percentiles observed on training polygons. 

For these reasons, we decided to use a standard machine learning algorithm, the 

Random Forest classifier as described below, embedded in a system that ingest the 

reference images and produce the reference data with the specific Fire_cci formats. 

The semi-automatic procedure that was used to generate the reference data consists of 

two steps. In the first step, the pair (pre and post) reflectance satellite images are 

reformatted to be easily and efficiently used on the second step, the semi-automatic 

classification of burned/unburned area. The reformatting consists of a co-registration in 

a region of 30 km width (x) and 20 km high (y) located at the centre of the scene. This 

is consistent with the sampling design, explained below in Section 3.2.3. The output is a 

raster file with six bands, with the SWIR, NIR and RED bands of the two Landsat TM 

images. Further details can be seen in the documentation (Annex 2) of the Python script 

where this reformatting is implemented. This first step is automatic and can be 
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parallelized and be ready well before the interpreter starts with the second step, the 

semi-automatic classification. For the classification, the interpreter uploads the data in 

QGIS (www.qgis.org/, accessed October 2018) with pre-defined display settings to 

digitize the training polygons for burned and unburned areas, and optionally for clouds. 

The training data is used to fit a Random Forest Classifier (Breiman 2001; Pedregosa et 

al. 2011), which is a robust classifier used for land cover change detections (Wessels et 

al. 2016) and increasingly being used in burned area mapping (Ramo and Chuvieco 

2017). The classifier takes as input variables the Normalized Burn Ratio (NBR), SWIR 

and NIR of the pre- and post-dates, and the multitemporal index dNBR (NBR at image 

acquisition time 2 minus NBR at image acquisition time 1). These spectral regions and 

indices have been identified as very useful in discriminating burned areas (Giglio et al. 

2009; Goodwin and Collet 2014). Each revision of the classification process takes about 

1 second. The procedure consists in repetitive iterations of visual inspection, drawing of 

new training polygons in the software tool (reflecting those burned areas that have not 

yet been correctly classified, or those incorrectly classified as being burned) and 

classification until no further errors can be perceived on the visual inspection. 

Optionally, the classification can be overwritten by polygons digitized manually. Once 

the ‘author’ interpreter is satisfied with the classification, it is then reviewed by the 

‘reviewer’ interpreter, which is the same for all reference datasets, and decides whether 

it is finalized or further rectifications are needed. 

The output is an ESRI® shape file with the reference data and metadata as defined 

below. Further details can be seen in the documentation (Annex 3) of the two Python 

scripts where this semi-automatic classification is implemented. Figure 1 shows an 

example of the fire perimeters discrimination. 

Parts of the scene that cannot be observed or interpreted, either by clouds or by sensor 

problems (i.e. SLC-off problems of ETM+) in one of the two images pre or post are 

classified as no-data. This is to make sure only areas with reliable data are included in 

the validation process.  

http://www.qgis.org/
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Figure 1: Example of a Landsat pre (above; 3 November 2003) and post (bellow; 19 November 

2003) fire RGB (7, 4, 3) images and the derived fire perimeters (yellow lines; same in both images), 

at WRS Landsat path-row 97-72 (northeastern Australia). 

3.1.2 Data structure and naming convention 

Each burned area reference file is an ArcGISTM shape file (.shp), along with the 

auxiliary files required (.dbf, .prj, shx, .sbn, .xml).  The projection is UTM, WGS84, 

with the UTM zone/row being the zone that is covered by the major part of the scene. 

The following attribute fields are included in the shape file (Table 1): 
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 PreDate. Acquisition date of the image taken before the occurrence of the fire: 

yyyymmdd (year, month, day).  

 PostDate. Acquisition date of the satellite image taken after the fire: yyyymmdd 

(year, month, day).  

 PreImg and PostImg. The pre- and post-fire image names, following this format: 

satellite-code_Path_Row (e.g. LT5_201_032). The satellite codes are given in 

Table 1.  

Table 1: Satellite-sensor codes naming convention 

Satellite-sensor Code 

Landsat-4 TM LT4 

Landsat-5 TM LT5 

Landsat-7 ETM+ LE7 

Landsat-8 OLI LC8 

 

 Area (in square metres, m2) 

 Category (Observation category): 

o Burned area = 1. This area includes all polygons detected as burned. 

o No-Data = 2. This area includes all polygons that could not be 

interpreted or were not observed by the sensor, either by clouds 

and/or cloud shadows, topographic shadows, smoke, or sensor errors 

(for instance, those caused by SLC-off problems of ETM+) 

o Unburned = 3. This area includes all polygons observed as not 

burned within the limits of the area covered by the image. 

 

Table 2: Example of attribute table for BA reference data. 

 

 

The name of the .shp and associated files is defined as follows: 

PRO_RD_YYYYMMDD_YYYYMMDD_PPPRRR 

where: 

PRO = Project where the reference data were generated. For the fire perimeters 

developed within the Fire_cci project, PRO=Fire_cci. 

RD = stands for Reference Data 
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yyyymmdd (year, month, date). The first one is the pre-fire date, which is the date of the 

first image used for BA detection; the second one is the post-fire date, which is the date 

of the last image used for generating the reference fire perimeters.  

ppprrr represents the Landsat Worldwide Reference System (WRS) path and row of the 

scene (in the case where no Landsat imagery was used, the closest path-row is selected): 

ppp=path; rrr=row 

3.1.3 Metadata 

The metadata of the reference files is written as an XML document. The metadata 

contains the author of the reference data file, their institution, the date of creation, the 

input data sources (names of satellite image files) and the reference of the website of the 

Fire_cci project. Annex 4 contains an example of a metadata file. 

3.2 Sampling design 

The sampling was designed with two main objectives: 

 To provide estimates that can be used to determine accuracy for specific spatial 

and temporal regions. To achieve this, the dimension of sampling units was 

defined in terms of spatial and temporal extents, as explained in Section 3.2.1. 

 To optimally allocate samples through a multi-year time period leading to 

accuracy estimates as precise as possible. To achieve this, a two-stage cluster 

sampling allocation was used with optimally defined strata, as explained in 

Sections 3.2.2 and 3.2.3. 

3.2.1 Sampling units 

The spatial dimension of sampling units was based on Landsat WRS-2 to simplify data 

downloading and processing (Padilla et al. 2014b; 2015). The spatial dimension of 

sampling units was defined by the Thiessen scene areas (TSAs) constructed by Cohen et 

al. (2010) and Kennedy et al. (2010) specifically for use with Landsat WRS-2 frames. 

The key advantage of TSAs is that they provide non-overlapping Landsat-like frames, 

which allow for a convenient computation of unbiased estimators (Gallego 

2005).Reference data is generated from two consecutive images acquired at the same 

TSA. Therefore, a sampling unit is delimited spatially by a TSA and temporally by the 

acquisition dates of consecutive images. 

