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1. Executive Summary 

Fire emission inventories for Africa still differ largely. This uncertainty is a major 

constraint for accurately characterizing the impact of fires in Africa on air quality and 

climate. Fire emission inventories rely on different satellite products of burned area (BA), 

hotspot (HS) or fire radiative power (FRP). Also, the assumed type of vegetation burned, 

fuel consumption and emission factors vary amongst inventories. The recently released 

20-m Sentinel-2 BA product FireCCISFD11 can resolve small fires that are largely 

omitted in the most widely used MODIS-based fire emission products.  

We performed simulations over Africa with the regional atmospheric chemistry transport 

model WRF-Chem using three fire emission inventories as boundary condition. Firstly, 

the WRF-Chem default fire emission inventory FINN, which relies on MODIS hotspots. 

Secondly, GFED4s, which is the emission inventory most widely used in atmospheric 

chemistry applications and which bases upon MODIS burned area. Thirdly, a newly 

created fire emission inventory using FireCCISFD11 burned area information. For the 

two latter, a WRF-Chem pre-processor was created to convert the emission inventories 

into WRF-Chem input fields.  

The preliminary evaluation of WRF-Chem model results against satellite and aircraft 

observations indicates an over-prediction of atmospheric concentrations when using 

GFED4s and FireCCISFD11 fire emissions. Further analysis will focus on elucidating the 

causes for the observed bias.  

2. Introduction 

This document explores the usage of Fire_cci burned area products for providing fire 

emission input information to regional atmospheric chemistry models. So far, Fire_cci 

burned area products have not yet been applied in this area of research. Atmospheric 

chemistry models are widely used to study the dispersion of emissions, to predict air 

quality, to apportion emission sources to local air pollution, and, when combined with 

independent measurements of atmospheric constituents, to constrain bottom-up emission 

inventories, including those from biomass burning (e.g. Nurzahziani et al., 2020).  

To predict fire-related atmospheric concentrations of chemical trace species and aerosols, 

we performed simulations with the regional Weather Research Forecasting model 

coupled with Chemistry (WRF-Chem) using different fire emission inventories as 

boundary condition. WRF-Chem simulates the atmospheric transport, mixing, and 

chemical transformation of the emissions simultaneously with the meteorology. The 

comparison of modelled atmospheric concentrations with measurements of atmospheric 

trace species is a means to constrain bottom-up fire emission inventories.  

This study focuses on the atmospheric implications of emissions from fires in Africa. 

Vegetation fires lead to widespread severe air pollution in Africa entailing an estimated 

43 000 premature deaths every year (Bauer et al., 2019). Transatlantic transport of African 

biomass burning emissions, which particularly occurs during the southern hemispheric 

peak fire season, not only affects air quality in South America, but also affects cloud 

formation across the Amazon (Holanda et al., 2020). Yet, the large uncertainties in the 

fire emission estimates for Africa render it difficult to quantitatively assess the full range 

of atmospheric impact (Williams et al., 2012; Zhang et al., 2014).  

Estimating fire emissions requires information on the area burned, the amount of fuel 

consumed per unit area burned, and the trace species emission factors. Knowledge on 

these parameters from field observations is scarce, especially for fires in remote areas 
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such as the African savanna, which is why various estimation approaches come into play. 

One approach is to generalise the few measurements available and derive best-guess 

parameter estimates. For fuel consumption, the other approach is to use a data-driven 

biogeochemical model, as done in the Global Fire Emission Database (GFED) 

framework. The advantage of the model is that it can capture the seasonal and inter-annual 

changes in fuel consumption along with e.g. rainfall variability (Scholes et al., 2011), 

while the best-guess parameters are static.  

In this study, we use WRF-Chem to evaluate fire emission estimated from the 

FireCCISF11 burned area product by adopting the fuel consumption and emission factor 

parameterisation from the latest GFED version 4s. We compare the results with model 

simulations that use FINN, the default fire emission inventory in WRF-Chem, and 

GFED4s fire emission.  

2.1. Vegetation fires in Africa 

Fire is an integral part of the African ecosystem affecting roughly 10% of Africa's land 

surface every year (Figure 1a)(van der Werf et al., 2017). The African fire regime is 

characterised by two distinct fire seasons: one during July to September where most fires 

burn in the southerly tropical regions and another between November and January where 

fires in the northern tropics predominate (Figure 1b). Most fires in Africa are savanna 

fires. Agricultural fires related to in-field residue burning or deforestation fires play a 

minor role. Savannas, characterised by sparsely tree covered grass- or woodlands, 

dominate vast regions of tropical and subtropical Africa. Savannas are fire-adapted; the 

fires typically only consume fuels in the ground layer surface fuels, leaving the trees 

unaffected. The surface fuels, in turn, rapidly regrow, ensuring sufficient fuel for the next 

burning (Osborne et al., 2018; Ratnam et al., 2011). Fire spread in African savannas is 

fuel-limited, and not dryness-limited (Kahiu and Hanan, 2018; Scholes et al., 2011). In 

addition, people in Africa use the landscape intensively for agriculture and grazing, 

thereby decreasing and fragmenting fuel loads, and, in consequence, lowering fire spread 

and fuel consumption.   

 

Figure 1: (a) FirecciSFD11 burned area per 0.25° grid cell in the calendar year 2016 displayed in the 

geographical bounds of the WRF-Chem model domain used in this study and (b) FireCCISFD11 monthly 

burned area in Africa north of the Equator (NHAF) and south of the Equator (SHAF), respectively. WRF-

Chem simulations in this study cover the period from mid-June to end of September 2016. Data extracted 

from the Fire_cci Small Fire Database (SFD) Burned Area grid product, version 1.1.  

Fire activity across Africa has substantially declined over the past two decades, triggered 

by climatic and socio-economic changes (Andela et al., 2017; Zubkova et al., 2019). Yet, 

study 
period 

a)                                                                             b) 
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Africa is still by far the largest continental contributor to global burned area and fire 

emissions (van der Werf et al., 2017).  

Fire emission inventories for Africa are, however, subject to considerable uncertainty. As 

field observations of fires are lacking, the inventories rely on satellite observations of 

burned area, active fire pixels ('hotspots') or fire radiative power (FRP). Most satellite 

observations, due to the coarse spatial resolution of the underlying sensors, cannot resolve 

small fires (< 100 ha), and also cannot detect fires through thick cloud or smoke cover, 

resulting in an underrepresentation of these fires in emission inventories (Randerson et 

al., 2012; van der Werf et al., 2017).  

Most fire emission inventories for Africa rely on burned area estimates, which build either 

upon direct burn scar observations, such as e.g. AMMABB (African Monsoon 

Multidisciplinary Analysis Biomass Burning, Liousse et al., 2010), GFED (Global Fire 

Emissions Database, van der Werf et al., 2010, 2017) or on hotspot observations that are 

translated into burned area, such as  e.g. the Fire INventory from NCAR (FINN,  

Wiedinmyer et al., 2011). Burned area is then combined with fuel consumption estimates 

to derive biomass combustion rates and subsequently fire emission fluxes. Estimating 

biomass combustion rates directly from FRP observations is an alternate approach used 

e.g. in the Global Fire Assimilation System (GFAS, Kaiser et al., 2012). In contrast to 

these 'bottom-up' emission inventory approaches, 'top-down' methods used e.g. in FEER 

(Fire Energetics and Emissions Research, Ichoku and Ellison, 2014), QFED (Quick Fire 

Emissions Dataset, Darmenov and da Silva, 2015) or FREM (Fire Radiative Energy 

Emissions, Nguyen and Wooster, 2020) bypass the largely uncertain fuel consumption 

estimation step by directly estimating emission fluxes from FRP observations. Top-down 

methods derive 'smoke emission coefficients' by quantitatively linking the FRP of an 

individual fire or fire cluster with satellite retrievals of aerosol optical depth (AOD) of 

the corresponding smoke plume. This linkage, however, has its own uncertainties, caused 

by e.g. unknowns in how to translate AOD to particulate matter emission fluxes (Li et al., 

2019, 2020; Lu et al., 2019; Nguyen and Wooster, 2020).  

In their intercomparison, Pan et al. (2020) show that, at a global scale, the two 'top-down' 

inventories QFED and FEER have a factor of 2-4 larger aerosol emissions than the 

bottom-up inventories FINN, GFAS, GFED3 and GFED4s. The discrepancies with 

bottom-up inventories are most pronounced in QFED; in regions such as boreal or 

temperate North America or Australia, QFED aerosol emissions are at least 10 times 

higher than in the bottom-up inventory with the lowest estimate.  

2.2. Burned area estimates for Africa 

Different satellite-based burned area estimates for Africa are commonly up to a factor of 

two apart (Table 1). Burned area estimates tend to be higher in burn scar observations 

from optical sensors with higher spatial resolution because smaller fires tend to be better 

captured. The MODIS MCD64A1 burned area products (Giglio et al., 2013, 2018; van 

der Werf et al., 2017), for example, rely on observations at 500 m resolution, the 

FireCCI51 burned area estimates (Lizundia-Loiola et al., 2020) are based on 250-m 

MODIS observations, and in the FireCCISFD11 product (Roteta et al., 2019), burned area 

is mapped from 20-m spatial resolution MSI-L1C images acquired by the Sentinel-2A 

satellite. All these burned area products rely on a hybrid mapping algorithm, in which 

surface reflectance imagery are supplemented with satellite detections of active fires to 

enhance the probability of capturing fire events. In contrast, the operational burned area 

product of the Copernicus Global Land Service (CGLS, Tansey, 2020) solely relies on 
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333 m resolution PROBA-V surface reflectance imagery and burned area in FINN 

(Wiedinmyer et al., 2011) is indirectly only derived from 1 km resolution MODIS active 

fire information. 

We compare burned area estimate for Africa for the July to September fire season of the 

year, i.e. the only year for which FireCCISFD11 burned area estimates are available. 

Compared to the precedent 15 years, the year 2016 was below average in terms of annual 

burned area in Africa and also in terms of July to September totals (Table 1).  

Table 1 shows that FireCCISFD11 monthly burned area estimates for Africa in the study 

period July to September 2016 are by a factor of 1.8 to 2.3 larger than GFED4, which is 

equivalent to the MCD64A1 Collection 5 standard burned area product, and by a factor 

of around 1.75 larger that the estimates in the improved version of this product (i.e. 

MCD64A1 Collection 6). Even when compared to GFED4s, in which the GFED4 burned 

area is increased by a burned area estimate from unresolved small fires, FireCCISFD11 

burned area is still around 55% higher. Total GFED4s burned area, in turn, is largely 

similar to the FireCCI51 and FINN estimates.  

Table 1: Monthly area burned in Africa (in Mha) estimated by different satellite-derived burned area 

products throughout July to September 2016.  

Mha FireCCISFD11 FINNv1.5 GFED4s GFED4a FireCCI51 MCD64C6b CGLSv1 

Jul-16 51.2 35.0 33.8 25.2 39.7 28.7 20.8 

Aug-16 58.7 38.5 36.8 25.9 32.9 33.6 21.0 

Sep-16 49.8 26.1 32.2 27.0 31.7 28.4 13.5 

total 159.7 99.5 102.9 78.1 104.2 90.6 55.2 

year 2016 490.1 269.1 300.9 228.5 311.2 272.8 177.7 

mean 2001/15      – 281.5c 328.0 237.1 320.8 284.7 – 

a  GFED4 is the unboosted GFED4s product and corresponds to a 0.25° gridded version of the MCD64A1 

Collection 5 burned area product. b MCD64A1 Collection 6. c 2002-2015 mean annual total. 

