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1. Introduction and task description 

This report describes the algorithms employed and validation results of the tasks 1.1 + 1.2 and 1.3. 
The main goal of the investigations is the improvement of coastal vertical land motion (VLM) estimates 
derived from the differences of satellite altimetry and tide-gauge observations (see, e.g. 
Wöppelmann and Marcos, 2016). Understanding and estimating VLM is critical to quantify the rates 
of coastal relative sea level change. Most of global VLM observations stem from the Global Positioning 
System (GPS). Since more than two decades VLM from differences of absolute (satellite altimetry) 
and relative sea level (tide gauge) measurements (SAT-TG) have been exploited to improve and 
densify VLM along the coastlines (e.g., Cazenave et al., 1999). Linear VLM rates from GPS are more 
accurate (0.6 mm/year, Santamarıa-Gomez et al., 2012) than those from SAT-TG (1.2-1.8 mm/year, 
Kleinherenbrink et al., 2018; Pfeffer and Allemand, 2016). Ideally, the uncertainties should be one 
order of magnitude less than contemporary rates of absolute sea level change, i.e., 1-3 mm/year 
(see, e.g., Wöppelmann and Marcos, 2016, hereinafter called WM16). 
 
In order to enhance the accuracy and precision of SAT-TG VLM estimates, advanced coastal altimetry 
datasets as well as refined coupling approaches of SAT and TG observations have been applied. 
Developments and rapid improvements in the recent years by e.g. application of coastal-retracking 
and advanced geophysical corrections (e.g., Cipollini et al., 2017; Passaro et al., 2014; Fernandes et 
al., 2015) have improved sea level observation especially in the coastal zones. Dedicated coastal 
altimetry datasets might thus outperform previously applied products, which do not yet benefit from 
these implementations.  
 
Next to issues concerning data quality also the spatial selection of altimeter data in the vicinity of 
the TG influenced the residual VLM time series quality. WM16 showed, that averaging SLA in a radius 
of 1° around the TG resulted in higher correlations than using the best correlated or the closest grid 
point to the TG. Kleinherenbrink et al., 2018, found a small influence of variations of absolute 
correlation thresholds on the trend estimates. Therefore, an advanced adaptation of the choice of 
altimetry SLA might improve representation of the signal captured by the TG and reduce the noise in 
the residual VLM time series. 
 
Thus, this work shall contribute to further explore improvements by using dedicated coastal altimetry 
products (XTRACK-ALES) as well as different coupling schemes of SAT and TG observations. 
Furthermore, the results based on the 16 year long Jason altimetry data, will also be compared to 
longer multimission datasets (OpenADB-ALES) and gridded products (CMEMS, previously called AVISO 
in WM16, see data-section 2.1.1). The following figure summarizes the tasks to be fulfilled within this 
phase. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We present the results of the tasks 1.1 + 1.2 in section 2. The analysis of the regional interpolated 
VLM map (task 1.3) can be found in section 3. 
 

• Computation of Zone of influence 
(ZOI) using 20% of the best data 
based on correlation (corr), root-
mean-square error (rms), residual 
annual cycle 

• SAT-TG VLM based on closest 
point and point of highest 
correlation (PoHC) w.r.t. TGs from 
the Permanent  Service for Mean 
Sea Level (PSMSL) 

• Identification of outliers using 
objective criteria (e.g., correlation) 

• Comparison of correlation 
between SAT and TG 

Task 1.1 

• Comparison of performances of VLM 
uncertainties + accuracy (obtained from 
the comparison with GNSS trends) w.r.t.: 
 

! Different SAT selection criteria (ZOI, 
PoHC) 

! Different outlier criteria, GNSS and TG 
distance 

! Different altimetry datasets: Adaptive 
Leading Edge Subwaveform (ALES) 
Retracker, CMEMS  

Task 1.2 

• Production of SAT-TG 
VLM dataset for the 
provided regions 

• Computation of VLM 
uncertainties 

• Comparison with 
large scale Glacial 
Isostatic Adjustment 
(GIA) + Contemporary 
mass redistribution 
(CMR) estimates 

Task 1.3 
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2. D1.1 + D1.2 Alt-TG VLM estimates 

2.1. Data and Methods 

2.1.1. Data 

Sl_cci+ coastal sea level product 

We use 20Hz along-track sea level anomalies (SLAs) from the XTRACK-ALES product (version 
v1.1_202006). SLA observations were obtained by the Jason 1,2 and 3 missions and cover the period 
from 15 January 2002 to 30 May 2018. The altimetry data is adjusted for the atmospheric effects (wet 
and dry troposphere, ionosphere, inverse barometer), geophysical phenomena (ocean tides, high 
frequency atmospheric effects on the ocean) and the sea-surface state (electromagnetic seasurface 
bias), see Birol et al., 2021 for a more detailed list. The product is available at 
https://doi.org/10.5270/esa-sl_cci-xtrack_ales_sla-200206_201805-v1.1-202005.  The product User 
Guide (currently v1.3, available at: https://climate.esa.int/en/projects/sea-level/key-documents/) 
provides more details. 

OpenADB-ALES multimission altimetry 

To compare the XTRACK-ALES product with an analogous along-track dataset, which benefits from an 
extended number of missions, we use the OpenADB-ALES multimission dataset (available at 
https://openadb.dgfi.tum.de/en/). This 1Hz dataset is based on the missions ERS-2, Envisat, Saral, 
Topex, Jason 1 to Jason 3, their extended missions and Sentinel 3A and 3B, which provide continuous 
altimetry time series of 25 years (1995-2020). For all missions, satellite orbits in the ITRF2014 are 
used. To reduce systematic differences between the different missions, the tailored altimetry data 
is cross-calibrated using the global multi-mission crossover analysis (MMXO) (Bosch and Savcenko, 
2007, Bosch et al., 2014). The along-track data underwent an outlier analysis using absolute 
thresholds, scanning running mean standard deviations and rejecting extreme consecutive differences 
(please refer to Oelsmann et al., 2021). All the orbits and geophysical corrections and adjustment 
are documented in Oelsmann et al., 2021, as well. Note that the reference frame of this dataset (as 
used in this study) was updated to ITRF2014 (homogeneously for all missions) compared to Oelsmann 
et al., 2021 (ITRF2008). As discussed by WM16, different implementations of different ITRF releases 
can affect the resulting altimetry trends. The updated version contains now also the Sentinel missions 
and Topex. 