For the global multi-year sample a sampling unit is defined by a pair of images, so the 

temporality is defined by the acquisition dates of the pair of images, as illustrated in 

Figure 2. For the sample of Africa 2016 a sampling unit is defined by consecutive pairs 

of images, so temporally it is defined by the acquisition dates of the first and last 

images, as illustrated in Figure 3, and nominally every 16 days for Landsat TM. 

Throughout the document, this sampling unit is referred as “long” unit, as for unit long 

in time. Contrarily, the unit defined by a pair of consecutive images is referred as 

“short”. The assessment of the products is carried out twice, once for the long temporal 

unit over a spatially limited area (Africa), and second over a short temporal unit for the 

global products and for a spatially limited area (Africa). 
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Figure 2: Illustration of short sampling units for a Thiessen scene area (TSA) on a three-

dimensional space. Each sampling unit is delimited spatially by a TSA (two-dimensions) and 

temporally (the third dimension) by the time between two consecutive Landsat images. Images are 

displayed as false colour composites with SWIR, NIR and red bands in the red, green and blue 

channels respectively. 

 

Figure 3: As in Figure 2 but for the long sampling unit based on consecutive pairs of images. 

 

The size of a unit i, Mi, is defined by the multiplication of its size in the spatial 

dimension (in m2; area of the TSA) and its size in the temporal dimension (in days). 

Absolute values of Mi size will change if other units were used, however Mi size will 

remain unchanged in relative terms. A unit i that is twice as large as another in m2∙days 

is also twice as large in km2∙seconds, or in any other combination of units. The 

knowledge of sampling unit sizes is necessary for a later unit subsampling process, and 

is explained in the sections below. Two consecutive images form a pair whenever they 

were separated by 16 days or less. It is relevant to limit the time length between two 

consecutive observations to make sure the spectral signal of a fire that occurred between 

acquisition times is still present in the latest image. 

Landsat imagery with less than 30% of clouds at the USGS archive 

(http://landsat.usgs.gov/, accessed September 2017) and the temporal requirements 

between image pairs specified above limited the availability of reference data. Globally 

from 2003 to 2014 only 26.24% of the area*time is covered by the image pairs available 

http://landsat.usgs.gov/
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at the USGS archive. In case the ESA archive had Landsat images other than those 

available at the USGS archive, the amount of available reference data would be larger 

than that reported here. Unlike at the present, at the time of designing the sampling the 

ESA archive did not offer the capability to download large amounts images as we 

required. Figure 4 shows the spatial distribution of such availability which appears to be 

affected by cloud global coverage patterns and by Landsat archiving strategies. Figure 5 

shows the temporal distribution of reference data availability with clear periodic peaks 

in the middle of the years and a large increase from 2013 onwards, produced by the 

Landsat 8 becoming operational. 

          

Figure 4: Spatial distribution of reference data availability for short sampling units. Percentage of 

time on Thiessen scene areas covered by Landsat TM image pairs available at the USGS archive 

separated with 16 days or less between each other, from 2003 to 2014. 

 

Figure 5: Temporal distribution of reference data availability. Monthly percentage of area*time 

covered by Landsat TM image pairs separated with 16 days or less between each other. 

Figure 6 shows the spatial distribution of data availability for multiple consecutive pairs 

of images covering at least 100 consecutive days. This leads to sampling units at least 

100 days long. Such a long coverage was set to ensure a good overlap with products 

generated with S-1 and S-2 imagery, which do not observe the surface on a near daily 

basis. 
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Figure 6: Spatial distribution of reference data availability for long sampling units in Africa 2016. 

Percentage of time on Thiessen scene areas covered by consecutive Landsat TM image pairs 

available at the USGS archive separated with 16 days or less between each other covering at least 

100 days (sampling units at least 100 days long). Data availability is particularly low in the Tropics. 

3.2.2 Stratification and sample allocation 

The stratification of sampling units was designed to ensure sufficient sampling in each 

calendar year, taking into account the major Olson biomes (Olson et al. 2001) and with 

special focus on regions with high and low fire activity. The stratification is based on 

three levels: 

 The first stratification level consisted in assigning each sampling unit to a 

calendar year. For consistency and simplicity, this assignation was based on the 

earliest acquisition date of the Landsat image pair. A yearly-stratification level is 

convenient as it brings flexibility when planning the data collection. Particularly 

it makes easy to expand the temporal period of study by adding complete years. 

 The second stratification level consisted in assigning each sampling unit to the 

major biome for which the TSA had the maximum area. 

 The third stratification level, as in Padilla et al. (2014b; 2015), is based on the 

BA extent provided by the MODIS-MCD64A1 Collection 5 product (Giglio et 

al. 2009). Sampling units are divided into high and low BA by using a threshold 

of BA specifically adapted to each year-biome stratum. The sample allocated in 

each year-biome is proportional to the total BA (NBA̅̅ ̅̅ ) as recommended by 

Hansen et al. (1946) for a highly skewed distribution. Padilla et al. (2017) found 

that an allocation proportional to N√BA̅̅ ̅̅  lead to more precise accuracy estimates. 

The study found that, given a same sample size, the use of allocation NBA̅̅ ̅̅  would 

lead to standard errors of accuracy measures DC, relB, Ce and Oe (see Section 

3.3 for definitions of accuracy measures) around 25%, 50%, 50% and 10% 

larger respectively, compared with using allocation N√BA̅̅ ̅̅ .  

Given the available sample size for each year y and biome b (nyb), the threshold 

was selected to minimize the variance of BAyb, 𝑉(𝐵𝐴̅̅ ̅̅ 𝑦𝑏). MCD64 as with any 

other global BA product commonly misses small fires (Hantson et al. 2013; 

Randerson et al. 2012). If MCD64 misses small fires and they contribute a large 

area, the allocation method would be less effective. This same shortcoming is 

described by Hansen et al. (1946) on surveys for business sales, who highlighted 

that those errors would not introduce bias into the estimates, but would decrease 

the precision of estimates. 
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For the global sample of 2003-2014 with short sampling units and using a similar 

amount of effort in generating reference data as in Fire_cci Phase 1, it was foreseen a 

sample size of 100 sampling units per year y, ny, at the subsample rate specified later. 

For a 12-year period, that would amount to 1200 short sampling units. For the sample of 

Africa for 2016, 50 long sampling units were sampled, which leads to approximately 

1000 pairs of images (equivalent to the same number of short sampling units). Optimal 

nyb was defined with the proportionality of mean BA,  

𝑛𝑦𝑏 = 𝑛𝑦
𝑁𝑦𝑏𝐵𝐴̅̅ ̅̅ 𝑦𝑏

𝑁𝑦𝐵𝐴̅̅ ̅̅ 𝑦

 
(1) 

At least two sampling units per stratum are needed to compute deviations of BA; hence 

an iterative process was used (Annex 5) to ensure that all nyb were ≥ 4 while preserving 

as much as possible the optimal allocation. 