We here explore to what extent the larger burned area in FireCCISFD11 translates into 

enhanced fire emission fluxes and investigate, by means of WRF-Chem model 

simulations, what the atmospheric implications of the enhanced fire emissions are 

compared to the most widely used fire emission inventories GFED4s and FINN.  

3. WRF-Chem model and setup 

WRF-Chem is a Weather Research and Forecasting (WRF) model coupled with 

Chemistry (Grell et al., 2005). It is widely applied for regional air quality and atmospheric 

chemistry studies (Bouarar et al., 2019; Kuik et al., 2015), including those specifically 

focussing on biomass burning emissions (Crippa et al., 2018; Grell et al., 2011; 

Nurzahziani et al., 2020). WRF-Chem simultaneously simulates the turbulent mixing, 

transport, transformation, and deposition of trace gases and aerosols emitted into the 

atmosphere.  

WRF-Chem has an optional plume rise module implemented to distribute fire emissions 

vertically in the atmosphere. The module requires information on the instantaneous fire 

size and the fuel type distribution at the grid level. The fire size is used to estimate the 

plume radius. The fuel type determines the fire’s heat flux and the resultant convective 
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energy. Default lower and upper bound heat flux values (in kW per m2 area burned) for 

four fuel categories are prescribed: grasslands, savanna, tropical forest and boreal forest. 

From this information, the plume rise module calculates the lower and upper injection 

height of fire emissions. 

The WRF-Chem version v4.1.2 was set up over the entire continental Africa with a 

horizontal resolution of around 18 km and 36 vertical levels. The model domain spans 

from 21°W to 55°E longitude and 37.5°S to 39°N latitude. The simulations cover the 

period mid-June to September 2016 where wide areas of southern tropical Africa are 

subject to fire.  Table 2 specifies the model configuration used.  

Table 2: WRF-Chem model configuration used in this study.  

WRF-Chem model configuration  

model version 4.2.1 

gas-phase chemistry  MOZART-4 

aerosol chemistry GOCART bulk aerosol 

boundary conditions meteorology: NCEP reanalysis 

chemistry: ECMWF-CAMS 

biogenic emissions MEGAN online 

anthropogenic emissions CAMS-ANTHROv4.1 

biomass burning emissions FINNv1.5 (reference simulation) 

GFED4s 

FireCCISFD11 

model domain 21°W–55°E, 37.5°S–39°N 

3.1. Anthropogenic emissions 

To provide anthropogenic emission input to the WRF-Chem model, we use the CAMS-

ANTHRO v4.1 inventory, here abbreviated with CAMS41. CAMS41 provides global, 

0.1º degree gridded monthly emission estimates for twelve separate anthropogenic sectors 

for the period 2000 to 2019 (Elguindi et al., 2020; Granier et al., 2019). As WRF-Chem 

input, we selected emissions for the period June to September 2016 for the Africa model 

domain (Table 2).  

CAMS41 contains emission estimates for the aerosol components black carbon (BC) and 

organic carbon (OC), but no estimates of PM10 or PM2.5, which refers to particulate 

matter (PM) smaller than 10 or 2.5 μm aerodynamic diameter, respectively. Since all four 

aerosol components are a required input to WRF-Chem, we use the following scaling 

approach to estimate anthropogenic CAMS41 PM2.5 and PM10 emissions: CAMS41 

represents a temporal extension of the EDGAR v4.3.2 inventory (in short: EDGAR432) 

(Crippa et al., 2018). Annual CAMS41 emissions in 2010 are basically identical with the 

year 2010 EGDAR432 emissions, when translating the EDGAR432 sectors to the 

CAMS41 sectors as indicated in (Granier et al., 2019). In contrast to CAMS41, 

EDGAR432 provides emissions for all four aerosol components. We found that in 

EDGAR432, PM2.5 emission fluxes in the individual sectors are strongly linearly linked 

to the BC and/or OC emission flux patterns (see e.g. Figure 2). Also PM10 emission 

fluxes were largely linearly related to the PM2.5 emission fluxes. The relationship is 

constant over the individual months of the year. Dependent upon the sector, we created 

either maps with the PM2.5 to OC or PM2.5 to BC ratio, and applied these maps upon 

the CAMS41 OC or BC emission fields of the same sector. Subsequently, we applied the 

EGDAR432 PM10 to PM2.5 ratio map to create CAMS41 PM10 emission. For the AGL 

(agriculture livestock) sector, we used the PM2.5 to NH3 ratio for scaling. For the AGS 
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(agricultural soil) sector, scaling based on a ratio map was not possible and we therefore 

extrapolated the EGDAR432 PM2.5 and PM10 emissions of the year 2012 to the year 

2016 based on the temporal trend that was deduced from the 2010 to 2012 time series. 

  

Figure 2: (a) EDGAR432 PM2.5 to OC ratio map calculated for the road transport sector (TRO) for the 

year 2010. (b) Scatterplot showing the relation between monthly EDGAR432 road transport emissions of 

OC and PM2.5 for Africa for the year 2010.  

The anthropogenic CAMS41 agricultural waste burning (AWB) sector includes 

emissions from field burning of agricultural residues. These emissions are estimated from 

agricultural statistics and, by intent, exclude savanna fires (Janssens-Maenhout et al., 

2019).  Crippa et al. (2018) raises the problem of double-counting emission from 

agricultural fires when merging them with satellite-derived biomass burning emission 

inventories. The latter primarily cover large-scale vegetation fires, but to some extent, 

also smaller agricultural fires. We estimate the approximate area burned by cropland fires 

in CAMS41 from the CAMS41 AWB carbon monoxide (CO) emissions using the average 

FINN CO emission rate for cropland fires for Africa of 82.2 g CO per m2 burned. From 

this, we estimate a total burned area of 1.95 Mha across Africa during July to September 

(JAS) 2016, which is roughly 1-2% of the satellite-derived burned area estimates. Most 

of the CAMS41 agricultural fires take place in regions where satellite-derived burned area 

products detect no fires (Figure 3). For example, there are abundant agricultural fires in 

West Africa in CAMS41 which are not detected in FireCCISFD11, despite the latter 

resolving fires as small as 0.04 ha, pointing to inaccuracies in the agricultural calendar 

used to construct CAMS41 fire emissions. To roughly assess the relevance of a double-

counting of agricultural fires, we intersect CAMS41 AWB with FireCCISFD11 and FINN 

data for JAS 2016 at the monthly, 0.1° gridded level. We note that in around 75% of the 

grid cells with fire activity in FireCCISFD11 or FINN, there are concurrent agricultural 

fires in CAMS41. However, in these grid cells, their contribution to the total satellite-

derived burned area is only around 0.4%, and, in terms of total fire-related CO emissions, 

less than 0.001%. Reversely, only 35% and 21% of the grid cells with agricultural fires 

in CAMS41 have concurrent fire observations in FireCCISFD11 and FINN, and most CO 

cropland fire emissions (69% and 85%, respectively) have no overlap with satellite-

derived fire emissions. Overall, the double-counting of agricultural emissions when 

(a)       (b) 
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combining CAMS41 anthropogenic emission inventory with satellite-derived biomass 

burning inventories can be considered as negligible.   

Figure 3:  Burned area in September 2016 (in ha per 0.1° grid) (a) agricultural waste burning in CAMS41 

based on agricultural statistics and (b) and (c) vegetation fires detected from satellites (FireCCISFD11: 

Sentinel -2A burn scar detection; FINN: MODIS active fire).  

We applied the prep-chem-src1.0 pre-processor (Freitas et al., 2011) upon the monthly 

CAMS41 emission fields. The pre-processor creates hourly wrfchemi emission input 

fields, which, however, contain no diurnal cycle. Many anthropogenic emission sectors 

have a strong diurnal cycle, and representing this cycle is essential for simulating surface 

ozone chemistry (Bennet and Engardt, 2008). We therefore modified the wrfchemi 

emission input by applying the sector-wise diurnal cycles prescribed in Guevara et al. 

(2019). wrfchemi emission input to WRF-Chem are provided in UTC time. Since the 

WRF-Chem model domain covers several time zones, we explicitly introduced the 

diurnal cycles in correspondence to the local standard time.  

4. Fire emission inventories used in this study 

The focus of this study is to construct and compare different fire emission estimates for 

Africa and to assess the impact of fire emission inventory uncertainties on atmospheric 

concentrations modelled by WRF-Chem. We perform WRF-Chem sensitivity simulations 

with three fire emission inventories:  

 firstly, with FINNv1.5, which is a fire emission inventory specifically designed 

for WRF-Chem simulations and which is the default fire emission input used in 

WRF-Chem. For this reason, we consider WRF-Chem simulation with FINNv1.5 

fire emission input, created with the standard FINNv1.5 pre-processor, as the 

reference run.  

 secondly, with GFED4s, which is a general purpose fire emission inventory and 

which is the most widely used inventory in various regional to global climate and 

atmospheric chemistry applications. Because there is none publically available, 

we had to construct a pre-processor that converts GFED4s emissions into the 

required WRF-Chem fire emission input format.  

 thirdly, with a new fire emission inventory that was constructed from scratch 

building upon FireCCISFD11 burned area information. Details on the 

methodology emission inventory are given in Section 4.3.  

(a)        (b)            (c) 
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4.1. FINN 

FINN is a global fire emission inventory that has been specifically designed to meet the 

requirements for a usage in regional atmospheric chemistry and air pollution modelling 

(Wiedinmyer et al., 2011). These applications optimally require hourly fire information 

at high spatial resolution (~10 km and higher), and, when used in air quality forecasting, 

also a near-real-time availability (Heil, 2019).   

The latest FINN version, FINNv1.5, relies on MODIS MCD14DL C5 active fire counts. 

Burned area is indirectly estimated:  an active fire detected in savanna and grassland or 

croplands is translated into an area burned of 0.75 km2, all other active fires into 1 km2 

burned. The burned area estimate is lowered proportional to the bare area fraction. 

MODIS C5 land cover information provides spatial information on fuel types. For this 

purpose, the individual land cover types are aggregated into six generic fuel type classes 

that are consistent with those used in the fuel load and emission factors databases of Akagi 

et al. (2011). FINNv1.5 is provided as ASCII files that list the time and coordinates of 

each detected fire, the fuel type and the estimated burned area and emission fluxes.  

FINN is the most widely and evaluated fire emission inventory used in regional WRF-

Chem atmospheric modelling applications. The main reason is that, up until very recently, 

FINN was the only fire emission inventory for which a well-tested pre-processor exists 

that creates fire emission input as required by WRF-Chem. Pre-processing emission input 

data for WRF-Chem from scratch is non-trivial and computationally demanding which is 

why WRF-Chem users limit their choice to FINN as fire emission input.   