CMEMS gridded altimetry 

To discover the differences between the dedicated coastal along-track altimetry data with gridded 
data, we investigate the performance of the previous vDT2014 C3S altimeter gridded sea level product 
consisting of monthly, SLAs with a spatial resolution of 0.25°. As mentioned by Kleinherenbrink et 
al., 2018, this multimission dataset features a latitude-dependent spatial interpolation with scales in 
the order of 50-300 km (Ducet et al., 2000). Note, that from 15/05/2017 this dataset is temporally 
extended by the vDT2018 dataset. The product was obtained from https://www.aviso.altimetry.fr. 
 
PSMSL tide gauges 

The monthly mean TG data are obtained from the datum-controlled PSMSL (Holgate et al., 2013) 
database.  The service undertakes quality control of the data including checks for consistency of the 
annual cycle, outlier detection and intercomparisons with neighbouring stations, which enhances the 
reliability of the data. We select those TGs, which contain at least 180 months (15 years) of valid 
measurements during the altimetric era (1993/01–2020/12), resulting in a total of 691 stations. We 
apply the same monthly averaged DAC correction as used for the CMEMS data (Carrère and Lyard, 
2003) from the closest point. To account for potential long-period tides we subtract the same tidal 
correction as applied for the SLA data (FES2014). 

As an alternative to the monthly TG observations, one could also use high frequency (i.e., hourly) TG 
observations from the GESLA dataset (Woodworth et al., 2016). However, GESLA contains only data 
up to 2015, which severely limits the considered period of observations. Moreover, there is no quality 
check applied to GESLA, in contrast to PSMSL. Thus, for the purpose of generating robust SAT-TG VLM 
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estimates, we decide to use as many data as possible and restrict the TG selection to the monthly 
PSMSL data. 

GIA datasets 

We use the GIA solution from Caron et al., 2018 (hereinafter called C18), which is based on 128,000 
forward models. The likelihood of parameters, which describe the Earth structure and ice history was 
estimated from an inversion of GPS and relative sea level data within a Bayesian framework. The GIA 
estimate represents the expectation of the most likely GIA signal. Formal uncertainty estimates were 
directly inferred from the Bayesian statistics. We emphasize that the GIA estimate does not capture 
any other more regional or local VLM processes (e.g., such as tectonic activity) and has therefore a 
limited validity as a validation basis of VLM. 

GNSS datasets 

The GNSS time series are obtained from the Nevada Geodetic Laboratory (NGL) of the University of 
Nevada (Blewitt, et al., 2016;  http://geodesy.unr.edu, accessed on 1 September, 2020). We only 
use time series with minimum lengths of 5 years and with at least 4 years of valid observations. 
Additionally, based on the uncertainty estimates provided by MIDAS, we reject GNSS time series with 
a trend uncertainty larger than 1.5 mm/year. This prevents us from using very noisy GNSS data. 
Finally, we select the closest GNSS station within a 50 km and 1 km radius to a TG, to compare the 
influence of potentially local VLM variation on the comparability.  

The altimetry datasets feature different corrections, adjustments, missions and reference frames 
which can contribute to different solutions of SAT-TG VLM data. Thus, we emphasize the key 
differences among used datasets in the discussion of the results. 

2.1.2. Methods and algorithm description 

Coupling of altimetry and TG data 

Before combining altimetry and TG data, we compute monthly averages of the XTRACK-ALES and 
OpenADB-ALES along-track data at every point on the track, to obtain homogeneous temporal 
sampling. 

Next, in order to couple the SLA data with the TG observations, we investigate different strategies. 
We particularly focus on the approach put forward by Kleinherenbrink et al., 2018 and Oelsmann et 
al., 2021. Here, we select SLA anomalies from a larger coastal region in the vicinity of the TG. The 
SLA are selected by computing statistics like the correlation, the rms or the residual annual cycle 
(hereinafter called AC) between every time series on the track and the TG time series, using a 
maximum radius of 300 km around the TG. Both the SLA and TG time series are detrended and 
deseasoned before computing the statistics. We then select 20% of the best performing SLAs according 
to these statistics. The selected region represents the Zone of Influence (ZOI), i.e. the region where 
SLA are in high agreement with the TG observations. In contrast to selecting a single point (e.g. the 
point of highest correlation, PoHC) this approach has the advantage that potentially multiple tracks 
are selected and a better temporal sampling is achieved.  

The set of the 20% best performing (non-detrended and non-deseasoned) SLAs is spatially averaged 
and subtracted from the monthly TG observations to obtain the VLM time series. As an alternative to 
the ZOI (using the cor, rms and AC statistics) we select the PoHC and the closest point (hereinafter 
called ‘closest’) of observation. VLM is only computed based on time series which have a minimum 
length of 10 years. In this work no manual screening (and possible rejection) of the resulting VLM 
time series is applied. 

In section 2.2 we also compare a gridded altimetry product (CMEMS) with the along-track datasets. 
The VLM SAT-TG of this gridded dataset are also based on the ZOI, which is itself based on the 20% 
highest correlated grid points within a radius of 300 km. Given the 50 – 300 km interpolation radius 
of this dataset, SLAs within the ZOI can potentially contain information of SL beyond this maximum 
radius of 300 km.  
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Trend and uncertainty computation 

In order to detrend and deseason the data we subtract a linear regression model consisting of offset, 
a linear trend as well as annual- and semi-annual components (using harmonic functions).  