Then, each year-biome (yb) stratum was divided in two parts with an optimal BA 

threshold. Figure 7 shows the optimal thresholds for each yb stratum, in the scale of the 

cumulative sum distribution of BA (CS). It ranges from 0 to 1, and it represents the 

fraction of BAyb on the sampling units with lower BA than a specific threshold. For 

example, CSyb = 0.5 divides a yb in two halves, the one with the sampling units with less 

BA have the same total BA as the other half. CSyb = 0.2 makes the half with the 

sampling units with less BA to have the 20% of BAyb.  

 

Figure 7: Table with the selected BA thresholds 𝑪𝑺𝒚𝒃
∗  for year y and biome b. Grey levels are 

proportional to threshold values. 

 

The consequent sample sizes nh for the global sample 2003-2014 are shown in Figure 8 

and the spatial distribution of TSAs with at least one sampling unit selected can be seen 

in Figure 9. The spatial distribution of TSAs with at least one sampling unit for Africa 

2016 is shown in Figure 10. 32 units were allocated in the high BA part of Tropical and 

Subtropical savanna and two in each of the other strata.  
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Figure 8: Table with the sample sizes nh for each year y (columns), biome b (rows) and BA level 

(high BA on the left of the “+” sign and low BA on the right). Grey levels are proportional to the 

sample size on year and biome strata (nyb; the sum of the two nh of each yb stratum). 

 

Figure 9: Thiessen scene areas (TSAs) with at least one unit selected in the sample and biome 

stratification based on a reclassification of the 14 Olson biomes (Olson et al. 2001). 

 

 

Figure 10: As Figure 9 in but for Africa 2016. 
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3.2.3 Subsample 

The main advantage of subsampling is that it allows increasing the number of units 

selected in the first stage. This helps to decrease the variance of accuracy estimates 

(notice the importance of nh as a denominator on Equation 12 in Section 3.3).  

Each sampling unit selected was subsampled by a spatial cluster of pixels on a 30 km 

wide and a 20 km high window located in the geographical centre of the unit. That 

rectangular size makes it possible to see single pixels (depending on differences in 

reflectance between a pixel and its neighbouring area) while the whole image is 

visualized at a scale of 1:80000 on the screens of 27’’ used. This hugely reduces the 

necessity to navigate across the scene in the process of image exploration for the 

collection of training data and/or revision of image classification. The navigation across 

a scene is a time consuming task which does not actually generate reference data, thus it 

is to be avoided as much as possible. 

Such subsampling is expected to produce a gain in the estimate precision mainly due to 

the increase of n and a within-unit positive correlation (Stehman 1997). The positive 

correlation implies that pixels within a unit provide similar information, and therefore a 

sample of them may provide a similar average as the one obtained from all pixels in the 

unit. 

3.3 Accuracy estimates 

Commonly in BA validation, accuracy estimates are based on the cross tabulation 

approach (Congalton and Green 1999; Latifovic and Olthof 2004). The result of the 

cross tabulation can be represented by the error matrix (Table 3) which expresses the 

amount of agreements and disagreements in terms of area (m2) between product and 

reference classifications. A product pixel is coded as “burned” if it was detected as such 

between the dates defining the temporal dimension of the sampling unit, in the same 

way as for the reference classification. All other sampled pixels are coded as 

“unburned” or “no-data”, the latter for unobserved pixels. 

Table 3: Sampled error matrix on a sampling unit. eij express the agreements (diagonal cells) or 

disagreements (off diagonal cells) in terms of area (m2) between the BA product (map) class and the 

reference class. 

Product 

classification 

Reference classification 
Row total 

Burned Unburned 

Burned e11 e12 e1+ 

Unburned e21 e22 e2+ 

Col. total e+1 e+2  

  

The agreement and disagreement areas can be measured in each sampling unit by 

spatially comparing reference and product binary (burned or unburned) maps. This 

comparison is performed by overlaying the two vector polygons layers derived from the 

product and reference datasets. The product binary raster map is converted to polygons 

and then re-projected to the spatial reference system of the reference dataset. Figure 11 

shows an example of a comparison map. 
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Figure 11: Comparison map between FireCCI41 and reference data at sampling unit TSA path 199 

and row 52, pre-date 16 January 2010 and post-date 1 February 2010. True burned area is 

represented in black, true unburned in grey and omission and commission errors in red and green 

respectively.  

 

Figure 12 illustrates how long sampling units might include areas burned in several time 

periods; given that reference data it is generated from a temporal series of images. 

Therefore, the validation of a product can be done at two scales, at the scale of the 

whole sampling unit, with the binary maps defined by the first and last acquisition 

dates, and also at the scale of the individual image pairs (similar to the scale of short 

sampling units), with the binary maps defined by the acquisition dates of the series of 

image pairs used. The difference in accuracy estimated from the two scales will give an 

indication of the effect of the product’s temporal errors over the accuracy inferences. 

Each cell of the error matrix e of a sampling unit i is defined as its sum across image 

pair ps 





ip

pee  (2) 

The exception to this is the true unburned area e22, which is defined as the area with 

available data m that is not truly burned, or has commission or omission error through 

the time series of reference data 

21121122 eeeme   (3) 
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Figure 12: Areas burned between 9 May and 12 July 2016. Colours indicate the burning dates. 

Given that temporal resolution Landsat TM imagery is of several days, burning dates are indicated 

by ranges of time. Time ranges begin on dates indicated on the left panel and end as indicated on 

the right panel. (from 9 May to 12 July 2016). Long sampling unit at TSA path 174 and row 65. 

Grey represents unburned area and white no-data due to cloud coverage or SLC-OFF problems of 

ETM+. 

Accuracy measures are commonly ratios between combinations of error matrix cells, the 

commission error ratio, 




1

12

e

e
Ce  (4) 

and the omission error ratio,  

1

21




e

e
Oe  (5) 

eij refer to the sample values of the error matrix entries. Recent publications (Padilla et 

al. 2014b; Padilla et al. 2014c; Padilla et al. 2015) used additionally the Dice 

Coefficient (DC) (Dice 1945) and measures of bias. DC is particularly useful when 

comparing product accuracies as it summarizes both error ratios (Ce and Oe) and 

expresses the accuracy of the category “burned”. DC has a sensible probabilistic 

interpretation (Dice 1945; Fleiss 1981; Forbes 1995; Hand 1981; Hellden 1980; Liu et 

al. 2007) as it is the conditional probability that one classifier identifies a pixel as 

burned, given that the other classifier also identified it as burned (Fleiss 1981).  