Yet, burned area estimated by the FINN method is highly uncertain. The underlying 

MODIS active fire product does not detect fires below ~100 ha.  Cloud cover, and – in 

the case of understory fires – the tree canopy, and the satellite overpass timing 

additionally prevent fire detection 

In this study, we downloaded FINNv1.5 emissions with MOZART4 chemical speciation 

from http://bai.acom.ucar.edu/Data/fire/ (accessed on October 2020). We used the FINN 

fire_emis WRF-Chem pre-processing utility downloadable from the same site to create 

hourly WRF gridded fire emission files from the original FINN data. For each trace 

species, the utility first calculates daily total emissions for each WRF grid cell, and then 

applies a default diurnal cycle to distribute them to hourly emission fluxes. The FINN 

fire_emis utility also creates daily gridded fire size information, which is required for 

calculating the plume rise and hence the effective height at which the emissions are 

released into the atmosphere. In the gridding, the burned areas of all active fires that fall 

in the given grid and daily window are summed up. A maximum fire size of 2 km2 (200 

ha) in the gridded output is prescribed as default. The final fire size is then partitioned 

into fire sizes by fuel types. For this, a static map is used that covers four aggregated fuel 

type classes required for the plume rise calculation, namely grassland, savanna, tropical 

forest and extratropical forest.  

4.2. GFED4s 

The Global Fire Emission Database (GFED) is a burned area and fire emission inventory 

that is most widely used in various climate and atmospheric chemistry applications. 

GFED combines burned area observations from the MODIS satellite sensor with a 

biogeochemical model to calculate fuel loads and combustion completeness at a monthly 

time step. The latest GFED version, GFED4s, builds upon the 500 m MCD64A1 C5 

MODIS burned area product. To address the limitations of the MODIS sensor in resolving 

http://bai.acom.ucar.edu/Data/fire/
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burned area from small fires, an indirect small fire estimate based on scaled MODIS 

active fire observations is added (Randerson et al., 2012; van der Werf et al., 2017). This 

'small fire boost' increases the area burned in Africa by around 30% when compared to 

MCD64A1 C5 burned area.  

In this study, we downloaded GFED4s emissions from 

https://www.geo.vu.nl/~gwerf/GFED/GFED4/ (accessed on October 2020). GFED4s is 

delivered as annual hdf5 files that contain monthly, 0.25° gridded information on burned 

area and fire carbon and dry matter emissions. Additional data layers provide information 

on the fractional contribution of different fire types and on how to distribute monthly 

emissions over the days as well as the diurnal cycle. From these layers, when combined 

with recommended fire type-specific emission factors, we computed hourly, 0.25° degree 

gridded GFED4s fire emissions of various trace species for use as input in WRF-Chem. 

The recommended emission factors mostly base on (Akagi et al., 2011) and are provided 

at https://www.geo.vu.nl/~gwerf/GFED/GFED4/ancill/ (accessed on October 2020). 

Species not contained in this compilation, but required by WRF-Chem are complemented 

as detailed in Table 3.  

WRF-Chem requires curvilinearly gridded fire emission input data and additional data 

layers on fire size distribution and fuel type. For the remapping, we used a mass-

conserving remapping scheme (Jones, 1999) discussed in more detail in Section 4.4.   

For the required fractional fuel type layers, we use the layers computed by the FINN pre-

processor (see Section 4.1). To compute fire size distribution, we sum up the total daily 

burned area falling within each curvilinear grid, and, similar to the FINN approach, we 

constrain a maximum fire size of 2 km2. 

4.3. FireCCISFD11-derived fire emissions 

FireCCISFD11 is a high resolution burned area product for sub-Saharan Africa for the 

year 2016. It has been produced from Sentinel-2 data at a spatial resolution of 20 m 

(Roteta et al., 2019). The acronym FireCCISFD11 stands for Fire_cci Small Fire Dataset 

version 1.1, since the product was specifically developed to include burned areas from 

small fires ( < 100 ha), which are omitted in currently existing coarse spatial-resolution 

burned area products (see Section 4.2).  

The standard bottom-up approach to estimate fire emissions from burned area implies, 

firstly, multiplying burned area with estimates of the amount of fuel consumed per unit 

area burned fuel consumption and, secondly, multiplying the resulting product by 

emission factors (Seiler and Crutzen, 1980). Dependent upon the biome, the steps involve 

varying levels of stratification by vegetation types.  

We use this approach to construct, in a first step, monthly 0.25° gridded fire emission 

estimates based upon the 0.25° gridded monthly FireCCISFD11 burned area. In a second 

step, we apply a pre-processor that converts the emission into hourly curvilinear fire 

emission data so that they can be ingested by WRF-Chem. Figure 4 provides a general 

overview of how FireCCISFD11 fire emissions were constructed. The construction 

involves the following key steps: 

First, at a 0.25° monthly resolution, Fire_cci burned area information (here: 

FireCCISFD11 product) is multiplied with GFED4s estimates of fuel consumption (see 

Section 4.3.1). The operation yields the total amount of dry biomass consumed by fires 

per month and grid cell.  

https://www.geo.vu.nl/~gwerf/GFED/GFED4/
https://www.geo.vu.nl/~gwerf/GFED/GFED4/ancill/
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Figure 4: Flowchart illustrating how fire emissions are constructed from the gridded FireCCISFD11 

burned area product and how they are pre-processed to comply with the specifications of WRF-Chem fire 

emission input data. 

 

Second, the estimated total dry biomass consumed is split by fuel type using the 0.25° 

gridded monthly fuel type partitioning layer provided with the GFED4s product (see 

Section 4.3.2). The estimated total dry biomass consumed in each fuel type is then 

multiplied by fuel-type specific emission factors. The emission factors quantify the 

emitted mass of a given trace species relative to the dry biomass consumed by a fire (see 

Section 4.3.3). This operation, after summing over all fuel types, yields the estimated 

mass of a given trace species that is emitted by fires per 0.25° grid and month. For the 

WRF-Chem setup used in this study, emissions of 41 individual trace species were 

calculated.  

Third, the monthly emission estimates are downscaled into daily (see Section 4.4.1) and 

then hourly emission estimates (see Section 4.4.2). For downscaling to daily emissions, 

we primarily used temporal information from the VNP14IMG and MCD14ML active fire 

products. For downscaling to hourly emissions, we used the diurnal cycle partitioning 

layer provided with the GFED4s product.  

Fourth, the hourly, 0.25° gridded fire emissions are remapped to the curvilinear grid of 

the WRF-Chem model. For this, the mass conserving remapping approach is applied (see 

Section 4.4.3).  

Fifth, a fire size data layer is added since it is required for plume rise calculation in WRF-

Chem. To create this layer, we estimated daily area burned in each WRF-Chem model 

grid (see Section 4.4.4). To avoid excessive plume rise, we constrain maximum fire size 

to 2 km2 per day.  

In the following sections, we describe the details of the parameterisations used.  

4.3.1. Fuel consumption 

Fuel consumption (FC) is the amount of biomass or fuel consumed per unit area burned. 

Fuel consumption largely depends on the vegetation type and the actual fuel moisture 

conditions during the burn (van Leeuwen et al., 2014). Fuel consumption can be estimated 

via three approaches:  

 348 
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i. One is to upscale point field measurements to the whole study domain. For this, 

the measurement data are grouped by main land cover type, and the arithmetic 

mean for the individual types is then combined with spatial information on the 

land cover type distribution. The observational fundament for using field 

measurements to estimate fire emissions for Africa is, however, not robust. For 

example, the van Leeuwen et al. (2014) database of fuel consumption 

measurements contains no data for tropical forest or cropland fires in Africa, and 

there are only measurements from 3 and 5 sites, respectively, for woody and 

grassland savanna fires. Any extrapolation from these relatively few field 

measurements that, in addition, are not randomly distributed in time and space, to 

continent-wide average values involves a high risk of bias.  

ii. The other approach is to model fuel consumption with a fire-enabled dynamic 

vegetation model. The most well-known and state-of-the art example for this is 

the GFED-CASA model, from which the GFED4s fuel consumption and fire 

emission inventory is created (van der Werf et al., 2017).  

iii. The third approach is the estimation of fuel consumption from satellite 

measurements of the radiant energy flux or "fire radiative power" (FRP) in 

combination with 

a) fuel-type specific conversion factors, calculated from scaling FRP to GFED 

fuel consumption estimates (Kaiser et al., 2012) , or  

b) satellite measurements of aerosol optical depth (AOD) to quantify the relation 

between the emitted aerosol mass and FRP. With fuel-type specific aerosol 

emission factors, fuel consumption can then be calculated back. 

To calculate fire emissions from FireCCISFD11 burned area, we take advantage of the 

fuel consumption rate estimates that are provided with the GFED4s database. GFED4s 

fuel consumption is calculated by dividing GFED4s dry matter combustion rates with 

GFED4s burned area rates. From this, we create 0.25° gridded fuel consumption maps 

for the months July to September (JAS) 2016 which we then multiply with 

FireCCISFD11 burned area information of the same months. To avoid multiplication of 

FireCCISFD11 burned area by zero in cases where GFED4s has no fire activity and hence 

no fuel consumption estimates, we first complement undefined values in the monthly 

GFED4s fuel consumption layer by the GFED4s JAS fuel consumption 2003–2016 

climatology, then the remaining undefined values by the GFED4s 2003–2016 average 

fuel consumption, and as a last step, we perform spatial extrapolation. This approach aims 

at incorporating, as much as possible, the GFED4s temporal variability of fuel 

consumption, while maintaining a spatial pattern that is consistent with GFED4s fuel load 

distribution. Figure 5a illustrates the so-derived GFED4s fuel consumption layer for July 

2016. Temporal variability in fuel consumption is particularly relevant in deforestation 

fires. Figure 5b and c display mean JAS 2016 fuel consumption together with the relative 

maximum deviation in the individual months from this mean. In 75% of all cases, the 

maximum deviation relative to the JAS average stays within 13%. Deviations are larger 

in deforestation fires, but, with few exceptions, stay within 50%.   
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Figure 5: (a) GFED4s-based fuel consumption layer for the study domain for July 2016 (kg fuel per m2 

burned). Only shown are grid cells with non-zero fire activity in the FireCCISFD11 July data. (b) JAS 

2016 mean GFED4s fuel consumption across southern hemispheric Africa (in kg fuel per m2 burned). 

Only shown are grid cells where GFED4s exhibits fire activity in all three months. (c) Absolute deviation 

of GFED4s monthly fuel consumption from the July to September mean (in %). The colour levels 

correspond to the 10, 25, 50, 75 and 90 field percentiles.  

4.3.2. Fuel type stratification 

Land cover information of the area burned is essential for calculating fire emissions since 

the land cover type indicates what kinds of fuels are being combusted. Fire emission 

factors depend on fuel type (Akagi et al., 2011; Andreae, 2019). The Akagi et al. (2011) 

emission factor compilation provides fuel-type average emission factors for savanna, 

forest (differentiated into tropical, temperate and boreal), peat, and cropland burning. The 

emission factors for tropical forest are representative for fires in areas with high canopy 

coverage, while the emission factors for savanna apply for fires that occur in grasslands 

with scattered trees or scrubs (Akagi et al., 2011). An equivalent fuel-type classification 

is also inherent to the Andreae (2019) compilation of emission factors. Furthermore, the 

database of fuel consumption field measurements by van Leeuwen et al. (2014) uses a 

similar fuel type classification.  

The fuel types used in the fuel partitioning layer that is provided with the GFED4s 

database are consistent with the above-mentioned classification. The layer is computed 

from the MODIS MCD12C1 land cover type product (Friedl et al., 2010) and quantifies 

the fractional contribution of individual fuel types to the total fuel consumption within 

each 0.25° grid cell and month. We use the GFED4s fuel partitioning layers, which we 

spatially extrapolated in the same way as the GFED4s fuel consumption layer (see section 

4.3.1), to apply fuel-type specific emission factors on the FireCCISFD11-derived fuel 

consumption estimates.  