To compute the final VLM and uncertainties we use Maximum Likelihood Estimation by fitting the 
data to the same deterministic model, as described above. The noise is approximated with a power-
law (PL) plus white noise (WN) model, which accounts for autocorrelation in the data and thus 
provides a more accurate estimation of the trend uncertainties. This noise model combination was 
often applied in literature for VLM from SAT-TG or GNSS time series (see, e.g., Santamaria-Gomez et 
al., 2011, WM16, Kleinherenbrink et al., 2018, Oelsmann et al., 2021). We estimate the fraction of 
the WN and the PL noise, as well as the driving noise, which scales the combined estimated noise 
components. Moreover, a spectral index 𝑑 is estimated, which determines the characteristics of the 
PL noise process, more precisely, the dependence of the variance of the noise on frequencies. Here, 
a spectral index of 𝑑 = 0 would be equivalent to WN, a spectral index of 𝑑 = 0.5 is equivalent to 
Flicker Noise and an index of 𝑑 = 1 would describe Brownian motion. Thus, the higher the index, the 
more power has the variance of the noise at low frequencies, which substantially impacts on the 
magnitude of estimated trend uncertainties. We use the Hector software to compute these statistics 
(Bos et al., 2013). 

2.2. Validation results 

2.2.1. Comparison of different data-selection approaches: XTRACK - PSMSL 

Combination of monthly TG and along-track data 

Figure 1 and Figure 2 exemplify the spatial 
correlations, which are computed based on monthly 
averaged XTRACK_ALES along-track data and PSMSL 
TG observations. For the North East Atlantic region, 
we observe strong differences in the spatial 
correlation pattern. For example, correlations are 
much higher and much more homogeneous in the 
North Sea shelf-sea region, than off the Portuguese 
coast, where the shelf is relatively narrow. This 
indicates an influence of bathymetry on SL variations 
and thus on the correlation pattern of SLAs with TG 
observations, as also shown by Oelsmann et al., 
2021. We emphasize that the correlations are also 
generally influenced by both the data quality of 
altimetry and TGs. 

In Figure 2, which shows some regional examples, 
one can also observe that in some cases, the closest 
SLAs show reduced correlations compared to, for 
instance, the ZOI selection (which is highlighted by 
blue borders of the altimetry data). 

 

 

We show the associated SLA time series (altimetry and TG) of the three examples of Figure 2 as well 
the differences in Figure 3. The time series, which are based on the ZOI and the cor and rms statistics, 
agree well with the TG observations on monthly, annual and interannual time scales. Both time series 
(ZOI-cor, ZOI-rms) are also very similar to each other. The time series based on the PoHC deviates 

Figure 1: Along-track correlations based on monthly PSMSL and XTRACK-ALES data for selected 
stations. Correlations are computed with respect to the nearest TG within a radius 
of 300 km (in the zone of influence). Note, that some of the correlations of two 
neighbouring TG stations might overlap in this figure. The blue shading indicates 
the bathymetry. 
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more from the TG observation in all three examples. Here, the differences w.r.t. TG are almost twice 
as large as the ones derived from the ZOI-cor or ZOI-rms statistic (~10 cm noise amplitudes vs. 5 cm). 

 

 

Better consistency of the ZOI-cor and ZOI-rms time series with TGs w.r.t to the PoHC selection, could 
be caused by the higher temporal density of the data, which were combined in the ZOI. Here, as 
shown in Figure 2, multiple tracks are selected, which provides more observations within a single 
month. Thus, the monthly ZOI time series might fit better to the TG based on the PoHC. 

2.2.1.1. XTRACK-ALES – PSMSL Comparison of the statistics: cor, rms, AC, closest, 
PoHC 

Table 1: Summary of statistics of the combination of monthly XTRACK-ALES and PSMSL data for 
all regions and available TGs. We show the median of correlations, VLM trends 
and uncertainties, as well as the median driving noise and the spectral index.  

 

Figure 4 and Table 1 show the geographical distribution and average statistics of the correlations of 
SAT SLAs with TG observations. The statistics are given for 253 TGs, except for the criterium ‘closest’, 
where only 244 results are shown. Note, that for this selection some of the time series are shorter 
than 10 years, and thus do not pass this minimum length requirement. The SAT SLAs are computed 
for the different selection criteria and are detrended and deseasoned. The time series which are 
based on the ZOI selection (cor, rms, AC) score with the highest correlations, with median correlations 
of almost 0.8. Here, the ZOI-cor selection slightly outperforms the other criteria. Interestingly, the 
correlations derived from the averaged SLA in the ZOI also outperform the correlations when only 

 cor rms AC closest PoHC 
Correlation 0.779 0.755 0.735 0.287 0.621 
Trend [mm/year] -1.652 -1.492 -1.493 -1.176 -1.598 
Trend uncertainty [mm/year] 1.019 0.964 1.133 3.176 0.998 
Driving noise [mm] 25.875 25.735 27.397 95.781 55.554 
Spectral index 0.260 0.260 0.290 0.159 0.042 
Count 253 253 253 244 253 

Figure 2: Along-track correlations based on monthly PSMSL and XTRACK-ALES data. The 20% best 
correlated points are highlighted with blue borders. 
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single along-track time series, i.e., the PoHC are used (median ~0.6). This further substantiates the 
assumption, that higher temporal density might play an important role for the ZOI-based time series. 

The increased correlations of the ZOI time series (w.r.t. PoHC) are also in accordance with the time 
series in Figure 3, where the PoHC shows lower agreement with the TG observations. The selection 
based on the closest point provides substantially worse results than all the other selection criteria; it 
contains even negatively correlated data. 

Differences in the correlation are also reflected in the associated trend uncertainties of the SAT-TG 
VLM (see Figure 5). We observe larger uncertainties particularly at the English coastlines, in northern 
Malaysia and India. Trend uncertainties are largest for the closest point selection. The trend 
uncertainties are all in the order of 1 mm/year (given as one sigma uncertainties) for the ZOI-cor, 
rms and AC as well as for the PoHC selection criteria. Thus, even though the correlations are reduced 
for PoHC (w.r.t. the ZOI time series) the trend uncertainties are still of similar magnitude. This is 
mostly caused by the larger amount of low frequency noise in the ZOI time series as indicated by the 
larger spectral indices, see Table 1 and Figure 7. Still, the driving noise (Figure 6), which scales the 
white and power law noise fractions is almost twice as large for the PoHC selection, as expected from 
the visual inspection of time series in Figure 3 and shown in Table 1. The driving noise indicates that 
the scatter of the data (or the standard deviations) is almost twice as large for the PoHC time series 
as compared to the ZOI-cor time series. As noted by WM16, a high white noise amplitude (as is the 
case for the PoHC and the closest criteria) can mask the detection of low-frequency noise, which is 
also the case for these criteria due to the low spectral indices. This can lead to misinterpretation of 
the results in particular the low uncertainties found for the PoHC criterium, which yields much larger 
variance in the time series than the ones based on the ZOI-approach. 