211211

11

2

2

eee

e
DC


  (6) 

The bias is of interest by end-users (Heil et al. 2016; Mouillot et al. 2014) and can be 

defined as a total estimate 

2112 eebias   (7) 

and in relative terms to the reference BA, 

1

2112






e

ee
relB  (8) 

Global estimates of accuracy are computed taking into account the stratified sampling 

design and using a stratified combined ratio estimator (Cochran 1977) of the form  

�̂� =
�̂�

�̂�
=
∑ 𝑁ℎ�̅�ℎ
𝐿
ℎ=1

∑ 𝑁ℎ�̅�ℎ
𝐿
ℎ=1

 
(9) 

--- time ---> unburned  no-data  
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Where L is the number of strata, Nh is the number of sampling units in stratum h, hy  

and hx are the sample means of yi and xi at stratum h, and yi and xi are values defined by 

the denominator and numerator of the different accuracy measures at sampling unit i. yi 

is defined by 
12e , 

21e , 
112e and 

2112 ee   on Ce, Oe, DC and relB respectively. xi is 

defined by 
1e , 

1e , 
2112112 eee   and 

1e  on Ce, Oe, DC and relB respectively. 

Because sampling units are of unequal sizes and they are subsampled as explained in 

Section 3.2.3, the sample means take into account the size of each unit, Mi, and the size 

of each subsample, mi  

�̅�ℎ =
1

𝑛ℎ
∑

𝑀𝑖𝑦𝑖
𝑚𝑖

𝑖∈ℎ

 
(10) 

�̅�ℎ =
1

𝑛ℎ
∑

𝑀𝑖𝑥𝑖
𝑚𝑖

𝑖∈ℎ

 
(11) 

where nh is the number of sampling units sampled in a stratum. The estimated variance 

of �̂� is 

𝑉(�̂�) =
1

𝑋2
∑

𝑁ℎ(𝑁ℎ − 𝑛ℎ)

𝑛ℎ

𝐿

ℎ=1

𝑆𝑢ℎ
2  

(12) 

𝑆𝑢ℎ
2 =

1

𝑛ℎ − 1
∑𝑀𝑖

2(�̅�𝑖 − �̿�ℎ)
2

𝑖∈ℎ

 
(13) 

�̂̿�ℎ =
∑ 𝑢𝑖𝑖∈ℎ

∑ 𝑀𝑖𝑖∈ℎ
 

(14) 

�̅�𝑖 =
𝑢𝑖
𝑚𝑖

 (15) 

𝑢𝑖 = 𝑦𝑖 − 𝑅𝑥𝑖 (16) 

Notice that the calculation of the deviation 𝑆𝑢ℎ
2  is based on the means per element (�̅�𝑖 

and �̿�ℎ) and takes into account the size of sampled units (Mi). With respect to the 

formulae used in Padilla et al. (2014b; 2015), this is a needed modification to allow for 

subsampling within each unit. This also represents an improvement as it increases the 

precision of estimates particularly for units of different sizes (Cochran 1977; Section 

9A.1).  

Other measurements, such as the bias of the BA in the product and in the reference data 

(BA and BAref respectively), are expressed as population total estimates of the form 

�̂� = ∑𝑁ℎ�̅�ℎ

𝐿

ℎ=1

 
(17) 

Similarly as above, hy is the sample mean of yi, which is defined by 
2112 ee  , 

1e  and 

1e  on bias, BA and BAref respectively.  

Its variance is   
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𝑉(�̂�) = ∑
𝑁ℎ(𝑁ℎ − 𝑛ℎ)

𝑛ℎ

𝐿

ℎ=1

𝑆𝑦ℎ
2  

(18) 

𝑆𝑦ℎ
2 =

1

𝑛ℎ − 1
∑𝑀𝑖

2(�̅�𝑖 − �̿�ℎ)
2

𝑖∈ℎ

 
(19) 

�̂̿�ℎ =
∑ 𝑦𝑖𝑖∈ℎ

∑ 𝑀𝑖𝑖∈ℎ
 

(20) 

�̅�𝑖 =
𝑦𝑖
𝑚𝑖

 (21) 

As shown above, reference data is not always available. This presence of no-data is a 

common source of error in surveys as it may produce bias in the estimates (Cochran 

1977; Section 13). The magnitude of such bias depends on the differences between the 

region with available data and the region without data. In our case, the bias in accuracy 

estimates depends on how cloud coverage affects the accuracy of BA classifications. 

For the purposes of the current study, regions with available data were assumed to be 

similar to those without available data. Thus, the number of sampling units of a stratum 

h (Nh) is defined from the stratum size in terms of area*time (Mh), assuming that the 

ratio between number of units with available data and stratum size with available data 

(𝑁𝑎ℎ 𝑀𝑎ℎ⁄ ) is similar to that for the region without data. 

𝑁ℎ = 𝑁𝑎ℎ
𝑀ℎ

𝑀𝑎ℎ
 

(22) 

3.4 Temporal stability of accuracy 

Global accuracy estimates are derived for each year, from 2003 to 2014, when product 

data is available. The objective of the temporal stability assessment is to evaluate the 

variability of accuracy over time. Following GCOS (2016), the assessment evaluates 

whether a monotonic trend exists based on the slope (b) of the relationship between an 

accuracy measure (m) and time (t). Given the small number of observations available 

(number of years, twelve), the slope b of change of accuracy per year is estimated 

through a nonparametric linear regression (Conover 1999; Section 5.5). For a given 

accuracy measure m, the slope b is the median of the slopes between pairs of years 

(bijs). For each pair of years i and j, such than i < j, the “two-year slope” is 

    

𝑏𝑖𝑗 =
𝑚𝑗 − 𝑚𝑖

𝑡𝑗 − 𝑡𝑖
 (23) 

 

The temporal monotonic trend of accuracy (i.e. b different than zero) is tested with the 

Kendall’s tau (𝜏) statistic (Conover 1999; Section 5.4). A statistically significant test 

result would indicate that accuracy measure m presents temporal instability, as it would 

have a significant increase or decrease over time. 

Additionally, accuracy changes can be evaluated particularly for those years where it is 

expected to find such changes. For example, for products that shift input sensor data, as 

may be the case for a product that covers a very long time period. Such variations can 

be directly evaluated by comparing the accuracy inferences between the temporal 
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periods of interest. The current report analyses seven products and all use the same 

input sensor data consistently through all the time period analysed and they are not 

expected to present accuracy changes at a particular time. The Product Intercomparison 

Report (Heil et al. 2017) revealed a temporal trend in amount of data available 

correlated with burned extents trends. However, the burnt area extent relative to the area 

that is actually available did not present such temporal trend. This seems to be in 

agreement with the assumption mentioned above in the last paragraph of Section 3.3 

that product accuracies are similar in areas with and without available data. 