Using the GFED4s fuel type partitioning, roughly 92% of the total biomass burned across 

JAS 2016 in the continental Africa study domain are treated as savanna fires, around 7% 

as agricultural fires, and only 0.7% as deforestation fires (Figure 6).  

 

(a)            (b)     (c) 
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Figure 6: (a-c) GFED4s-based fuel type partitioning layer for the southern hemispheric regions of the 

study domain (JAS 2016 mean) expressing the fractional contribution of fuel types to total fuel 

consumption. Shown are grid cells where the FireCCISFD11 product records fire activity in JAS 2016. 

SAVA, AGRI and DEFO stands for savanna, agriculture, deforestation fires, respectively.     

4.3.3. Emission factors 

Emission factors quantify the emissions of trace species or aerosols per amount dry 

biomass consumed by the fire. There are two landmark compilations of biomass burning 

emission factors. One is the (Andreae and Merlet, 2001) compilation with its recent 

update (Andreae, 2019), the other is the (Akagi et al., 2011) compilation. Both provide 

best estimate emission factors for a large variety of air pollutants, classified by main fuel 

types. While both are comprehensive literature reviews of published emission factor 

measurements, they differ in terms of to what degree results from field versus laboratory 

measurements are included and in terms of fuel type classification. For most emitted 

species, FINN and GFED4s use values from Akagi et al. (2011). Emission factors missing 

in Akagi et al. (2011) are complemented with Andreae and Merlet (2001) and other 

sources. To calculate emissions from FireCCISFD11 burned area information, we use the 

same emission factor parameterisation as those recommended for GFED4s (Table 3). 

Emission factors for species required by WRF-Chem, but not provided by GFED4s, are 

complemented from various sources.  

While for most species, FINN and GFED4s use largely similar emission factors, there are 

drastic differences for some individual species, such as in the case of NOx. In addition, 

FINN uses separate emission factors for grassland savanna and woody savanna, but it 

remains unclear from where these values are taken. In contrast, GFED4s only uses a 

single emission factor for savanna fires. The NOx emission factors used in FINN for the 

different fuel types, calculated as the sum of the NO and NO2 emission factors, differ 

substantially from the Akagi et al. (2011) compilation that is used in GFED4s and that 

we also apply in FireCCISFD11. FINN NOx emissions per unit mass fuel burned in 

grassland and woodland savannas are 28% to 41% lower than in GFED4s. In contrast, in 

tropical forest and croplands FINN NOx emissions are distinctively higher (28% – 36%) 

(Table 4). Additionally, FINN and GFED4s resp. FireCCISFD11 use different fuel type 

maps and classifications, resulting in substantial differences in overall fire emission 

estimates that are solely attributable to the emission factor parameterisation.  

The choice of the emission factors and fuel type maps also largely control the differences 

between GFED4s, FireCCISFD11, FINN and other fire emission inventories such as 

GFAS, QFED and FEER (Table 4). For example, the NOx emission factor used for 

savanna in GFAS is 50% lower than the factor used in GFED4s and FireCCISFD11. And, 

most strikingly, the BC emission factor used in QFED for tropical forest is by a factor of 

6.7 to 7.6 larger than in any other fire inventory, and the factor used for savanna is by a 

SAVA    AGRI             DEFO (a)                     (b)                    (c) 
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factor of 1.6 to 2.3 larger. Hence, the differences between different fire emission 

inventories that are due to the choice of the emission factors can be in the same magnitude, 

or even bigger, than the differences that are caused by the choice of the underlying burned 

area product.  

Table 3: Emission factors used to calculate FireCCISFD11 fire emissions (in g per kg dry matter burned). 

'tracer' identifies to which WRF-Chem tracers the species is mapped.  

species tracer SAVA BORF TEMF DEFO AGRI  
CO co 63.00 127.00 88.00 93.00 102.00  
OC oc 2.62 9.60 9.60 4.71 2.30  
BC bc 0.37 0.50 0.50 0.52 0.75  
SO2 so2 0.48 1.10 1.10 0.40 0.40  
C2H6 c2h6 0.66 1.79 0.63 0.71 0.91  
CH3OH ch3oh 1.18 2.82 1.74 2.43 3.29  
C2H5OH c2h5oh 0.02 0.06 0.10 0.04 0.04  
C3H8 c3h8 0.10 0.44 0.22 0.13 0.28  
C2H2 c2h2 0.24 0.18 0.26 0.44 0.27  
C2H4 c2h4 0.82 1.42 1.17 1.06 1.46  
C3H6 c3h6 0.79 1.13 0.61 0.64 0.68  
C5H8 isop 0.04 0.15 0.10 0.13 0.38  
C10H16 apin 0.08 2.00 2.00 0.15 0.01  
C7H8  toluene 0.08 0.48 0.19 0.26 0.19  
C6H6  benzene 0.20 1.11 0.27 0.39 0.15  
C8H10 xylenes 0.01 0.18 0.13 0.11 0.11  
Higher_Alkenes bigene 0.13 0.38 0.37 0.27 0.33  
Higher_Alkanes bigalk 0.05 0.35 0.22 0.07 0.34  
CH2O ch2o 0.73 1.86 2.09 1.73 2.08  
C2H4O  ch3cho 0.57 0.77 0.77 1.55 1.24  
C3H6O  ch3coch3 0.16 0.75 0.54 0.63 0.45  
NH3  nh3 0.52 2.72 0.84 1.33 2.17  
HCN  hcn 0.41 1.52 0.72 0.42 0.29  
HCOOH  hcooh 0.21 0.57 0.28 0.79 1.00  
CH3COOH ch3cooh 3.55 4.41 2.13 3.05 5.59  
MEK  mek 0.18 0.22 0.13 0.50 0.90  
CH3COCHO  mgly 0.73 0.73 0.73 0.73 0.73  
HOCH2CHO glyald 0.25 0.86 0.86 0.74 0.71  
C7H8OH cres 0.46 0.67 0.67 0.46 0.41 a 
C3H6O2  acetol 0.56 2.11 1.13 1.81 3.12 b 
C4H6O macr 0.10 0.11 0.14 0.15 0.28 b 
C4H6O mvk 0.23 0.10 0.17 0.39 0.48 b 
CH3CN ch3cn 0.17 0.31 0.22 0.49 0.25 b 
C10H16 c10h16 0.00 0.00 0.00 0.00 0.00 c 
NO (as NO) no 2.93 0.68 1.44 1.91 2.33 d 
NO2(as NO2) no2 1.49 0.34 0.74 0.98 1.19 d 
C5H6O2 open 1.58 0.33 0.33 0.29 1.58 e 
PMsulfate sulf 0.20 0.36 0.28 0.23 0.17 f 
PM2.5c pm25 4.12 5.12 2.76 3.81 3.16 f 
PM10c pm10 1.66 3.54 2.98 2.10 1.45 f 
Note: If not noted otherwise, emission factors are similar to those recommended for GFED4s 

(https://www.geo.vu.nl/~gwerf/GFED/GFED4/ancill/GFED4_Emission_Factors.xlsx, last accessed 

August 3, 2020). 
a data source: (Koss et al., 2018). BORF&TEMF=average EF over all conifer fuels; AGRI=rice straw EF; 

PEAT=peat EF;SAVA&DEFO=average EF over all fuels.  b data source: (Andreae, 2019).  c (Emmons et 

al., 2020) defines this group as 'lumped monoterpenes, as α-pinene'. According to (Akagi et al., 2011), α-

pinene fire emissions are only of relevance for boreal and extratropical forest fires; set to zero for a WRF 

simulation over Africa.  d NOx split into NO and NO2 based on G. Brasseur (pers. communication), see 

section 4.3.3 e data source: (Akagi et al., 2011).   f PM2.5c is the PM2.5 fraction excluding OC, BC, and 

sulphate data. PM10c  is the PM10 fraction excluding PM2.5 and excluding sulphate in the PM10-2.5 fraction. 

 

https://www.geo.vu.nl/~gwerf/GFED/GFED4/ancill/GFED4_Emission_Factors.xlsx
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Table 4. Emission factors for carbon monoxide (CO), oxides of nitrogen (NOx) and black carbon (BC) 

(in g per kg biomass burned) used in different fire emission inventories. N.B. FireCCISFD11 uses the 

GFED4s emission factors. 

 CO  NOx
 h BC 

Inventory SAVA TROF AGRI  SAVA TROF AGRI  SAVA TROF AGRI 

GFED4sa 63 93 102  3.9 2.6 3.1 
 

0.4 0.52 0.75 

FINNv1.5b 59/68 g 92 111  2.8/2.3 g 3.3 4.2 
 

0.37/0.50g 0.52 0.69 

GFASv1.2c 61 101 92  2.1 2.3 2.3 
 

0.46 0.57 0.42 

QFEDd 65 104 –  3.9 1.6 – 
 

0.86 3.80 – 

FEERe  67 100 105  2.6 2.6 2.7 
 

0.48 0.56 0.46 

Andreae19f 69 104 76  2.5 2.8 2.40 
 

0.53 0.51 0.42 

Note. SAVA = savanna, TROF = tropical forest, AGRI = agricultural residues. 
a GFED4s  emission factors are primarily based on (Akagi et al., 2011). 
b FINN emission factors generally base on a prototype version of  (Akagi et al., 2011), complemented by various 

other sources. NOx emission factor is calculated as the sum of the NO and NO2 emission factors used in FINN.  
c GFAS emission factors base on (Andreae and Merlet, 2001) with updates from the literature through 2009. 
e QFED emission factors generally base on (Andreae and Merlet, 2001). The source of the BC emission factors is 

unclear. Values given here are calculated back from the species-to-CO2 emission ratios (QFED v2.5r1 year 2016 data 

for Africa) in combination with the (Andreae and Merlet, 2001) CO2 emission factors.  
e FEER emission factors are on (Andreae and Merlet, 2001), with updates provided by Andreae in 2014. Values given 

here are calculated back from the species-to-C emission ratios (FEERv1.0-G1.2 year 2016 data for Africa), assuming 

a dry matter carbon content of 50%. 
f emission factors recommended by (Andreae, 2019). 
g (GS/WS) FINN uses separate emission factors for grassland savanna (GS) and woody savanna (WS). 
h NOx emission factor as NO, i.e. EF(NOx)=EF(NO)+EF(NO2 as NO). 

 

NOx emission parameterisation 

The WRF chemistry scheme represents NOx emissions as separate NO and NO2 chemical 

tracers. Emission factors for oxides of nitrogen are generally provided as NOx though, 

and information is scarce on how to best split them into separate NO and NO2 emissions. 

NOx are one of the main precursors of lower atmospheric ozone, and the ozone chemistry 

is sensitive to the NO and NO2 emission split.  

Primary NOx emissions from combustion sources are typically considered to consist of 

90-95 vol-% NO and the remainder of NO2 (Barten et al., 2020; Valencia et al., 2018). 

For biomass burning, other NO/NOx ratios are sometimes used, e.g. 85% (Castellanos et 

al., 2014) and 75% (Trentmann et al., 2003), in line with an average 80% NO/NOx ratio 

measured in combustion chamber experiments with various fuel types (Yokelson et al., 

1996). In aged biomass burning plumes with quasi-photostationary state, a NO/NOx ratio 

of 25% is common (Mebust et al., 2011).  