Figure 8 shows the resulting VLM. The VLM pattern, which are associated with the SAT selection 
criteria correlation, rms, AC and PoHC agree qualitatively well. VLM which is based on the closest 
selection criterium exhibits much stronger variations compared to the other criteria. We observe 
positive VLM at the Norwegian and Swedish coastlines and slight subsidence along the northern 
European coastlines (e.g., Germany, Netherlands, France and Spain), which is consistent with the 
large-scale signal from GIA. Subsidence is also indicated for most parts of the Australian Coast, with 
an increased spatial variability of VLM at the eastern coastlines. For the selected regions (Europe, 
parts of Africa, Asia and Australia) we detect a median VLM in the order of -1 mm/year for all dataset 
combinations 

2.2.1.2. XTRACK-ALES – PSMSL Comparison of SAT-TG VLM and GNSS VLM 

In order to objectively evaluate the accuracy of the SAT-TG VLM, we compare the trends with VLM 
from GNSS observations. Here, we assume that the GNSS estimate represents the ground truth of VLM 
at a specific location. While the coupling of SAT and TG data can have a strong effect on the VLM 
itself in the first place, also the coupling of GNSS and TG data can influence the comparability of 
SAT-TG and GNSS trends (see, e.g., Kleinherenbrink et al., 2018). VLM can be affected by very 
localized processes, for instance, at shorter distances (1-10 km), VLM can vary substantially (e.g., 
see WM16). Therefore, in this study we compare different allowed distances between TG and GNSS 
stations of 1 km and 50 km, to investigate and mitigate possible influences, stemming from local VLM 
variability. We emphasize that quality issues of GNSS VLM estimates can also cause a reduced 
consistency with SAT-TG VLM. Thus, further quality control of the data (in addition to the objective 
GNSS selection criteria), like manual screening, could additionally improve the agreement (WM16). 

As we show in Figure 4 the SAT and TG data are not homogeneously correlated and have different 
noise levels, which leads to differing SAT-TG VLM uncertainties. Thus, we also investigate if an 
objective selection criterium can support the identification of flawed SAT-TG time series and trends. 
Here, we use a correlation threshold of 0.6, which is derived from the monthly SAT and TG timeseries. 
A correlation of 0.6 is equal to the lower 10 percentile of the time series based on the ZOI-cor 
criterion.  

Figure 9 illustrates the scatter of the differences between SAT-TG and VLM. Here, we show the scatter 
depending on the different criteria (correlation threshold of 0.6 and GNSS – TG distance). The 
variance of SAT-TG minus GNSS VLM reduces drastically, when stations with a maximum distance of 
1 km are combined (compared to a distance of 50 km). However, as shown in Table 2 this also strongly 
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reduces the number of TG-GNSS pairs. Figure 9 illustrates that the median bias of SAT-TG VLM, as 
well as the scatter is lowest for the time series derived from the ZOI approach.  

Table 2 lists the RMS of trend differences as well as the median bias of SAT-TG VLM w.r.t. GNSS VLM. 
The lowest RMS of trends (for cor > 0.6 and distance = 1 km) is obtained for the ZOI-rms, ZOI-AC and 
ZOI-cor criteria (1.48, 1.47 and 1.50). The RMS for the PoHC criterium is 1.76. For all criteria and all 
outlier selection criteria the SAT-TG VLM are biased against the GNSS in the order of approximately 
-0.5 mm/year, which also increases the RMS of trend differences.  
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Figure 3: Shown are SLA time series of altimetry and TG data as well as the differences of SLAs for 
selected stations and different coupling criteria: rms, cor and PoHC. Note, that the 
closest point is not shown, due to the larger discrepancies of the TG and altimetry data 
for this selection. 
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Figure 4: Correlations of monthly SAT and TG (PSMSL) observations (both detrended + deseasoned). 
The SAT SLA time series are computed based on the different criteria: (a-c) 20% best 
correlations, rms or residual annual cycle, the closest point (d), as well as the point of 
highest correlation (e). The boxplot (f) shows the distribution of correlations (the 
median and lower and upper quartile ranges). 

 



CCN2 TUM D1.1 

 SLCCI+_CCN2_D1.1_043_
TUM_v2 

      

V 2.0 Mar. 16, 22       15  

 

 

 

Figure 5: Trend uncertainties (mm/year) of SAT-TG VLM. VLM is computed based on the different 
criteria: (a-c) 20% best correlations, rms or residual annual cycle, the closest point (d), 
as well as the point of highest correlation (e). The boxplot (f) shows the distribution of 
trend uncertainties (the median and lower and upper quartile ranges). In (f) we 
additionally show the results (orange), in case a correlation threshold of 0.6 is applied 
(based on the correlations of the time series based on the ZOI + cor criterium with 
monthly TG data). 
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Figure 6: Driving noise (mm) of SAT-TG VLM. VLM is computed based on the different criteria: (a-c) 20% 
best correlations, rms or residual annual cycle, the closest point (d), as well as the point 
of highest correlation (e).  
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Figure 7: Spectral index of SAT-TG VLM. VLM is computed based on the different criteria: (a-c) 20% best 
correlations, rms or residual annual cycle, the closest point (d), as well as the point of 
highest correlation (e).  
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Figure 8: Trends (mm/year) of SAT-TG VLM. VLM is computed based on the different criteria: (a-c) 20% 
best correlations, rms or residual annual cycle, the closest point (d), as well as the 
point of highest correlation (e). The boxplot (f) shows the distribution of trends (the 
median and lower and upper quartile ranges). In (f) we additionally show the results 
(orange), in case a correlation threshold of 0.6 is applied (based on the correlations of 
the time series based on the ZOI + cor criterium with monthly TG data). 
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Figure 9: Boxplots of differences of SAT-TG VLM (XTRACK-ALES - PSMSL) and GNSS VLM. The data are 
grouped according to the distance between TG and GPS station, as well as a 
correlation threshold of 0.6. The correlation threshold is based on the XTRACK-ALES 
and TG data (ZOI-cor criterium). 