4 Results 

4.1 Global scale 

The population estimates of accuracy measures are presented in Figure 13. Detailed 

results of error matrix entries (eij) and accuracy measures are presented as tables in 

Annex 6. Accuracy results show how MCD64 is the most accurate product, followed by 

FireCCI51 and FireCCI50, according to the Dice Coefficient and commission error 

ratio. FireCCI51 had the lowest RelB followed closely by FireCCI50 and MCD64 

(differences not statistically significant at the 0.05 confidence level). 

 

Figure 13: Estimated accuracy of each product. 95% confidence intervals are shown with the error 

segments. 

Detailed accuracies on TSAs for Fire_cci products can be seen in Figures 14-17. BA at 

the reference data can be seen in Figure 18. TSAs with the highest accuracies (i.e. 

highest DC) tend to be located where BA is high. Highest accuracies are mainly 

distributed across the tropical and subtropical savannahs of Africa, South America and 

Australia. On the other hand, BA is underestimated on most TSAs. (i.e. relB<0, 

represented as red tones in the lower panel of Figures below), with the exception of 

FireCCILT10 with large overestimations in most TSAs. Similar trends can be observed 

with Ce and Oe, and for MCD64 (Annex 7).  
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Figure 14: Dice Coefficient (DC) and relative bias (relB) for 2003-2014 FireCCILT10 at TSAs. 

TSAs with reference data but without accuracy measures available are represented by empty 

polygons (white polygons with grey borders). DC is not available when there is no BA in the 

reference data nor in the product, and relB is not available when there is no BA in the reference 

data. 
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Figure 15: As in Figure 14 but for 2005-2011 FireCCI41. 
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Figure 16: As in Figure 14 but for FireCCI50. 
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Figure 17: As in Figure 14 but for FireCCI51. 

 

Figure 18: 2003-2014 BA (m2) in the reference data at TSAs. 
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Yearly accuracy estimates can be seen in Figure 19 and results of temporal monotonic 

trend tests in Table 4. A slight and steady increase in accuracy, although with a peak in 

the second year (2007), is observed for all products, with the exception of 

FireCCILT10. No significant temporal trends were detected.  

 

 

Figure 19: Yearly accuracy estimates. Vertical segments show the 95% confidence intervals.  
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Table 4: Temporal monotonic trends of accuracy (b; monotonic change of accuracy per year). None 

of them is significantly different from zero at α=0.05 according Kendall’s tau test. 

 DC relB Ce Oe 

FireCCILT10  0.0035  -0.0425  -0.0032  -0.0057  

FireCCI41  0.0252  0.0295  -0.0268  -0.0195  

FireCCI50  0.0072  0.0032  -0.0088  -0.0001  

FireCCI51  0.0083  0.0041  -0.0032  0.0025  

MCD64  0.0048  0.0044  0.0027  -0.0044  

 

4.2 SFD 

FireCCISFD11 product is statistically the most accurate product at long sampling units 

(Figure 20), with the lowest commission error ratio (Oe), highest Dice Coefficient (DC) 

and lowest bias (relB). FireCCIS1A10 is the least accurate product with the smallest 

amount of data available (part of the northern hemisphere of sub-Saharan Africa) what 

lead to the largest uncertainties in accuracy estimates (reflected by the large standard 

errors and confidence intervals). Detailed results of error matrix entries (eij) and 

accuracy measures are presented as tables in Annex 8. 

Accuracies at long sampling units were higher than those obtained at the scale of image 

pairs (“short units”), consistently in all products and particularly in FireCCISFD11, 

FireCCIS1A10, FireCCILT10, FireCCI51 and FireCCI50 (Figure 20). It is remarkable 

how FireCCISFD11, FireCCI51 and MCD64 have similar accuracy at long sampling 

units, even though the former two have slightly less accuracy than later at the short 

sampling units. 

Bias remained unchanged between short and long units in all products. All products 

underestimate BA by around or more than 50% of what it is actually burned, except 

FireCCISFD11 and FireCCIS1A10 which have the lowest biases, the former 

underestimates 9% and the later overestimates 8%.   

Detailed results of accuracy on long sampling units for Fire_cci products can be seen in 

Figures 21-Figure 25. BA at the reference data can be seen in Figure 26. Results with 

Ce and Oe and for MCD64 can be seen in Annex 9. Similarly as for the global sample 

2003-2014, TSAs with the highest accuracies (i.e. highest DC) tend to be located where 

BA is high.  

 



 

Fire_cci 
Product Validation Report 

Ref.: Fire_cci_D4.1.1_PVR_v2.1 

Issue 2.1 Date 22/12/2018 

Page 33 
 

  

Figure 20: Estimated product accuracies at long sampling units (long su) and at the scale of image 

pairs (short su). 95% confidence intervals are shown with the error segments. 

 

Figure 21: Dice of coefficient (DC) and relative bias (relB) for S2 FireCCISFD11 at TSAs for long 

sampling units over the sample of Africa 2016. Units without product data or without accuracy 

measures available are represented by empty polygons (white polygons with grey borders). DC is 

not available when there is no BA in the reference data or in the product, and relB is not available 

when there is no BA in the reference data. 
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Figure 22: As in Figure 21 but for FireCCIS1A10. 

 

Figure 23: As in Figure 21 but for FireCCILT10. 

 

Figure 24: As in Figure 21 but for FireCCI50. 
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Figure 25: As in Figure 21 but for FireCCI51. 

 

Figure 26: BA (m2) in the reference data at TSAs over the sample of Africa 2016. 

 

It is remarkable how all global products have consistently low accuracy in some units 

while FireCCISFD11 has contrary higher accuracy, particularly due to a lower omission 

error ratio (Oe) across the whole Africa. This mainly occurs between the Sahara and the 

Equator. Figure 27 shows, for illustrative purposes, an example where a global product 

(FireCCI51, lower right panel) misses most of the BA in the reference data (pre-fire and 

post-fire times in the upper left and upper right panels), while FireCCISFD11 maps well 

most of the burns.  
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Figure 27: Areas burned at TSA path 170 and row 64 between 13 May and 20 October 2016, in the 

reference data (upper panels; identified by burning dates ranges, as in Figure 12), according to 

FireCCISFD11 (lower left) and according to FireCCI51 (lower right). Colours indicate the burn 

detection times. Grey represents unburned area and white no-data due to cloud coverage or SLC-

OFF problems of ETM+. 