In the construction of the GFED4s and FireCCISFD11 WRF-Chem fire emission input, 

we segregate NOx fire emissions into NO and NO2 using a molar split of 75% NO: 25% 

NO2 (Guy Brasseur, personal communication, 18 June 2020). This NO/NOx split, 

however, differs strongly from the split used in FINNv1.5 which parameterises, e.g., NOx 

fire emissions in grassland savanna (GSAV), woody savanna (WSAV) and tropical forest 
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(TROF) with a NO/NOx ratio of 29%, 62% and 39%, respectively (see also (Wiedinmyer 

et al., 2011) Table 1).  

Aerosol emission parameterisation 

To estimate PM10 fire emissions in the GFED4s and FireCCISFD11 inventories, we 

apply a factor of 1.25 on the PM2.5 emission estimates. We are not using PM10 emission 

factors from the Akagi et al. (2011) compilation because of inconsistencies in the particle 

emission factors, such as that e.g. for tropical forest, the average emission factor for total 

particulate matter is 30% lower than the PM10 emission factor.  Instead, we assume that 

PM2.5 contributes 80% to the PM10 mass emitted, which is in line with the average 

PM2.5/PM10 measured across various fire types (Li et al., 2007; Stephens et al., 2007; 

Yokelson et al., 2008). We do not attribute BC or OC emissions to the coarse fraction of 

PM10 (PM10-2.5) since their contribution is generally marginal (< ~1%) in fresh biomass 

burning aerosols; Aurela et al. (2016) show that this fraction contains less than 1%.  This 

parameterisation also largely agrees with the PM2.5/PM10 ratio used in FINNv1.5, 

except for tropical deforestation fires where FINN assumes a ratio of 0.5. The sulphate 

mass content in biomass burning aerosols is typically between 0.5% and 3% (Bi et al., 

2019; Ferek et al., 1998); we here take a best guess estimate of 1.5% to parameterise 

sulphate emissions.  

In the WRF-Chem simulation with FINN, we use the default WRF-Chem fire emission 

mapping scheme for aerosols. In this scheme, OC, BC, and sulphate emission input to the 

WRF model is scaled from PM2.5 and PM10 emissions. For example, OC fire emission 

input to the WRF model is calculated as 'OC -> 0.24*PM25 + 0.3*PM10', which implies 

that the OC contribution in the aerosol emissions is constant across vegetation types 

burned. In the WRF-Chem simulations with GFED4s and FireCCISFD11 fire emissions, 

we apply a mapping that uses explicit OC, BC, and sulphate fire emissions.  

4.4. Pre-processing fire emission inputs for WRF-Chem  

There are several publications specifically dedicated to the pre-processing of emission 

inventories for use in WRF-Chem. Fire emission pre-processors have been developed and 

tested for FINN (Wiedinmyer et al., 2011) and GFAS (Guevara et al., 2019; Pino-Cortés 

et al., 2020). Pre-processors for anthropogenic emission inventories have been developed 

by Freitas et al. (2011), Guevara et al. (2019), Schuch et al. (2019) and Vara-Vela et al. 

(2016). One challenge in creating these pre-processors is to achieve mass-conserving 

spatial interpolation of emission input data to the WRF model grid and to map emissions 

of individual trace species to WRF-Chem tracers. No pre-processor for fire emissions 

from gridded burned area products has been published in literature or open-source code 

platforms. For this reason, a pre-processor was developed from scratch that provides 

WRF-Chem fire emission input data from GFED4s and FireCCISFD11. 

4.4.1. Diurnal cycle 

By default, FINN first computes daily aggregated fire emissions and then redistributes 

them to hourly emission fluxes using a single diurnal profile. In this profile, fire emission 

flux is highest at noon – 57% of the daily emissions are released between 12am and 3pm 

– while emission intensity is minimal between 7pm to 8am.  

The monthly GFED4s product contains a data layer with scalars enabling users to 

calculate 3-hourly emission fluxes. Constructed and extrapolated from GOES 

WF_ABBA observations by Mu et al. (2011), the scalars describe climatological mean 
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diurnal cycles of fire activity. For continental Africa, GFED4s and FINN assume a largely 

similar diurnal cycle (Figure 7). The GFED4s diurnal scalars are defined for entire 

continental Africa and are being used to construct the diurnal cycle of the FireCCISFD11 

fire emissions.  

 

Figure 7: Parameterization of the diurnal emission profile in FINN and GFED4s. The GFED4s profile is 

extracted from the 3-hourly GFED4s diurnal_cycle data layer for July 2016. Only data points with active 

fires in the WRF-Africa model domain are included. The boxplots reflect the diurnal cycle variability 

within this domain, the mean GFED4s diurnal cycle profile is indicated by a black dot. The FINN diurnal 

profile is extracted from the fire_emis preprocessor.  

 

Also Zhang et al. (2014) uses the temporal scalars developed by Mu et al. (2011) to 

distribute monthly or daily fire emission inventories into hourly emission fields for use 

in WRF-Chem.  

4.4.2. Day-to-day variability 

To distribute monthly FireCCISFD11 burned area into daily burned area, we use temporal 

fire activity information from two products: (a) S-NPP VIIRS 375 m (VNP14IMG) and 

(b) collection 6 (C6) MODIS 1 km (MCD14ML). From these, we calculate the total 

number of daily fire counts per 0.25° grid and then apply the ratio of the daily to monthly 

total fire counts as scalar to downscale monthly FireCCISFD11 burned area into daily 

time steps. Only active fire observations classified as presumed vegetation fire are 

included. We use a combination of two active fire products to maximise the overlap with 

FireCCISFD11 burned area. Yet, only 82.4% of all FireCCISFD11 grid cells with 

nonzero monthly burned area show fire activity in the combined VIIRS-MODIS product 

across July to September 2016, indicating that FireCCISFD11 has a higher fire detection 

rate as these two active fire products combined. The overlap of the MODIS active fire 

product alone is 71.4% and that of the VIIRS product 81.5%. VIIRS, thanks to its finer 

spatial resolution, is capable of detecting fires of smaller size and lower intensity (Fu et 

al., 2020; Li et al., 2020). Reversely, only 0.5% of the grid cells in the combined VIIRS-

MODIS product have no corresponding monthly FireCCISFD11 burned area signal. 

These active fire observations missed by FireCCISFD11 largely coincide with 

observational gaps (see (Figure 8a-c).  

Burned areas in FireCCISFD11 grid cells with no corresponding active fire signal are 

small and scattered across Sub-Saharan Africa. Their median size is 74 ha (per 0.25° grid 

and month) compared to 3111 ha in the grid cells with corresponding active fire signal. 

Because the fires are small, they contribute only 1% to the total FireCCISFD11 area 

burned across July to September 2016. To downscale these monthly FireCCISFD11 

(UTC) 
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burned area observations into daily time resolution, we create daily 0.25° gridded burned 

area estimates from the day of burn layer contained in the FireCCISFD11 pixel product, 

and then use the daily contribution to monthly burned area as scaling matrix. The 

FireCCISFD11 product builds on imagery from the Sentinel-2A satellite, which has a 

revisit time of 10 days at the Equator (Roteta et al., 2019). Occasionally, the effective 

image frequency is lower due to technical acquisition or archiving problems or due to 

cloud coverage. The low temporal sampling implies that burn scars are frequently 

detected only days or weeks after the fire has actually taken place (Figure 8d). Due to 

these restrictions, the date of the burned pixel provided with the FireCCISFD11 pixel 

product may not be coincident with the actual burning date.  In fact, the specified burn 

date may correspond to a date that lags up to weeks behind the actual burn date, 

particularly in areas with high cloud coverage. For this reason, the date of burn 

information provided in the FireCCISFD11 pixel product cannot be considered as the first 

choice to create scalars for distributing monthly burned area into daily time steps, and we 

use it only when more accurate time information from active fire observations is missing.  

Figure 8 (a-c) displays the observational coverage at which the FireCCISFD11 product 

has been produced. Most regions across Sub-Saharan Africa have full observational 

coverage across July to September 2016. Cloud contamination and other observational 

difficulties substantially decrease the coverage across countries bordering the Gulf of 

Guinea, notably in September 2016 (Figure 8c), and, because the observational gaps occur 

in the proximity of widespread fires (Figure 8d), it is likely that they entail substantial 

underestimation of burned surfaces.  

   

Figure 8: (a-c) Observational coverage in the FireCCISFD11 product during July to September 2016, 

expressed as fraction of the burnable area within each 0.25° grid cell for which valid satellite observations 

were available. The FireCCISFD11 product covers continental Africa south of 25° N. Low observational 

coverage between 15° and 25° N is related to the presence of unburnable land cover. (d) Day of burn 

computed from the FireCCISFD11 pixel product for the period 1st – 10th September 2016. The coloured 

bands reflect the 290 km swath width of the MSI-L1C sensor. Rectangles in (c) and (d) highlight 

observational gaps occurring in the proximity of fires.  

4.4.3. Remapping to the curvilinear model grid 

One component of the pre-processor is the remapping of emissions to the curvilinear 

WRF grid. In our study, this implies remapping 0.25° data to a WRF curvilinear grid with 

a spatial resolution of roughly 18 km. Bilinear spatial interpolation is the most commonly 

used method to interpolate input data to model grids because it is easy to implement and 

it has low computational demands (Kim et al., 2019). However, this interpolation does 

not preserve the integrals of the data. Figure 9 illustrates that bilinear interpolation of 

(a)            (b) 

(c) 1-10 
SEP 

day of burn 

(d) 
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0.25° gridded burned area data to the WRF curvilinear grid increases the domain-

integrated burned area by 28%. Nearest neighbour remapping leads to comparable 

deviations. Both remapping schemes are therefore unsuitable for pre-processing fire 

emission input. We therefore implemented an integral-preserving first order conservative 

remapping scheme (Jones, 1999) in which the weight of a source cell is proportional to 

area of the source cell intersected by target cell. Figure 9 and Figure 10 show that that 

conservative remapping of the 0.25° gridded burned area data to the curvilinear WRF grid 

conserves the domain integrals, and leads to, aside from unavoidable random 

interpolation errors, largely similar results when compared to remapping to the curvilinear 

grid directly from the pixel product.  

 

Figure 9: FirecciSFD11 burned area in September 2016 (a) original 0.25° grid product and (b)-(c) 

original grid product interpolated to the WRF-Chem grid with bilinear and conservative remapping, 

respectively, and (d) pixel product interpolated to WRF-Chem grid (with conservative remapping). 

Number show total burned area across Sub-Saharan Africa.  

 

Figure 10: (a) Absolute and (b) relative difference between FireCCISFD11 burned area mapped to the 

WRF-Chem curvilinear grid from the pixel product ("pix", see also Figure 9c) and from the grid product 

("cons", see also see also Figure 9d). (c) Gridded fire size distribution (i.e. burned area per grid and 

month) in the different remapping schemes (see also Figure 9). 

4.4.4. Fire size distribution for WRF-Chem plume rise calculation 

WRF's plume rise module that calculates the injection height of fire emissions requires 

the availability of a fire size variable (FIRESIZE_AG*) in the WRF-CHEM fire emission 

input data (wrffirechemi*). The FINN preprocessor computes this variable from active 

fire count information; however, this methodology is not applicable when creating WRF 

emission input data from gridded burned area products.  