 

The results (Table 2) show first of all, that the application of the ZOI is also supported by the 
comparisons of SAT-TG VLM with GNSS data. Secondly, using an absolute correlation threshold can 
substantially improve the consistency of SAT-TG and GNSS VLM (e.g., 36% or 0.81 mm/year 
reduction in RMS, for ZOI-rms and distance = 1, compared to no correlation threshold). Finally, it is 
also crucial to only use stations which are closely located to each other. In summary, the RMS for 
the best selection is in the order of magnitude of the RMS of SAT-TG and GNSS differences from 
WM16 (1.47 mm/year), who used gridded altimetry data (CMEMS, previously called AVISO). 
Nevertheless, the RMS is still larger as in Kleinherenbrink et al., 2018 (1.22 mm/year). In their 
study a different dataset based on Topex, Jason 1 and 2 from the RADS database (Scharroo et al., 
2012) spanning the period 1993 and 2015 was used. Thus, the different time periods considered and 
different validation settings (in particular, GNSS-TG coupling) hinder an objective comparison. In 
section 2.2.3.1 we will further discuss the origins of the trend bias and its influence on the 
agreement with GNSS data. 
 

 

Table 2: Comparison of SAT-TG VLM (XTRACK-PSMSL) and GNSS VLM. Shown are the RMS of trends 
and the median bias of differences for all data (as well as for a sub-selection with a 
correlation threshold of 0.6). The correlation threshold is based on the XTRACK-
ALES and TG data (ZOI-cor criterium). 

 

 

  
cor > 0.6 all cor > 0.6 all cor > 0.6 all 

distance Statistic RMS 
[mm/year] 

RMS 
[mm/year] 

median 
[mm/year] 

median 
[mm/year] 

count count 

1 KM AC 1.471 2.266 -0.506 -0.490 45 54 
PoHC 1.767 2.606 -0.772 -0.812 45 54 
closest 5.525 5.569 -1.306 -0.974 44 53 
cor 1.503 2.377 -0.614 -0.656 45 54 
rms 1.448 2.250 -0.405 -0.389 45 54 

50 KM AC 2.164 2.471 -0.467 -0.438 170 199 
PoHC 2.454 2.719 -0.518 -0.637 170 199 
closest 5.379 5.396 -0.774 -0.725 166 195 
cor 2.226 2.564 -0.607 -0.613 170 199 
rms 2.169 2.482 -0.397 -0.390 170 199 
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2.2.2. XTRACK-ALES – PSMSL Comparison with GIA models 

Next to the GNSS data, we compare the SAT-TG VLM to an estimate of GIA from Caron et al., 2018. 
Here, we combine the SAT-TG VLM with the closest available grid point of the GIA product. We also 
account for surface deformation due to mass changes, which are generated e.g., by ice mass 
changes or surface water loading changes. We use data of ‘contemporary mass redistribution’ (CMR) 
provided by Frederikse et al., 2020.  

As demonstrated by the larger RMS values in Table 3, the GIA estimate does not represent an ideal 
validation basis of SAT-TG VLM, as compared to the GNSS dataset. Of course, more localized VLM 
e.g., tectonic activity, human influences or nonlinear surface deformation are not captured by the 
GIA model. Thus, the RMS of SAT-TG and VLM trends is increased w.r.t. GNSS validation results. 
Adding information of CMR to the GIA trends, slightly improves the RMS (on average for all selection 
criteria). However, the best RMS value of 2.44 mm/year (as obtained for the ZOI-rms criterium and 
a correlation threshold > 0.6) is still much larger compared to the result of the GNSS validation. 
Another reason why using a GIA model to investigate the performances of SAT-TG VLM for the 
selected TG stations might not be the best choice for this current dataset, might be the fact, that 
the overlap of the regions with the strongest GIA signal (Scandinavia, North America) and the TG 
locations is very limited. Hence, extending the XTRACK-ALES dataset to regions, where GIA has a 
stronger impact, could contribute to the investigations of the associated VLM. 

 

Table 3: Comparison of SAT-TG VLM (XTRACK-PSMSL) and GIA (+CMR) VLM. Shown are the RMS of 
trends and the median bias of differences for all data (as well as for a sub-selection 
with a correlation threshold of 0.6). The correlation threshold is based on the 
XTRACK and TG data (ZOI-cor criterium). 

 

 

 

 

 

 

 

 

 

 

  
cor > 0.6 all cor > 0.6 all cor > 0.6 all 

VLM 
model 

Statistic RMS 
[mm/year] 

RMS 
[mm/year] 

median 
[mm/year] 

median 
[mm/year] 

count count 

GIA AC  2.464  2.600  -1.294  -1.242  220  253 
PoHC  2.626  2.838  -1.325  -1.424  220  253 
closest  5.289  5.294  -0.980  -0.996  211  244 
cor  2.476  2.647  -1.376  -1.345  220  253 
rms  2.445  2.588  -1.280  -1.213  220  253 

GIA + 
CMR 

AC  2.409  2.593  -1.251  -1.179  220  253 
PoHC  2.609  2.828  -1.347  -1.383  220  253 
closest  5.298  5.313  -1.044  -0.975  211  244 
cor  2.456  2.662  -1.304  -1.277  220  253 
rms  2.402  2.591  -1.211  -1.132  220  253 
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2.2.3. Comparison with other altimetry datasets 

The XTRACK-ALES SAT-TG VLM are compared with SAT-TG VLM estimates of the along-track OpenADB-
ALES product and the CMEMS product. The main rationale of this analysis is to shed light on how the 
addition of more missions or how gridding of the data might influence the SAT-TG performances. The 
performances are again evaluated by means of the comparison with GNSS estimates and the formal 
SAT-TG VLM uncertainties.  

Table 4 provides a summary of the comparison with GNSS VLM data. Next to the RMS, we also 
computed the standard-deviation of trends which is not affected by potential trend biases. We 
repeated the analysis as before (distance and correlation threshold). In the following, we only refer 
to the data based on cor > 0.6 and distance = 1 km, as this provides the best agreement w.r.t. GNSS 
VLM. 