5 Discussions and Conclusions 

A new sampling design was developed to estimate the accuracy for long-time series of 

BA products. Validation results presented here are novel and the first ones belonging to 

the CEOS-LPVS validation stage 3. The part of the method that defines the 

stratification and sampling allocation has been published (Padilla et al., 2017), and was 

used as basis to develop new global and regional validation datasets for Fire_cci Phase 

2, for global and SFD products. A total of 2252 multitemporal pairs of images were 

processed. 

The very similar or even smaller standard errors of accuracy estimates compared with 

those from Phase 1 illustrate the efficiency of the sampling design used here. It is 

important to take into account that in the current Phase 2 we managed to compute the 

accuracy for twelve years, while in Phase 1, global accuracy was available only for one 

year, 2008. 

At global scale, FireCCI41, FireCCI50, FireCCI51, FireCCILT10 and MCD64 were 

validated and compared using reference BA data from Landsat TM generated at 1,200 

sampling units distributed globally through twelve years (2003-2014). A stratified 

random sampling of spatio-temporal clusters on image pairs was used. Temporal 

stability of accuracy was assessed with available per-year accuracy estimates. Accuracy 

levels observed for FireCCI41 were similar to those observed in Phase 1 for v3.1 

(Padilla and Chuvieco 2014). 

--- time ---> unburned  no-data 



 

Fire_cci 
Product Validation Report 

Ref.: Fire_cci_D4.1.1_PVR_v2.1 

Issue 2.1 Date 22/12/2018 

Page 37 
 

FireCCI51 is currently the most accurate Fire_cci product; and less accurate than 

MCD64 particularly according the commission error ratio. This is at the short temporal 

interval, using consecutive image pairs of Landsat TM data for reference data. The 

accuracy results at long temporal reference data extents is different as reported below.  

FireCCILT10 is the least accurate product, probably due to the lower spatial resolution, 

different radiometric calibration, and lack of use of active fire information. 

The distribution of sites with high accuracy is similar to that of sites with high BA in the 

reference data, mainly over tropical and subtropical savannah, as in the results of Phase 

1 (Padilla and Chuvieco 2014; Padilla et al. 2014b; Padilla et al. 2015). An explanation 

of that tendency could be that where BA is high, spatio-temporal compactness of burn 

patches can be higher and then they can be more easily detected by classification 

algorithms.  

The lack of statistically significant temporal trends was expected and reflects that each 

algorithm uses the same input data throughout all the time period covered. The common 

temporal evolution of accuracy of products, with the exception of FireCCILT10, 

suggests that characteristics of the per-year reference data affect similarly the product 

outputs in a way that some years are better mapped than others. This high covariance of 

accuracy between products was expected and already observed, in the spatial domain 

rather than in the temporal domain, in previous studies (Padilla et al. 2015). It is 

noteworthy that, even if precision of yearly accuracies is quite low, if one product has 

more accuracy than another, it consistently more accurate in the other years. 

Comparisons between product accuracies at different years must be done with caution, 

as samples are different (sampling units at different locations and time intervals; fires 

might have different characteristics).  

The different quantity of missing images through years in the case of MERIS, many 

more missing in 2010 and 2011 than in the other years (Heil et al. 2017), appeared to 

have limited impact in the estimated accuracies. This suggests that its impact on the 

temporal errors observed with current reference data accuracy is much lower than the 

variance of accuracy estimates, and that accuracies on areas with available data is 

similar to areas with not available data, as assumed to infer accuracies (Section 3.3). 

In addition to the global validation dataset, the FireCCISFD11, FireCCIS1A10, 

FireCCILT10, FireCCI50, FireCCI51 and MCD64 products were validated using 

reference data at 50 long sampling units in Africa 2016. Each long sampling unit covers 

a time period of at least 100 days and is made by consecutive pairs of images (by the 

short sampling units). The differences of accuracy at long and short sampling units 

reflect how temporal reporting errors are less likely to be included as temporal extent of 

units increases. Such differences of accuracy were large in FireCCISFD11, 

FireCCIS1A10 and FireCCILT10. Those results where unexpected for FireCCILT10 

but were expected for the former two products which can have larger temporal reporting 

errors due to the lower temporal resolution of their input data, compared to the around 

daily resolution input data common in global burned area products. The larger 

differences of accuracy at long and short units of FireCCI51 compared with MCD64 

suggest that temporal reporting errors of the former are slightly higher than in the latter. 

The similar accuracies of those products at long units, the former slightly higher than 

the latter, at long sampling units reflects how two different approaches of using similar 

input data (MODIS reflectance and active fires) can lead to similar results at long 

temporal scales. Therefore, this implies that both products would be similarly suitable 

for a user that is not bothered about fire detection dates and that is mainly interested in 
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for example yearly BA maps. The higher accuracy of FireCCISFD11 at long sampling 

units than that of the global products, mainly in sites with low BA and due to less 

omission errors, reflects the benefits of a higher spatial resolution that allows for a 

better mapping of small and fragmented fires. The fragmentation of fires can occur in 

the spatial domain but also in the temporal domain, as illustrated by Figure 27. The 

succession of small fires over the days can appear as a smooth change on coarse spatial 

resolution pixels and not detected by the classification algorithm. Contrarily, those same 

small fires can appear as sudden changes at higher spatial resolution observations and 

be correctly detected by similar algorithms. The accuracy results on FireCCIS1A10 

need more investigation as they were obtained with a small reference sample and 

uncertainties in accuracy estimates are large as shown in Figure 20. 
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Annex 1 Acronyms and abbreviations 

ABAMS Automatic Burned Area Mapping Software 

BA Burned Area 

CalVal Calibration and Validation 

CBERS China-Brazil Earth Resources Satellite 

Ce Commission error ration 

CEOS Committee on Earth Observation Satellites 

DC Dice Coefficient 

dNBR Difference Normalized Burn Ratio 

ESA European Space Agency 

ESRI Environmental Systems Research Institute 

ECV Essential Climate Variables 

ETM+ Enhanced Thematic Mapper + 

FireCCI41 MERIS Fire_cci v4.1 

FireCCI50 MODIS Fire_cci v5.0 

FireCCI51 MODIS Fire_cci v5.1 

FireCCILT10 AVHRR-LTDR Fire_cci v1.0 

FireCCIS1A10 Sentinel-1 Fire_cci for Africa v1.0 

FireCCISFD11 Sentinel-2 Fire_cci v1.1 

GCOS Global Climate Observing System 

GFED3 Global Fire Emission Database v.3  

L3JRC Global Multi-year (2000-2007) Validated Burnt Area Product 

LPV Land Product Validation Subgroup of CEOS 

OLI Operational Land Imager 

MCD45 MODIS Collection 5 Burned Area product using the Roy et al. (2008) 

algorithm 

MCD64 MODIS Collection 5 Burned Area product using the Giglio et al. 