We explored the option to make use of the monthly number of burn patches (NoP) layer 

provided with the gridded Fire_cci burned area products. Theoretically, the burned area 

(a) 
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to NoP quotient could contain an indicator of the mean fire size. However, the analysis 

of the layers revealed unrealistic values when compared to e.g. the FRY fire patch 

database (Laurent et al., 2018) or the number of fires identified in the Global Fire Atlas 

(GFA, Andela et al., 2019), pointing to an error in the computation of this layer. For 

example, the FireCCISFD11 NoP layer identifies 24 million individual burned patches in 

July 2016 across Africa. In FRY or GFA, the number of identified patches ranges from 

21 to 71 thousands (Table 5). Also, there is a factor of 10 difference when comparing the 

FireCCI51 NoP with the number identified in the FRY MCD64C6 product, despite both 

using a comparable temporal cut-off of around 15 days. The FireCCISFD11 burned area 

estimate, when divided by the NoP information, would correspond to an average fire size 

of 2 ha, which is unrealistically low. While 2 ha is a typical size for agricultural fires set 

for clearing crop residues by smallholders (Shaffer, 2010), most fires in Africa are 

savanna fires and these are on average 500 ha in size (Andela et al., 2019). Using 

information from FRY or GFA instead is not considered as a viable option to derive the 

fire size variable in the WRF-CHEM fire emission input data since the required 

consistency with the fire emission data layer cannot be assured. 

Table 5: Monthly total number of individual fires identified in Africa in different burned area products 

(in thousand).  

 GFA MCD64C6 FRY MCD64C6 FireCCI51 FireCCISFD11 

cutoff (days) 4-10 14 15 15 

Jul-16 71 21 320 23,930 

Aug-16 79 28 312 26,585 

Sep-16 59 21 149 22,741 

 

In the end, we used total daily burned area within each curvilinear grid as mean fire size 

proxy. Analogous to FINN, we apply an upper constraint of 2 km2 per grid and day to 

prevent excessive plume rise in WRF-Chem. We partition mean fire size into the four 

fuel types that are required for the plume rise parameterisation using the static map 

provided with FINN (see also section 4.1). The cumulative density plots and the boxplots 

in Figure 11 - Figure 13 (a, b) show the fire size distribution provided to WRF-Chem by 

FINN, GFED4s and FireCCISFD11. Please note that we adopt here the mean fire size 

terminology used in FINN which refers to the daily area burned per WRF-Chem 

curvilinear grid, which, of course, is not equivalent to the mean fire size in the reality. 

The figures show the fire sizes after the partitioning into fuel classes and prior to it 

("ALL"). The latter exhibits a bimodal behaviour in FINN with roughly 30% of all fires 

in the size range between 50 and 100 ha per grid and day and another 50% in the size 

range between 180 and 200 ha per grid and day. GFED4s and FireCCISFD11, in contrast, 

show a smooth increase in the cumulative distribution function starting from fire sizes 

close to 0 ha. The spike in the distribution at 200 ha per grid and day is the result of 

trimming the maximum fire size to this value, which affects 40% of all fire grid cells in 

FINN, but only 30% and 18% in FireCCISFD11 and GFED4s, respectively. Overall, 

mean fire size in FINN is considerably larger than in FireCCISFD11 or GFED4s (144 ha 

versus 101 and 69 ha, respectively (Figure 11 - Figure 13 (b)), implying that the injection 

heights of smoke plumes will, on average, be highest when using the FINN inventory. In 

the plume rise parameterisation, the majority of the burned surfaces will be treated as 

savanna fuels (52 – 56%), followed by grassland fuels (31 – 40%) (Figure 11 - Figure 13 

(c)).  
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Figure 11: (a) Cumulative histogram of FINN mean hourly fire size per WRF grid for the individual fuel 

type classes (period July to September 2016). (b) Boxplots of mean fire size per WRF grid by fuel type. 

Red marker denotes the arithmetic mean size. (c) Contribution of FINN fuel types to total burned area 

calculated from the WRF mean fire size variable for the WRF-Chem Africa domain. The following 

abbreviations are used: EF=extratropical forest, TF=tropical forest, GR=grassland, SV=savanna. ALL is 

the total fire size per WRF (sum over the four fuel type classes).  

 

Figure 12: Same as Figure 11, but for GFED4s.  

 

Figure 13: Same as Figure 11, but for FireCCISFD11.  

 

Further evaluation is required to assess how differences in the fire size distribution 

influence plume rise calculation in WRF-Chem and how this affects modelled surface 

concentrations close and distant to the fire sources. There is no recommendation how to 

parameterise mean fire size when using fire emission inventories other than FINN. 

Looking at WRF-Chem studies that used custom fire emission inventories, we note that 

Saide et al. (2015) assumed a default fire size of 25 ha in their WRF-Chem simulation 

over the California, USA, with the FRP-based QFED fire emission inventory, while 

others do not specify what fire size parameterisation they used (e.g. Hodnebrog et al. 

(2012), Wang et al. (2018). Zhang et al. (2014)).  

(a)                     (b)       (c) 

(a)           (b)        (c) 

(a)           (b)        (c) 
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4.5. Fire Emission Estimates for Africa 

Table 6 summarises fire emission estimates for Africa for the period July to September 

2016. In addition to the three 'bottom-up' fire emission inventories that we use in this 

study which rely on burned area estimates, we also include three FRP-based emission 

inventories for comparison (GFAS v1.3, FEER v1.0, QFED v2.5 FREM v2). 

Furthermore, we provide estimates from four anthropogenic emission inventories.  

Emission inventories estimate that fires burning across Africa during July to September 

2016 emitted in total between 35 to 102 Tg carbon monoxide (CO), 1.4 to 5.3 Tg oxides 

of nitrogen (NOx) and 0.32 to 0.85 Tg black carbon (BC) (Table 6). Fire emissions of CO 

are substantially larger than those emitted by anthropogenic sources. In most inventories 

included in this study, fire emissions of NOx and CO are also larger than those from 

anthropogenic sources.  

 

Table 6: Total emissions of carbon monoxide (CO), oxides of nitrogen (NOx) and black carbon (BC) 

emitted from vegetation fires in Africa throughout July to September 2016 (in Tg), as estimated by 

various satellite-derived inventories. Estimates of anthropogenic emissions are shown for comparison.  

Inventory CO [Tg] NOx [Tg] h BC [Tg] 

FireCCISFD11 89.9 5.2 0.53 

FINN v1.5 35.0 1.4 0.53 

GFED4s 56.8 3.3 0.34 

GFAS v1.3a 43.2 1.4 0.32 

QFED v2.5b 58.5 2.3 0.85 

FEER v1.0c 102.5 3.8 0.71 

FREM v2d 97 – – 

M 69.0 2.9 0.55 

CV 39% 52% 38% 

CAMS-ANTHRO v4.1e 28.0 2.3 0.24 

CEDSGBD-MAPS 
f 25.8 2.5 0.28 

DACCIWAg 23.7 1.8 0.33 

DICE v1.1h 28.5 0.6 0.49 

M 26.5 1.8 0.3 

CV 8% 47% 33% 
Note. M = mean, CV = coefficient of variation 

APA(a) Global Fire Assimilation System (Kaiser et al., 2012) version v1.3, downloaded from 

ftp://ftp.mpic.de/GFAS/v1p3. (b) Quick Fire Emissions Dataset (Darmenov and da Silva, 2015) version 2.5, 

downloaded from http://ftp.as.harvard.edu/gcgrid/data/ExtData/HEMCO/QFED/v2018-07/. (c) Fire Energetics and 

Emissions Research (Ichoku and Ellison, 2014), FEERv1.0-G1.2 DAILY, downloaded from 

https://feer.gsfc.nasa.gov/data/emissions/. (d) Fire Radiative Energy Emissions version 2, values picked from Fig. 10 

of (Nguyen and Wooster, 2020). (e) Anthropogenic emission totals from the CAMS-ANTHRO v4.1 inventory 

(Granier et al., 2019), downloaded from https://eccad.aeris-data.fr/. (f) Updated Community Emissions Data System, 

described in (McDuffie et al., 2020), and downloaded from https://zenodo.org/record/3754964#.X5Fe7JNLhE5. To 

calculate July-September totals, annual emissions are assumed to be constant over the year. (f) Updated Community 

Emissions Data System, described in (McDuffie et al., 2020), and downloaded from 

https://zenodo.org/record/3754964#.X5Fe7JNLhE5. To calculate July-September totals, annual emissions are 

assumed to be constant over the year. (g) Dynamics-aerosol-chemistry-cloud interactions in West Africa inventory, 

described in (Knippertz et al., 2015), and downloaded from https://eccad.aeris-data.fr/. (h) Diffuse and Inefficient 

Combustion Emissions in Africa v1.1 inventory (Marais and Wiedinmyer, 2016), downloaded from 

http://www.acom.ucar.edu/Models/dice-africa/DICE-Africa-2013-v01-4Oct2016.zip. The inventory refers to 2013 

and excludes emissions from the sectors energy production and formal industry. These emissions are substituted with 

year 2010 estimates from EGDAR v4.3.2 (Crippa et al., 2018). July-September totals from annual inventories are 

calculated under the assumption that emissions are constant throughout the year. h) NOx emissions as NO. 
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The absolute spread of estimates (max–min range) in the different fire inventories is by a 

factor of two and larger in the anthropogenic inventories, reflecting that fire emission 

uncertainty is of foremost relevance when forecasting air quality across Africa. 

Among the different fire emission inventories, the two top-down inventories FEER and 

FREM yield the highest CO emission totals for the period July to September 2016, 

followed by FireCCISFD11. Compared to these, emissions estimated by FINN, the 

inventory with lowest CO emissions, are by a factor of 2.6 to 2.9 lower. The order, 

however, varies across species. In terms of NOx, FireCCISFD11 yields by far the highest 

emissions, while in terms of BC, FireCCISFD11 emissions ranks at an average level 

together with FINN. QFED emissions of CO and NOx rank at an average level, while 

QFED BC emissions, due to the extraordinarily high BC emission factors used (Table 4), 

are highest among all inventories. The rank order can additionally changes over time 

(Figure 14). CO emissions in FireCCISFD11 in July and August 2016, for example, are 

lower than in FEER and FREM, while they are higher than in FREM in September 2016. 

This means that the different fire inventories differ in a non-linear manner across species 

and time. Solely the relation between FireCCISFD11 and GFED4s emissions remains 

between 49% and 68%, irrespective of the species, and, in the months July and August 

2016, the relation within 2% identical with how both products relate in terms of burned 

area (Table 1). In summary, at a continental scale, monthly FireCCISFD11 and GFED4s 

emission fluxes are largely proportional. 

 

 

Figure 14: Monthly total emissions from fires across Africa (in Tg) during July to September 2016 

estimated by different inventories (a) carbon monoxide (CO) and (b) oxides of nitrogen (NOx) as NO, and 

(c) black carbon (BC). Anthropogenic emissions from the CAMS-ANTHRO inventory are shown as well.  