The RMS of XTRACK-ALES and OpenADB-ALES is of similar magnitude (1.5 and 1.53 mm/year); CMEMS 
has the lowest RMS w.r.t. GNSS data (1.33). As shown in Figure 10, the VLM of all three altimetry 
datasets have very different biases with respect to each other. For example, most of the OpenADB-
ALES VLM is by approximately 1 mm/year larger than the VLM based on XTRACK-ALES. Larger VLM, 
which is derived from with SAT-TG method, means larger absolute sea level trends, i.e., higher trends 
observed by altimetry (when the same TG data are used). The bias w.r.t. GNSS is 0.86 mm/year for 
OpenADB-ALES and -0.61 mm/year XTRACK-ALES. 

VLM trend biases also affect the RMS of the XTRACK-ALES and OpenADB-ALES data, as demonstrated 
by the much lower standard-deviations of VLM differences. The standard-deviation of VLM differences 
is lowest for the OpenADB-ALES, and very similar for CMEMS and XTRACK-ALES. Possible sources of 
trend biases are discussed in the next sub-section. 

While the standard-deviations of the VLM differences agree relatively well, there are differences in 
the median formal uncertainties. These are 1.02 mm/year, 0.88 mm/year and 0.62 mm/year, for the 
XTRACK-ALES, OpenADB-ALES and CMEMS products. This substantiates, that both, the addition of 
missions, as well as time-space interpolation of the data (as done in the CMEMS product), increase 
the agreement of SAT and TG observations, which leads to a reduction in the residuals and thus an 
improvement of trend uncertainties of the associated SAT-TG VLM time series. 

 

Table 4: Comparison of GNSS VLM with SAT-TG VLM which are based on the XTRACK-ALESS (ZOI-
cor), CMEMS (ZOI-cor), OpenADB-ALES (ZOI-cor) altimeter datasets and PSMSL TGs. 
Shown are the RMS, the standard-deviations and the median bias of VLM differences 
for all data, as well as for a sub-selection with a correlation threshold of 0.6. The 
correlation threshold is based on the XTRACK-ALES and TG data (ZOI-cor criterium). 

 

  
cor > 0.6 all cor > 0.6 all cor > 0.6 

 

Dist. Name RMS (STD) 
[mm/year] 

RMS (STD)  
[mm/year] 

median 
[mm/year] 

median 
[mm/year] 

count count 

1 km OpenADB 1.530 (1.274) 1.964 (1.827) 0.857  0.866  45  54 
CMEMS  1.331 (1.344) 1.843 (1.854) 0.094  -0.218  45  54 
XTRACK  1.503 (1.351) 2.377 (2.266) -0.614  -0.656  45  54 

50 km OpenADB   2.241 (1.934) 2.477 (2.241) 1.060  1.011  169  198 
CMEMS  2.027 (2.032) 2.259 (2.264) 0.094  -0.065  169  198 
XTRACK  2.208 (2.098) 2.552 (2.464) -0.602  -0.607  169  198 
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Figure 10: VLM (a-c) and uncertainties (d-e) for different SAT-TG combinations (XTRACK-ALES, 
OpenADB-ALES, CMEMS). For all datasets the ZOI-cor criterium to construct the SAT-
TG time series was used. 

 

2.2.3.1. Discussion of the altimetry trend biases 

 

Figure 11: Histograms of trend differences (SAT-TG minus GNSS VLM) of the different altimetry 
dataset for different maximum allowed distances between TG and GNSS station: 
a) 1 km b) 50 km 

 
Figure 11 illustrates that the distributions of the differences of VLM of the altimetry datasets are 
significantly shifted with respect to each other. The causes of these biases remain an open issue, 
which needs to be further investigated in future analyses. In the following, we discuss/exclude some 
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potential contributors of such trend biases, in particular referring to the differences between 
XTRACK-ALES and OpenADB-ALES. 
 
First of all, the following corrections can be excluded as origins of trend biases, because they are 
used in both datasets, XTRACK-ALES and OpenADB-ALES: Range and sea state bias correction, wet 
troposphere (GPD+) and Ocean Tide (FES2014).  
 
Other causes cannot be clearly excluded. For example, OpenADB-ALES uses a mix of DAC corrections. 
Here, the DAC correction as implemented in XTRACK-ALES (Carrere and Lyard, 2003) was only applied 
when the ECMWF ERA-Interim reanalysis (DAC-ERA; Carrère et al., 2016) was not available. OpenADB-
ALES contains also more missions, in particular the ERS-2 + Envisat and the Sentinel missions. This 
does however not necessarily explain a trend bias, because the non-biased dataset CMEMS is also a 
based on the ERS-2 + Envisat missions. We also find no significant change in the trend bias for 
OpenADB-ALES, when removing the Sentinel and TOPEX mission. Furthermore, the reference frame 
of the applied orbits could lead to trend biases. However, the comparison of two OpenADB-ALES 
multimission products, with different reference frames (ITRF2008 and ITRF2014) leads to a similar 
bias with respect to XTRACK-ALES for both cases. In contrast to XTRACK-ALES, OpenADB-ALES features 
a multi-mission calibration (MMXO) which reduces intermission biases and regionally coherent 
systematic errors, but does not feature a calibration against TG. Such a bias correction is not applied 
to the CMEMS dataset or XTRACK-ALES. 
Also, the Ionospheric correction could cause trend differences. XTRACK-ALES’s Ionospheric correction 
is based on GDR (From dual-frequency altimeter range measurement), OpenADB-ALES is based on the 
correction from NIC09 (Scharroo and Smith, 2010)) 
 
Finally, the GNSS station database itself influences the validation results of SAT-TG VLM. In case that 
VLM is not strictly linear over the considered period, GNSS (which are usually based on shorter time 
periods than SAT-TG) and SAT-TG might provide different trend estimates. This can, however, not 
explain the systematic differences between the altimetry based SAT-TG trends, which are computed 
over the exact same time periods. Thus, in summary, we highlight that the significant trend biases 
between the along-track products, which deteriorate the accuracy of the SAT-TG VLM as a whole (i.e. 
act as a constant trend-offset w.r.t. TG), require further investigations to be mitigated. 
 