(2009) algorithm 

MERIS Medium Resolution Imaging Spectrometer 

MODIS Moderate Resolution Imaging Spectroradiometer 

NBR Normalized Burn Ratio 

NIR Near InfraRed 

Oe Omission error ration 

OLI Operational Land Imager 

PVR Product Validation Report 

relB Relative bias 

RGB Red-Green-Blue composite 

S-1 Sentinel-1 

S-2 Sentinel-2 

SLC Scan Line Corrector 

SFD Small Fire Dataset 

SWIR Short Wave InfraRed 

TM Thematic Mapper 

TSA Thiessen Scene Area 

UTM Universal Transverse Mercator 

WGS84 World Geodetic System 1984 

WRS(-2) Worldwide Reference System (version 2) 

XML eXtensible Markup Language 



 

Fire_cci 
Product Validation Report 

Ref.: Fire_cci_D4.1.1_PVR_v2.1 

Issue 2.1 Date 22/12/2018 

Page 43 
 

Annex 2 README file for preprocess.py 

SOFTWARE 

preprocess.py 

DESCRIPTION 

preprocess.py prepares surface reflectance Landsat images 

(http://landsat.usgs.gov/CDR_LSR.php, accessed February 2017) to be used by the 

scripts upload.py and classify.py. preprocess.py co-registers two Landsat images 

acquired at a same path-row, and generates a new raster file with six bands, with the 

SWIR, NIR and RED bands of the two Landsat images. 

PARAMETERS 

fpre: full path name of a Landsat uncompressed file (.tar.gz). 

fpost: full path name of a Landsat uncompressed file of an image acquired in a later date 

than the one specified in fpre. 

makesubcluster: a string, "True" or "False" to indicate whether the output is to be 

limited to a 30 km width and 20 km high spatial region located in the centre of the path-

row. 

outdir: Output directory. 

OUTPUT 

A subdirectory named with the Landsat file names containing the six band raster file 

(SWIR, NIR and RED of fpre and fpost on the first three and on the latter three bands 

respectively). Two folders named "manual" and "training" with (empty) shapefiles 

needed by upload.py and classify.py.  

REQUIREMENTS 

Python 2.7.9 (another version may work well as well) 

Python libraries loaded on the first lines of the .py file 

# EXAMPLE (in bash) 

fpre=/somedirectory/LE70010682003282-SC20150930094734.tar.gz 

fpost=/somedirectory/LT50010682003290-SC20150930094856.tar.gz 

makesubcluster=True 

outdir=/someotherdirectory 

python preprocess.py $fpre $fpost $makesubcluster $outdir 

  

http://landsat.usgs.gov/CDR_LSR.php
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Annex 3 README file for upload.py and classify.py 

SOFTWARE 

upload.py and classify.py allow for a supervised classified of burned area from a pair of 

reflectance images. 

DESCRIPTION 

Scripts upload.py and classify.py are designed to be run in QGIS with the ScriptRunner. 

upload.py uploads and displays the output data of preprocess.py. Landsat images are 

displayed by the rpre and rpos layers. 

The only input parameter that is needed is in upload.py, it is the full path name of the 

input directory (e.g. "/someotherdirectory/LE70010682003282_LT50010682003290").  

IMPORTANT: Use quotation marks needed. 

classify.py classifies the area of the images according to the training polygons defined 

in the layer named "training" using a random forest classifier and explanatory variables 

NBR, dNBR, SWIR and NIR. The classification is overwritten by the polygons defined 

(if any) in the layer named "manual". 

OUTPUT 

Shapefile with the format defined in the Fire Disturbance Project Phase 1 for burned 

area reference data (see Section 5.2.1.2 of the Phase 1 Product Validation Plan on 

http://www.esa-fire-cci.org/webfm_send/241). It is displayed in QGIS as a layer named 

"bamap". 

REQUIREMENTS 

Linux OS (there is some issue with the path names on Windows) 

QGIS version >= 2.0.1 

QGIS ScriptRunner pluguin 

Python libraries loaded on the first lines of the two .py files 

DETAILS 

If categories of the manual layer have to be modified 

- maybe* categories MUST HAVE NEGATIVE VALUES!! 

- only positive values for "Burned", "Unburned" and "No-data" 

- no any category with value 0 

TIP 

Classify and check for errors many times, once every few new training polygons are 

delineated. IMPORTANT: Save layers before running classify.py. 

If metadata is needed on output shapefiles, specify your name and your project in the 

first lines of classify.py. 
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Annex 4 Example of a XML metadata file 

 

 

Annex 5 Iteration process to allocate sample at year-biome strata on 

the basis of stratum totals of BA and the nyb ≥ 4 requirement 

nyb values are initialized with equation 1 and the iteration process consist on 

- At year-biome strata with nyb < 4  

o nyb = 4 (nyb is forced to be four) 

o BAyb = 0 (BAyb is forced to be zero) 

- Recalculation of ny = ny – n added in the previous step 

- Recalculation of nyb not involved in first step with equation 1 but with the 

updates of the previous steps 

- If any nyb < 4, repeat the iteration cycle keeping the updates 

The iteration process ends when all nyb ≥ 4. 
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Annex 6 Population estimates of error matrix entries (eij) and accuracy 

measures for the global sample 2003-2014 

 

Table 5: Estimated error matrices and reference burned area (m2) for each product. Standard 

errors of the estimates are shown in parentheses. 

 
e11 e12 e21 e22 BAref 

FireCCILT10  3.42e+13 

(3e+12)  

4.05e+14 

(7e+13)  

1.14e+14 

(1e+13)  

5.45e+16 

(6e+15)  

1.48e+14 

(1e+13)  

FireCCI41  1.88e+13 

(3e+12)  

3.4e+13 

(7e+12)  

8.04e+13 

(1e+13)  

3.34e+16 

(5e+15)  

9.92e+13 

(1e+13)  

FireCCI50  4.35e+13 

(4e+12)  

4.57e+13 

(4e+12)  

1.06e+14 

(1e+13)  

5.49e+16 

(6e+15)  

1.49e+14 

(1e+13)  

FireCCI51  4.9e+13 

(5e+12)  

5.84e+13 

(6e+12)  

1e+14 

(1e+13)  

5.49e+16 

(6e+15)  

1.49e+14 

(1e+13)  

MCD64  5.85e+13 

(5e+12)  

3.19e+13 

(3e+12)  

9.6e+13 

(1e+13)  

4.41e+16 

(6e+15)  

1.55e+14 

(2e+13)  

 

Table 6: Estimated accuracy of each product. Standard errors of the estimates are shown in 

parentheses. 