 

At a daily temporal resolution, synchrony between the emission fluxes time series is 

relatively low (Figure 15). The portion of common variation in the FireCCISFD11 and 

GFED4s emission fluxes, indicated by the Pearson's r2, is 60% (Table 7), reflecting the 

effect of using different down-sampling approaches to distribute the monthly estimates 

of these products into daily information (see Section 4.4.2). The temporal correlation with 

the FINN time series is substantially lower (r2 ≤ 34%), and there is also relatively low 

correlation with the time series of the FRP-based emission inventories GFAS, QFED and 

FEER (r2 between 35% and 57%). Of all inventories, the explained variance is highest 

(r2=74%) between the two fully top-down approaches QFED and FEER. The diurnal 

cycle of fire emissions, in contrast, varies only slightly between GFED4s and 

FireCCISFD11 on the one side and FINN on the side, because a largely similar 

parameterisation is applied (Figure 16). It is also noteworthy that the diurnal cycle 

information provided with GFED4s is constant for a given month, and the FINN diurnal 
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cycle is constant across time and space, which is a strong simplification of the actual 

diurnal cycle of emission and adds further uncertainty to the fire emission input estimates 

used in our WRF-Chem simulations.   

This illustrates that the choice of the down-sampling method adds additional uncertainty 

to the fire emission estimates. This has strong implications for atmospheric chemistry 

modelling since photochemistry responds non-linearly to temporal variations of 

emissions (Cohan et al., 2005). It is also relevant for model evaluation against 

observations at time scale of individual smoke plumes.  

 

 

Figure 15: Daily total emissions from fires across Africa (in Gg) during July to September 2016 (a) 

carbon monoxide (CO), (b) black carbon (BC) and (c) oxides of nitrogen (NOx as NO). 

 

Figure 16: Hourly total emissions from fires across Africa (in Gg) in the first half of August 2016 (a) 

carbon monoxide (CO), (b) black carbon (BC) and (c) oxides of nitrogen (NOx as NO).  
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Table 7: Pearson’s correlation values (r2) between time series of daily total CO emission from fires in 

Africa (July to September 2016).  

Inventory FireCCISFD11 GFED4s FINN GFAS QFED FEER 

FireCCISFD11 1.0      

GFED4s .60 1.0     

FINN .34 .32 1.0    

GFAS .57 .46 .32 1.0   

QFED .54 .42 .52 .42 1.0  

FEER .53 .35 .43 .59 .74 1.0 

 Note. n=92 

 

While there is still substantial uncertainty in the present-day fire emission estimates for 

Africa, it is much lower than in the fire emission estimates that have been established a 

decade ago, and that e.g. Williams et al. (2012) used to study the influence of African 

biomass burning emissions on air quality. Williams et al. (2012)' study focuses on 2006, 

a year with very comparable fire activity to the year 2016, and comprises the biomass 

burning emission inventories AMMABB (Liousse et al., 2010), GFEDv2 (van der Werf 

et al., 2006) and GFEDv3 (van der Werf et al., 2010). The July to September 2006 

AMMABB estimates yield BC emissions of 2.95 Tg and CO emissions of 428 Tg, which 

are 8–9 times larger than the values estimated by the GFED versions v2 and v3, and also 

by GFED4s. Granier et al. (2011) state that the much higher burned area estimates of the 

underlying L3JRC burned area product explain the larger AMMABB emissions.  

4.5.1. Sensitivity of emission estimation to fuel type parameterisation 

Information on the fuel type is a prerequisite for estimating fire emissions. One option to 

obtain such information are satellite land cover maps. However, the land cover classes 

used in these maps do not directly correspond to fuel type classes used in fire emission 

calculation. Translation is required.  

Fuel type is needed to apply emission factors since these are fuel-type dependent. 

Information on the fuel type burned is also required when fuel consumption is not 

modelled, but estimated from field measurements of fuel consumption. The fuel type 

categories classically used in fire emission calculation are savanna (occasionally 

sometimes divided into grassland and woody savanna), cropland, and tropical, temperate 

and extratropical forest (Akagi et al., 2011; Andreae, 2019; van Leeuwen et al., 2014).  

The Fire_cci burned area products provide explicit information on the type of vegetation 

that has burned. The FireCCISFD11 product specifies burned area by six land cover 

classes: trees cover, shrubs cover, grassland, cropland, vegetation aquatic or regularly 

flooded, and lichen and mosses/sparse vegetation. The land cover information originates 

from the 20 m resolution CCI Sentinel-2 (S2) prototype Land Cover map for Africa for 

the year 2016 (http://2016africalandcover20m.esrin.esa.int/, accessed on November 

2020).  

Figure 17Figure 17a illustrates that across July to September 2016, most fires in 

FireCCISFD11 occur in areas classified as predominantly tree covered, followed by 

grassland, shrubland and cropland fires. The figure also illustrates that the general class 

“tree cover” in the CCI 20-m S2 map encompasses tropical forest but also more sparsely 

tree covered areas that are commonly categorised as savanna; and hence does not allow a 

differentiation into savanna and forest fuel types. This is relevant because for fire 

http://2016africalandcover20m.esrin.esa.int/
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emission calculation, tropical forest and savannah areas have to be treated separately. In 

comparison, with few exceptions, all areas burned in FireCCISFD11 are classified as 

predominant savanna fuels in GFED4s (Figure 17b) and also in a translated ESA CCI 

land cover map (Figure 17c).  

As a sensitivity test, we calculated fire emissions from the FireCCISFD11 burned area 

product using the fuel type-dependent estimates of fuel consumption from the van 

Leeuwen et al. (2014) database and emission factors from the Andreae (2019) compilation 

(Table 8) in combination with 

(i) the CCI S2 prototype land cover information provided with the FireCCISFD11 product 

(Figure 17a) 

(ii) the LC_cci v2.0.7 land cover type of the surfaces burned in FireCCISFD11, obtained 

by spatial intersection of both products (Figure 17c). 

 

 

 

 

 

 

Figure 17: Dominant land and fuel cover type in grid cells with FireCCISFD11 fire detections across 

JAS 2016 using (a) ESA CCI S2 land cover map, (b) the GFED4s fuel partitioning layer, and (c) a 

translated ESA CCI LC_cci v2.0.7 land cover map of the year 2015. The translation largely follows ESA 

(2017), Wang et al. (2019) and Tab. 7 of Bai (2010). Grassland savanna (GSAV) corresponds to the UN-

LCCS land cover classes 130 to 150, woody savanna (WSAV) to the classes 60, 110, 120 and 180, and 

agriculture (AGRI) the classes 10 to 40.  The LC_cci v2.0.7 product consists of annual maps. To classify 

the land cover type burned across JAS2016, the land cover map of the year 2015 is used since it better 

reflects the land cover prior the JAS2016 fires than the land cover map of the year 2016. 

Table 8 shows that fuel consumption and emission factors are substantially larger for 

deforestation fires than for e.g. woody savanna fires. As a result, carbon monoxide (CO) 

emissions per unit mass fuel consumed in deforestation fires is a factor of 37 higher than 

in woody savanna fires.  

Table 9 illustrates that total fire emissions calculated with these two parameterisations are 

substantially higher than with the GFED4s-like approach we adopted in this study (see 

sections 4.3). Using the CCI S2 fuel type parameterisation (i) yields, dependent upon the 

species, 4 to 8 times higher fire emissions. CO and BC emissions in the LC_cci v2.0.7 

fuel type parameterisation (ii) are around 50% higher than in the GFED4s-like approach, 

while NOx emission are 23% lower, primarily because the Andreae (2019) NOx emission 

factor for savanna used in this sensitivity test is 36% lower than in the GFED4s-like 

approach.  

This sensitivity test highlights that fire emission estimation is very sensitive to the choice 

of the fuel type parameterisation. It also highlights that using alternate approaches to 

calculate fire emissions from the FireCCISFD11 burned area estimates tend to lead to 

higher overall fire emissions than in the GFED4s-like approach used in our WRF-Chem 

study.  

 

(a)                 (b)                  (c) 
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Table 8: Fuel consumption (FC) and emission factors (EF) estimates from the Andreae (2019) and van 

Leewen et al. (2014) compilations for the four major fuel types in Africa. The first three columns depict 

how the CCI S2 and the LC_cci v2.0.7 land cover classes are translated. 

Fuel 

type 

CCI S2 (land 

cover class) 

LC_cci v2.0.7 

(LCCS code) 

FC 

(km m-2) 

EF (g kg-1) 

CO NOx BC 

DEFO Tree cover 50, 70-100, 160-170 126a 104 2.8 0.51 

WSAV Shrub cover 60, 110-120, 180 3.9 
69 2.5 0.53 

GSAV Grassland 130-150 3.2 

AGRI cropland 10-40 6.5a 76 2.4 0.42 
a Fuel consumption values estimated from similar biomes outside Africa.  

 

Table 9: Total emissions from fires across Africa during the period July to September 2016 calculated 

from FireCCISFD11 burned area using different fuel type parameterisations (see Table 8). 

 

5. WRF-Chem model evaluation 

We here show first results from the WRF-Chem model simulations using FINN, GFED4s 

and FireCCISFD11 fire emissions. The simulation with FINN, considered as reference 

run, show strongly elevated surface concentrations of carbon monoxide (CO) above the 

major biomass burning regions. CO is an air pollutant created during incomplete 

combustion of organic material, and, because of its long atmospheric lifetime, is 

frequently used as tracer for long-range transport of biomass burning plumes (e.g. 

Williams et al. (2012)). In large regions close to the Equator, daily mean surface CO 

concentrations exceed 250 ppb (Figure 18a), and CO hourly values occasionally exceed 

the WHO air quality guideline value of 25 ppm (World Health Organization, 2000). In 

comparison to this reference run, the simulation with GFED4s and FireCCISFD11 yield 

largely enhanced surface CO concentrations in the southern hemispheric tropics (Figure 

18b and c). Particularly in FireCCISFD11, there is a widespread enhancement by 50% 

and more.  

 

Figure 18: (a) Surface carbon monoxide (CO) concentrations modelled with WRF-Chem for June 18, 

2016 with FINN fire emissions (reference run). Relative difference with respect to the reference run when 

using (b) GFED4s and (c) FireCCISFD11 fire emissions.  

fuel type parameterisation CO [Tg] NOx [Tg] BC [Tg]

(i) CCI S2 855.4 23.3 4.26

(ii) LC_cci v2.0.7 133.0 4.1 0.79

this study GFED4s-like 89.9 5.2 0.53

(a)              (b)            (c) 
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We also analysed how the GFED4s and FireCCISFD11 simulations for June 18, 2016 

differ from the FINN reference run in terms of carbon monoxide vertical profiles along 

the 13° E cross-section (Figure 19a). Between around 20° to 12° S, CO concentrations in 

the lower troposphere are strongly enhanced in both simulations (Figure 19 (b, c)). The 

exception is a region between 14° and 12° S, where, at an altitude band between around 

4 and 7 km, CO concentrations in the reference run are, in parts, higher. The reason for 

this can be twofold: i) FINN surface emission fluxes are locally higher or (ii) the FINN 

plume rise is locally higher than in the GFED4s or FireCCISFD11 parameterisation. 

 

Figure 19: (a) Topographic map of the WRF-Chem Africa model domain with line along 19° E 

indicating the cross-section displayed in (b) and (c). Cross-section showing the vertical distribution of 

modelled carbon monoxide concentrations for June 18, 2016. Shown is the absolute difference of the 

simulation with (b) GFED4s and (c) FireCCISFD11 fire emissions, respectively, and the FINN reference 

run. 