 

2.3. Dataset description 

 

Table 5: Dataset description of the deliverable 
DGFI_VLM_XTRACK_ALES_PSMSL_<criterium>_<vlm_version>_<sla_version>, 
consisting of point-wise VLM information derived from SAT-TG. We provide five 
different netCDF files, which contain VLM information for all applied SAT 
selection criteria (<criterium>). <vlm_version> refers to the dataset version and 
<sla_version> refers to the XTRACK-ALES SLA version number. 

Dimensions:   

X = 253   

NetCDF 
coordinates/variables 
(dim): short_name 

Description: long_name Unit  

lat(x) latitude degrees_north 

lon(x) longitude degrees_east 

psmsl_index(x) Index of PSMSL TG # 
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vlm_trend(x) VLM trend based on SAT-TG over 2002-
2018 (computed with PL-WN model) 

mm/year 

vlm_trend_unc(x) VLM trend uncertainty (1 sigma) based 
on SAT-TG over 2002-2018 (computed 
with PL-WN model) 

mm/year 

spectral_index(x) Spectral Index  

driving_noise(x) Driving noise  mm 

Global attributes: 

dataset_name  DGFI_VLM_XTRACK_ALES_PSMSL_<statistic>_<vlm_version>_<sla_version> 

description Vertical land motion derived from altimetry and tide-gauge differences. 
Based on XTRACK-ALES (<sla_version>) and monthly PSMSL tide gauge 
data. Altimetry data are combined according to the <statistic> criterium. 
The ID of the deliverable is D1.2, associated algorithms and validation 
results can be found in D1.1. 

Authors Julius Oelsmann, Marcello Passaro 

ID D1.2 

Subcontractor Technical University of Munich 

creation_time Date + time 

version v1 

Project_name : SLCCI+; https://climate.esa.int/en/projects/sea-level 
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3. D3 – Alt-TG VLM: Regional Map 

The aim of task 1.3 is to derive a regularly-spaced coastline profile by spatial interpolation of sparse 
vertical land motion (VLM) data. The analysis takes into account VLM trend estimates and 
uncertainties, as computed in work-package D1.2. We use SATTG (altimetry minus tide gauge) trends 
(XTRACK/ALES dataset (v1.1, https://doi.org/10.5270/esa-sl_cci-xtrack_ales_sla-200206_201805-
v1.1-202005), available at https://catalogue.ceda.ac.uk/uuid/222cf11f49a94d2da8a6da239df2efc4), 
which are combined based on the RMS (root-mean square error) statistic (see previous technical note 
D1.1). This dataset provides the best performances in terms of accuracy and uncertainty of the VLM 
(next to the dataset based on the correlation criterium).  

3.1. Method 

3.1.1. Data preprocessing – outlier rejection 

We apply an objective outlier rejection as well as a manual inspection of VLM time series. With this 
approach we aim to reject time series which provide an impaired representation of the VLM signal. 
One major error source in the VLM time series are discrepancies between the tide gauge and the 
altimeter measurements, which are not fully be alleviated in the combination procedure. Hence, we 
reject stations where the TG and altimetry time series (averaged in the Zone of Influence) have a 
correlation < 0.56 and where the driving noise of the VLM time series is above 0.42 mm. Both outlier-
rejection statistics correspond to the 10th and 90th percentiles of the data. The definition of these 
thresholds is in agreement with those applied for the time series analysis in D1 (with the difference 
that we now also use the driving noise). Note that the driving noise was derived with Hector software 
(Bos et al., 2013) and provides information of the absolute noise amplitude in the data.  

Not all of the problematic VLM time series can be identified with these objective criteria. Thus, we 
manually inspect the time series for irregular behavior, i.e., in particular abrupt jumps in the data. 
In this kind of data, discontinuities are most commonly generated by either physical ground motions 
which affect the TG vertical datum, or instrumental issues. The following two plot illustrate time 
series where discontinuities are found after manual inspection, as well as SATTG VLM time series 
which are rejected from the dataset. 

 

 

Figure 12: Problematic SATTG VLM time series, which are edited (a,b) or rejected (c,d) from the dataset. In a) 
the time series is truncated to the years 2005-2019, in b) the data after 2016 is rejected. 
Dashed vertical lines indicate possible discontinuities after manual inspection. 
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3.1.2. 2D interpolation – Transdimensional regression 

Several previous studies focused on interpolating VLM, in particular to extrapolate VLM to areas where 
no direct VLM observations are available (e.g., Husson et al., 2018; Hawkins et al., 2019b; Hammond 
et al., 2021). Multiple 2D interpolation schemes have been applied, which include for instance 
ordinary Kriging, Spline interpolation, Radial Basis function interpolation, or Bayesian regression. A 
central issue of classical interpolation approaches is that they often rely on user assumptions of the 
correlation length scale (and thus the length scale of the weighting functions) of the VLM data. This 
length scale can however be variable, as it is influenced by the length scale of the VLM 
signals/processes, as well as by the actual distribution and availability of the data. For example, the 
spatial resolution of a VLM interpolation could be much higher in well instrumented regions such as 
central Europe, compared to Africa, or South America. Hence, we adopt the method developed by 
Hawkins et al., 2019b, which automatically estimates the level of smoothness (or the spatial 
resolution) of the data, based on the distribution as well as the formal uncertainties of the data. The 
Bayesian Transdimensional regression dynamically adapts the complexity (spatial resolution) of the 
interpolated surface and produces a full posterior distribution of the VLM data. The interpolated 
(VLM) surface is parametrized by a set of variable mobile nodes (grid points), onto which VLM values 
are assigned. The number of the nodes, which determine the complexity of the grid is an unknown 
parameter of the inversion and is itself estimated. Here, as in Hawkins et al., 2019b, we apply a 
Delaunay linear interpolation to recover a smooth surface. The posterior probability distribution of 
the unknown parameters is approximated using a hybrid of Markov chain Monte Carlo (MCMC) and 
Hamilton Monte Carlo techniques. 