 
DC  relB  Ce  Oe  

FireCCILT10  0.116 

(0.013)  

1.966 

(0.506)  

0.922 

(0.011)  

0.769 

(0.025)  

FireCCI41  0.248 

(0.030)  

-0.468 

(0.094)  

0.643 

(0.045)  

0.810 

(0.030)  

FireCCI50  0.365 

(0.026)  

-0.402 

(0.058)  

0.512 

(0.020)  

0.708 

(0.030)  

FireCCI51  0.382 

(0.025)  

-0.280 

(0.066)  

0.544 

(0.020)  

0.671 

(0.032)  

MCD64  0.478 

(0.031)  

-0.415 

(0.056)  

0.353 

(0.016)  

0.622 

(0.038)  
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Annex 7 Accuracy observations at TSAs for the global sample 2003-

2014 

 

Figure 28: Ce and Oe at TSAs for FireCCILT10. TSAs with reference data but without accuracy 

measure available are represented by empty polygons (white polygons with grey borders). 
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Figure 29: As in Figure 28 but for FireCCI41. 
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Figure 30: As in Figure 28 but for FireCCI50. 
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Figure 31: As in Figure 28 but for FireCCI51. 
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Figure 32: As in Figure 28 but for MCD64. 
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Annex 8 Population estimates of error matrix entries (eij) and accuracy 

measures for the sample of Africa 2016, at long and short sampling 

units 

 

Table 7: Estimated error matrices and reference burned area (m2) for each product. Standard 

errors of the estimates are shown in parentheses. 

 
e11 e12 e21 e22 BAref 

FireCCISFD11 (long unit)  6.58e+12 

(2e+12)  

1.57e+12 

(5e+11)  

2.37e+12 

(8e+11)  

1.14e+14 

(6e+13)  

8.95e+12 

(2e+12)  

FireCCIS1A10 (long unit)  1.6e+12 

(2e+12)  

2.11e+12 

(2e+12)  

1.83e+12 

(1e+12)  

1.86e+13 

(1e+13)  

3.43e+12 

(3e+12)  

FireCCILT10 (long unit) 2.81e+12 

(9e+11)  

4e+12 

(1e+12)  

5.88e+12 

(2e+12)  

1.26e+14 

(6e+13)  

8.68e+12 

(2e+12)  

FireCCI50 (long unit)  2.98e+12 

(7e+11)  

9.44e+11 

(3e+11)  

5.71e+12 

(2e+12)  

1.29e+14 

(6e+13)  

8.7e+12 

(2e+12)  

FireCCI51 (long unit)  3.95e+12 

(9e+11)  

1.37e+12 

(4e+11)  

4.74e+12 

(1e+12)  

1.29e+14 

(6e+13)  

8.68e+12 

(2e+12)  

MCD64 (long unit)  3.62e+12 

(9e+11)  

9.29e+11 

(2e+11)  

5.34e+12 

(2e+12)  

1.05e+14 

(6e+13)  

8.96e+12 

(2e+12)  

FireCCISFD11 (short unit)  2.92e+12 

(9e+11)  

5.23e+12 

(1e+12)  

6.03e+12 

(1e+12)  

1.1e+14 

(6e+13)  

8.95e+12 

(2e+12)  

FireCCIS1A10 (short unit)  7.38e+11 

(8e+11)  

2.98e+12 

(3e+12)  

2.69e+12 

(2e+12)  

1.77e+13 

(1e+13)  

3.43e+12 

(3e+12)  

FireCCILT10 (short unit) 4.62e+11 

(2e+11)  

6.34e+12 

(2e+12)  

8.22e+12 

(2e+12)  

1.24e+14 

(6e+13)  

8.68e+12 

(2e+12)  

FireCCI50 (short unit)  2e+12 

(5e+11)  

1.92e+12 

(5e+11)  

6.69e+12 

(2e+12)  

1.28e+14 

(6e+13)  

8.7e+12 

(2e+12)  

FireCCI51 (short unit)  2.58e+12 

(6e+11)  

2.74e+12 

(7e+11)  

6.11e+12 

(2e+12)  

1.27e+14 

(6e+13)  

8.68e+12 

(2e+12)  

MCD64 (short unit)  3.02e+12 

(7e+11)  

1.53e+12 

(4e+11)  

5.94e+12 

(2e+12)  

1.04e+14 

(6e+13)  

8.96e+12 

(2e+12)  
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Table 8: Estimated accuracy of each product. Standard errors of the estimates are shown in 

parentheses. 

 
DC relB Ce Oe 

FireCCISFD11 (long unit)  0.770 

(0.030)  

-0.0896 

(0.073)  

0.193 

(0.036)  

0.265 

(0.047)  

FireCCIS1A10 (long unit)  0.448 

(0.121)  

0.0827 

(0.316)  

0.569 

(0.097)  

0.533 

(0.176)  

FireCCILT10 (long unit) 0.362 

(0.043)  

-0.216 

(0.171)  

0.588 

(0.058)  

0.677 

(0.057)  

FireCCI50 (long unit)  0.473 

(0.056)  

-0.548 

(0.078)  

0.240 

(0.029)  

0.657 

(0.058)  

FireCCI51 (long unit)  0.564 

(0.041)  

-0.388 

(0.068)  

0.257 

(0.028)  

0.545 

(0.050)  

MCD64 (long unit)  0.536 

(0.056)  

-0.492 

(0.070)  

0.204 

(0.022)  

0.596 

(0.060)  

FireCCISFD11 (short unit)  0.342 

(0.038)  

-0.0896 

(0.073)  

0.641 

(0.039)  

0.674 

(0.041)  

FireCCIS1A10 (short unit)  0.207 

(0.063)  

0.0827 

(0.316)  

0.801 

(0.050)  

0.785 

(0.088)  

FireCCILT10 (short unit) 0.0597 

(0.012)  

-0.216 

(0.171)  

0.932 

(0.014)  

0.947 

(0.013)  

FireCCI50 (short unit)  0.318 

(0.043)  

-0.548 

(0.078)  

0.489 

(0.044)  

0.769 

(0.041)  

FireCCI51 (short unit)  0.368 

(0.039)  

-0.388 

(0.068)  

0.515 

(0.034)  

0.703 

(0.041)  

MCD64 (short unit)  0.447 

(0.052)  

-0.492 

(0.070)  

0.336 

(0.027)  

0.663 

(0.054)  
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Annex 9 Accuracy observations at TSAs for the sample of Africa 2016 

 

Figure 33: Ce and Oe for FireCCISDF11 at TSAs for long sampling units over the sample of Africa 

2016. Units without product data or without accuracy measure available are represented by empty 

polygons (white polygons with grey borders). 

 

Figure 34: As in Figure 33 but for FireCCIS1A10. 

 

Figure 35: As in Figure 33 but for FireCCILT10. 
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Figure 36: As in Figure 33 but for FireCCI50. 

 

Figure 37: As in Figure 33 but for FireCCI51. 

 

Figure 38: As in Figure 33 but for MCD64. 
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