Figure 20 shows the evaluation of the WRF-Chem reference run (with FINN fire 

emissions) with CO measurements obtained during a DACCIWA flight track on July 2, 

2016. DACCIWA (Dynamics‐Aerosol‐Chemistry‐Cloud Interactions in West Africa) is 

an extensive aircraft measurement campaign conducted over West Africa during June-

July 2016 with focus on aerosol-cloud interactions (Knippertz et al., 2017). Backward 

trajectories calculated with WRF (Flamant et al., 2018) suggests that some of the air 

masses sampled during DACCIWA were influenced by long-range transport of biomass 

burning emissions from central Africa. 

Figure 20 shows that the WRF-Chem reference run captures well the biomass burning 

plume (indicated by elevated CO levels) that was encountered during the flight track 

along the coast of Ghana at around 4:40 pm UTC. The model, however, then 

overestimates the concentrations within the plume by around 100 ppb.  

WRF_GFEDv4-WRF_Finn 

WRF_FireCCI-WRF_Finn 
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An overestimation in modelled CO concentrations is also observed over July 2016 in the 

region around the Gulf of Guinea when comparing the WRF-Chem reference simulation 

with CO columns from the satellite-derived MOPITT (Measurement of Pollution in the 

Troposphere) dataset (Figure 21). The comparison shows, that despite this, the general 

spatial pattern of biomass burning-related enhanced CO levels is well captured by the 

model.  

  

 

Figure 20: Comparison of CO concentrations modelled by WRF-Chem in the reference run (FINN fire 

emissions) with those measured by the DACCIWA aircraft measurement campaign on July 2, 2016 over 

coastal Ghana. (a) displays the flight track including flight height and latitude information, and (b) the 

concentrations along the flight track.  

 

Figure 21: Comparison of CO atmospheric columns modelled by WRF-Chem in the reference run (FINN 

fire emissions) with MOPITT observations for July 2016.  

 

 

 

reference run             MOPITT 

DACCIWA flight track 

modelled versus measured 
concentrations 
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The preliminary evaluation of results from the WRF-Chem reference run with 

observations provides no indication of FINN underestimating fire emissions. On the 

contrary, we found indications for modelled CO concentrations overestimating the 

observed CO concentrations in the biomass burning plumes. We presume that the 

overestimation will be even more pronounced in the simulations using GFED4s and 

FireCCISFD11 fire emissions, pointing to a potential overestimation in these fire 

emission inventories.  

As a next step, we will more thoroughly evaluate modelled atmospheric concentrations 

using the different fire emission inventories against satellite, aircraft, and surface 

observations. In addition, we will evaluate the results against Copernicus Atmosphere 

Monitoring Service (CAMS) chemical reanalysis. 

6. Conclusions 

We assessed the suitability of the Fire_cci FireCCISFD11 burned area product for 

atmospheric chemistry modelling with the regional WRF-CHEM model. To our 

knowledge, this is the first application of a Fire_cci product for this kind of application.  

There are several reasons why atmospheric chemistry modellers do not take advantage 

from the fire information provided with the Fire_cci products since two key requirements 

are not met: 

(1) Availability of ready-to-use fire emissions: 

Atmospheric chemistry modellers use fire information to prescribe the surface emission 

fluxes to the model. They generally prefer using ready-to-use fire emission inventories 

instead of having to create them on their own from scratch.   

(2) Availability of a fire emission pre-processor: 

For use as input in atmospheric chemistry models, the fire emission data have to be 

converted into the specific input data format of the model. This conversion includes e.g., 

mass-conserving remapping of the emissions into the curvilinear grid of the model, the 

mapping of fire emissions to the speciation used in the model, the addition of a diurnal 

cycle and of specific layers (e.g. fire size), and formatting file structure and attributes. 

Because building such a pre-processor is time-consuming and error-prone, atmospheric 

chemistry modellers tend to use fire emission input for which a pre-processor is already 

available. 

If atmospheric chemistry modellers shall become an important user group of Fire_cci 

products, then it would be necessary to provide Fire_cci emission products together with 

pre-processing tools.  

In this work, we computed fire emissions from burned area information contained in the 

Fire_cci FireCCISFD11 grid product and pre-processed them so that they can be used as 

fire emission input in the WRF-Chem model. While doing so, we encountered several 

difficulties, which we discuss in the following paragraphs: 

 The 0.25° spatial resolution of the Fire_cci grid products is too coarse for use in 

regional atmospheric chemistry model simulations. The latter are typically set up 

with a curvilinear grid that has a spatial resolution close to or higher than that of the 

grid products. Mass-conserving spatial interpolation of the 0.25° gridded data to the 

curvilinear grid is difficult and entails unavoidable spatial gradient errors. Optimal 

results are achieved when spatially interpolating burned area information from the 
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Fire_cci pixel products, however, this requires knowledge on how to process tiled 

Geotiff-files, which atmospheric modellers typically do not have, it involves 

substantial pre-processing and is computationally demanding. There is no guidance 

or sample code on how to best remap the Fire_cci pixel products to a custom grid 

product; its provision would be very beneficial to atmospheric chemistry users, 

though. An alternative would be to deliver Fire_cci grid products with higher spatial 

resolution allowing users to remap with conventional remapping algorithms (e.g. 

bilinear interpolation) with low interpolation errors. For spatial resolutions typically 

used in regional atmospheric models, a grid resolution of 0.05° would be optimal.  

 The monthly temporal resolution of the Fire_cci grid products is insufficient for use 

in atmospheric chemistry models, which require hourly time resolution of fire 

emission input data. To enhance the update of Fire_cci products by atmospheric 

chemistry modellers, it would be advisable to provide temporal scalars as ancillary 

product layer which provide information on how to convert monthly into hourly 

burned area, analogous to what is provided in GFED4s.  

 WRF-Chem fire emission input requires information on the fire size. For this 

purpose, we explored the number of burn patches data layer provided with the 

Fire_cci grid products since the quotient of the area burned and the burn patch 

number should theoretically provide an indicator of the mean fire size. Our analysis, 

however, showed that the number of burn patches provided with the Fire_cci 

products is unrealistically high, pointing to an error in the computation algorithm of 

this information. We therefore recommend to either remove this layer or to 

recompute this layer with a corrected algorithm.  

 Calculating fire emissions requires information on the fuel type burned. While the 

Fire_cci grid products provide information of the area burned by land cover type, the 

20 m resolution CCI S2 land cover map underlying the FireCCISFD11 product was 

found unsuitable for discriminating different fuel types. Most importantly, it does not 

allow discriminating between tropical forest and savanna fires, which is crucial for 

emission factor parameterisation. We therefore recommend using e.g. the UN-LCCS 

land cover type information from the ESA LC_cci v2.0.7 land cover product, which, 

despite its lower spatial resolution (300 m versus 20 m) allows a clear delineation 

between different fuel types.  

We performed WRF-Chem simulations over Africa with three fire emission inventories: 

FINN, GFED4s, and FireCCISFD11. A preliminary evaluation of modelled atmospheric 

concentrations of individual species emitted by the fires against observations point to a 

substantial overestimation of fire emissions in GFED4s and, in particular, 

FireCCISFD11. The most likely reasons for this overestimation are either that the 

underlying burned area rates are too large and/or the underlying GFED4s fuel 

consumption parameterisation is high-biased. We also tested two alternate approaches to 

calculate fire emissions from FireCCISFD11 burned area, and in both, fire emissions tend 

to be even much larger. Some of the overestimation could be related to the model not 

adequately predicting the actual emission height of the smoke plumes; however, this 

cannot explain, e.g. the over-prediction of observed vertically-integrated column 

concentrations of carbon monoxide (CO). 

So far, studies evaluating GFED4s fuel consumption rates are contradictory: Wees and 

van der Werf (2019) studied the effect of spatial resolution on biomass burning emissions 

modelled by the GFED framework for the African continent. They did specific 

adaptations to the GFED setup and performed model optimization using satellite-based 

reference data and field measurements of fuel load and fuel consumption. Their results 
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indicate that fuel consumption in GFED4s is overestimated by 24%. In contrast to this, 

Nguyen and Wooster (2020) deduced fuel consumption by combining satellite 

observations of fire radiative power (FRP) and aerosol optical depths (AOD) and their 

results point to GFED4s underestimating fuel consumption.  

The detailed analysis and interpretation of the WRF-Chem model results will be included 

in a forthcoming publication.  
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Annex 1: Acronyms and abbreviations 

AGL Agricultural livestock sector 

AGRI Agriculture  (residues) 

AGS Agricultural soil sector 

ASCII American Standard Code for Information Interchange 

AWS Agricultural waste burning sector 

AMMABB African Monsoon Multidisciplinary Analysis Biomass Burning 

AOD Aerosol Optical Depth 

BA Burned Area 

BC Black Carbon 

BORF Boreal Forest 

CAMS Copernicus Atmosphere Monitoring Service 

CAMS41 CAMS-ANTHRO v4.1 inventory 

CAR Climate Assessment Report 

CASA Carnegie-Ames-Stanford-Approach 

CCI Climate Change Initiative 

CGLS Copernicus Global Land Service 

CO Carbon monoxide 

DACCIWA Dynamics‐Aerosol‐Chemistry‐Cloud Interactions in West Africa 

DEFO Deforestation  

ECV Essential Climate Variables 

EDGAR432 Emissions Database for Global Atmospheric Research v4.3.2 inventory 

EF Emission Factor 

ESA European Space Agency 

FC Fuel Consumption 

FEER Fire Energetics and Emissions Research 

FINN Fire INventory from NCAR 

FireCCI51 MODIS Fire_cci v5.1 

FireCCISFD11 Sentinel-2 SFD Fire_cci v1.1 

FREM Fire Radiative Energy Emissions 

FRP Fire Radiative Power 

FRY FiRe patch morphologY 

GFA Global Fire Atlas 

GFAS Global Fire Assimilation System 

GFED Global Fire Emissions Database  

GFED4s Global Fire Emissions Database version 4, including small fires 

GOES Geostationary Operational Environmental Satellites 

GSAV Grassland SAVanna 

HS Hotspots 

JAS July to September 
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L3JRC Global Multi-year (2000-2007) Validated Burnt Area Product 

MCD64A1 MODIS Collection 6 Burned Area Product 

MODIS Moderate Resolution Imaging Spectroradiometer  

MOPITT Measurement of Pollution in the Troposphere 

MSI MultiSpectral Instrument 

NCAR National Center for Atmospheric Research 

NHAF Northern Hemisphere Africa 

NoP Number of patches 

NOx Nitrogen oxides 

OC Organic Carbon 

PM Particulate Matter 

PM10 PM smaller than 10 μm aerodynamic diameter 

PM2.5 PM smaller than 2.5 μm aerodynamic diameter 

PROBA-V Proba Vegetation 

QFED Quick Fire Emissions Dataset 

S2 Sentinel-2 

S-NPP Suomi – National Polar-orbiting Partnership 

SAVA Savanna  

SFD Small Fire Dataset 

SHAF Southern Hemisphere Africa 

TEMF Temperate Forest 

TRO Road transport sector 

TROF Tropical forest 

VIIRS Visible Infrared Imaging Radiometer Suite 

WF_ABBA Wildfire Automated biomass Burning Algorithm 

WRF-Chem Weather Research and Forecasting model coupled with Chemistry 

WSAV Woody SAVanna 
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