Prior to interpolation, we separate the VLM data into two macro-regions (Europe and Oceania + South 
Asia) as shown in the following plots. We run 56 independent Markov chains, which start from 
randomized initial conditions, which are drawn from the prior distribution of the parameters. Using 
synthetic data, Hawkins et al., 2019a showed that varying the number of chains (between 28 – 112 
chains) does not have a significant impact on the posterior estimates. Hence, 56 chains are considered 
to be sufficient for this application. Every chain is run for 1,000,000 iterations where only the last 
500,000 iterations are retained and averaged after thinning the models. At every iteration of the 
Markov chain, the model state is perturbed, which involves the variation of the number and 
distribution of the grid nodes. Thus, every Markov chain consists of a large ensemble of model states, 
which form the basis to compute the full posterior distribution. We use a discrete uniform prior 
between 1 and 1000 for the number of maximum used nodes, and a uniform prior of VLM rates 
between +- 10 mm/year. The final interpolated 2D map is projected onto a regularly space coastal 
profile of 0.1° resolution. 
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3.2. Results 

 
Figure 13: Continuous VLM (a) and uncertainties (b) along the European coastline. In addition to the continuous 

interpolated estimate, we show the SATTG VLM and uncertainties (white edge-colours). 

 

In Figure 13 and Figure 14, we show the interpolated VLM for the two selected macro-regions. Next 
to the continuous VLM and uncertainty estimates, the SATTG VLM point estimates are shown. For the 
European continent (Figure 13), the estimates in the Baltic Sea are removed from the interpolation, 
due to the missing coverage of the XTRACK-ALES data in this area.  

The interpolated VLM in Europe (Figure 13 and Figure 15a) shows an uplift signal towards Scandinavia, 
as well as subsidence between 1-2 mm/year in central and western Europe. The subsidence is linked 
to the known GIA fore-bulge collapse, e.g., see Peltier et al., 2015 or Caron et al., 2018. A high 
regional variability in the point-wise VLM rates along the English coastlines can be found, which is 
partly also associated with high formal uncertainties. This could be explained by the lower 
correlations of altimetry an TG in this region, which was also shown in the previous report of SL_cci 
(2020). The Bayesian regression incorporates the high formal uncertainties of the data and thus yields 
a smooth interpolated VLM surface in this area (with a spatial resolution of several hundred km), 
despite the high local variance of VLM. 

 



CCN2 TUM D1.1 

 SLCCI+_CCN2_D1.1_043_
TUM_v2 

      

V 2.0 Mar. 16, 22       28  

 

 
Figure 14: Continuous VLM (a) and uncertainties (b) on Oceania and South-East Asia. In addition to the 

continuous interpolated estimate, we show the SATTG VLM and uncertainties (white edge-
colours). 

Australia and the selected regions of South-East-Asia (SEA) are affected by subsidence between 0-2 
mm/year (Figure 14 and Figure 15b). Similar as for the English coastline, the VLM and uncertainty 
point estimates have higher variance in areas that are associated with a lower correlation of altimetry 
and TGs. That particularly affects the North-Eastern Australian coastline, or the region north of 
Brisbane. Overall, the macro-region (SEA and Australia) has a very non-uniform distribution of SATTG 
data, with a much better coverage along the Australian coastline. This data distribution is well 
reflected by the interpolated uncertainties, which are higher in regions with low coverage and vice 
versa. The subsidence found for the Australian coastline, as well as the Philippines, for instance, are 
in accordance with previous research (Hammond et al., 2021, Hawkins et al., 2019b, Kleinherenbrink 
et al., 2018). This observed subsidence in Australia disagrees with VLM based on GIA (Hammond et 
al., 2021). This underlines the importance to utilize observed VLM to obtain continental-scale VLM 
processes unrelated to GIA.  

Generally, it should be highlighted that the approach of interpolating SATTG VLM alone is still limited 
due to several reasons. A major problem is the relatively low coverage in some areas. For instance, 
regions like Italy, the Baltic region and large parts of Indonesia are not well covered in this work. 
Secondly, in particular the Philippines, as well as subduction zones (i.e., west of Sumatra) are 
affected by high spatial or temporal VLM variability (see Wöppelmann and Marcos, 2016 or Hammond 
et al., 2021), which cannot be represented by a smooth interpolated surface of linear VLM. Thus 
extending the database by adding GNSS observations and increasing the number of observations in 
time can strongly increase the robustness of the results and enhance the resolution VLM processes. 
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Figure 15: Continuous VLM and uncertainties along the European a) and the Australian b) coastline. The green 

line shows the posterior mean estimate, the orange shading encapsulates the 2-sigma 
confidence intervals of the interpolated VLM. SATTG VLM and uncertainties are shown in 
purple. 

 

3.3. Dataset description 

Table 6: Dataset description of the deliverable 
DGFI_2D_VLM_MAPS_XTRACK_ALES_PSMSL_RMS_v1_v1.1_202006, consisting of interpolated VLM 
data derived from SAT-TG.  
 
Dimensions:   
X = 15708   
NetCDF 
coordinates/variables 
(dim): short_name 

Description: long_name Unit  

lat(x) latitude degrees_north 
lon(x) longitude degrees_east 
region(x) Macro-region over which interpolation is performed 

(Europe: 1; SEA_Australia: 0) 
 

vlm_trend(x) Interpolated VLM trend based on SATTG over 2002-2018 mm/year 
vlm_trend_unc(x) Interpolated VLM trend uncertainty (1 sigma) based on 

SATTG over 2002-2018 
mm/year 

Global attributes:   
dataset_name:  DGFI_2D_VLM_MAPS_XTRACK_ALES_PSMSL_RMS_v1_v1.1

_202006 
 

Description: Vertical land motion derived from altimetry and tide-
gauge differences. Point-wise VLM estimates are 
interpolated along the coastlines with Bayesian 
transdimensional regression for the macro-regions 
Europe and South-East-Asia/Australia (SEA_Australia). 
Based on the ESA SL_cci+ XTRACK/ALES dataset 
(v1.1, https://doi.org/10.5270/esa-sl_cci-
xtrack_ales_sla-200206_201805-v1.1-202005), also 
available at 
https://catalogue.ceda.ac.uk/uuid/222cf11f49a94d2da
8a6da239df2efc4 and monthly PSMSL tide gauge data. 

 



CCN2 TUM D1.1 

 SLCCI+_CCN2_D1.1_043_
TUM_v2 

      

V 2.0 Mar. 16, 22       30  

 

Altimetry data are combined according to the RMS 
criterium. The ID of the deliverable is D3, associated 
algorithms and validation results can be found in D1.1. 
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