Costal sea level changes (2002-2016) from Jason-1 and Jason-2 altimetry along the coasts of West Africa, Mediterranean Sea and Western Europe

F. Marti¹, A. Cazenave¹, M. Passaro², F. Birol¹, F. Léger¹, F. Niño¹, J.Benveniste³, J.F. Legeais⁴, L. Feneglio-Marc⁵

¹LEGOS, Toulouse, France, ²TUM, Munich, Germany, ³ESA-ESRIN, Frascati, Italy, ⁴CLS, Ramonville St-Agne, France, ⁵University of Bonn, Germany

New challenges for applications of satellite altimetry → Measure sea level changes at the coast

Tide gauge network with >40 years of data (from PSMSL)

www.grida.no

Altimetry in coastal zones

Percentage of valid altimetry measurements as a function of distance to the coast

Need for specific post-processing : "retracking" of the radar waveforms , computation of adapted geophysical corrections

Coastal

effects

Open ocean

3 pilot regions

ESA Climate Change Initiative "Bridging phase" Sea level project (2018/2019)

- Combination of ALES retracking with X-TRACK 20 Hz sea level data
- Jason-1 and Jason-2 missions (2002-2016)

Built upon the CCI Sea Level project (ESA SL_cci ; 2011-2017)

Approach

Use of ALES (Adaptative Leading Edge Subwaveform) retracking developed by Passaro et al. 2014 (TUM)
+ associated Sea State Bias (SSB) (Passaro et al., 2018)

Use of X-TRACK processing system developed at LEGOS (CTOH; Birol et al., 2017) : Severe data editing taking into account the individual characteristics of each correctives terms, Computation of sea level anomalies on fixed points on along nominal tracks, etc.)

The X-TRACK system (CTOH)

METHOD

- SLA data : X-TRACK/ALES 20 Hz
- Missions: Jason 1 & Jason 2
- > Period: July 2002 to June 2016 \rightarrow 14 years
- Monthly averaging
- Annual and semi-annual signals removed

C3S gridded product and J-1 & J-2 tracks

 \succ Sea level trends computed at individual 20 Hz point along the satellite tracks, with focus on the the last 15 km to the coast

Each 20 Hz point is characterized by its distance to the nearest coast (GSHHS database; Smith & Wessel)

Coastal sea level trends from satellite altimetry (2002-2016) along the Jason-1&2 satellites tracks → Western Africa

Sea level time-series of the closest points to coast

Track 020

Sea level trends as a function of distance to coast

ESA CCI Sea Level project & Marti et al., ASR, 2019

Sea level time-series of the closest points to coast

Track 237

Sea level trends as a function of distance to coast

ESA CCI Sea Level project & Marti et al., ASR, 2019

Coastal sea level trends from satellite altimetry (2002-2016) along the Jason-1&2 satellites tracks → Mediterranean Sea

Coastal sea level trends from satellite altimetry (2002-2016) along the Jason-1&2 satellites tracks → Western Europe

Western Africa : Distance to coastline of the closest valid point

Closest point to coastline - from X-TRACK/ALES 20 Hz data over July 2002 - June 2016

ESA CCI Sea Level project & Marti et al., ASR, 2019

Mediterranean Sea: Distance to coastline of the closest valid point

ESA CCI Sea Level project

Thanks for your attention

