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1. Introduction 

Climate-induced absolute sea level change represents a substantial threat to coastal communities, 
infrastructure and habitability. Global mean rates of contemporary sea level change (1995-2018, 3.1 
mm/year as reported by Cazenave et al., 2018) have already doubled compared to average rate over 
the last century (of approximately 1.4 mm/year (Frederikse et al., 2020)) and are expected to further 
accelerate in the upcoming decades (Fox-Kemper et al., 2021). Hence, understanding the evolution 
and the causes of sea level changes is fundamental to estimate future impacts and risks along the 
global coastlines. 

The advent of satellite altimetry almost 30 years ago has revolutionized sea level science as it has 
enabled global-scale observations of sea level variability and trends. Recent developments, e.g., in 
coastal retracking and geophysical corrections, have further improved the retrieval of valid sea level 
data within the first 20 km to the coast (Passaro et al., 2014, Cazenave et al., 2022), which is 
challenging due to the contamination of the reflected signal in the vicinity of the coast. These coastal 
sea level observations are crucial, because coastal sea level dynamics can be substantially different 
from the open ocean (Hughes et al., 2019). The presence of the continental slope, shallow waters 
and the lateral boundaries (i.e. the coastlines), give rise to a variety of processes which are associated 
with multifaceted spatio/temporal sea level characteristics (Calafat et al., 2018, Hughes et al., 2018, 
Hughes et al., 2019).  
 
Understanding the sources and characteristics of sea level changes in the coastal zone is highly 
relevant - not only from a scientific, but even more from a socioeconomic perspective. Hence the 
question of ‘how coastal sea level variability and trends differ from the open ocean’ has become a 
central subject of ongoing investigations (see Vignudelli et al., 2019, Cazenave et al., 2022 or 
Woodworth et al., 2019, for a review). Thanks to advancements in coastal sea level products (within 
the previous phase of the Climate Change Initiative (CCI) Sea Level Project by the European Space 
Agency (ESA)), Cazenave et al., 2022 were able to systematically assess to what extent coastal sea 
level trends differ from offshore sea level trends (‘offshore’ was here defined as averages within a 
15-17km distance). They found significant differences at 22% of the virtual stations, i.e. coastal 
intersects of the altimetry track. Several potential physical sources of these differences, such as 
coastal currents, wind and waves, or river runoff, as well as potential processing errors were discussed 
(Cazenave et al., 2022; Gouzenes et al., 2020). However, they did not come to general conclusions 
of the causes of these differences, mainly due to the lack of data or models at the sites and at such 
high resolutions.  
 
One central aspect for the determination of coastal sea level trends in the coastal zone and their 
discrepancies with respect to offshore trends is the treatment of trend uncertainties, which are finally 
used to define the significance of these trend differences. Cazenave et al., 2022 computed 
uncertainties from the 1-sigma standard-errors of a standard least-squares fit of the sea level anomaly 
time series (assuming white noise), noting that more advanced uncertainty analyses might be 
required. Previous research has highlighted that taking into account serial correlation and the 
spectral properties of the residuals is indeed crucial to accurately determine uncertainties in the 
parameters such as trends (Williams, 2003; Bos et al., 2013; Royston et al., 2018). Not accounting for 
autocorrelation in the data, or applying inadequate models to estimate correlated noise can lead to 
an underestimation of uncertainties up to one order of magnitude (Bos et al., 2013).  
 
However, currently we have only limited knowledge of the spectral properties of sea level variability 
in the coastal zone, and how these properties change, e.g., depending on the distance to coast, water 
depth, latitude or shelf width. To our knowledge, there exist no study which has yet systematically 
estimated these properties using coastal altimetry products on a global scale. Existing studies are 
currently confined to either global tide gauge datasets (Bos et al., 2014) or altimetry data for selected 
regions (Royston et al., 2018). Hence, applying a more rigorous uncertainty quantification is crucial, 
not only to better understand the temporal characteristics of coastal sea level dynamics, but also to 
re-assess previous work (Cazenave et al., 2022) to shed light on the statistical significance of 
differences between coastal and open ocean sea level trends.  
 



Noise and climate variability impact on coastal trends uncertainties 

 SLCCI-MPR-083-17-03 V 1.0 11 Jan. 2023 5  

 

 
Figure 1: Power spectral density plots for the sea level residuals at Honolulu and Newlyn tide gauges (from Bos et al., 2014) 

Serial correlation in sea level anomaly time series is caused by a superposition of processes which are 
associated with different time-scales of persistence ranging from annual, interannual to decadal 
periods. To account for serial correlation of the residual time series previous studies applied different 
models, e.g., such as a first order autoregressive AR(1) model (Benveniste et al., 2020, Nerem et al., 
2010). Viewed in a power spectral density plot, the power of AR(1) noise flattens at low frequencies 
compared to higher order models, e.g., AR(5) or auto-regressive fractionally-integrated moving-
average (ARFIMA, ARFI, or later called power-law) models (as shown in Figure 1, from Bos et al., 
2014). The latter models have been shown to describe the power spectral features of sea level 
anomalies more realistically in the majority of cases (Hughes & Williams, 2010, Bos et al., 2014, 
Royston et al., 2018). The power law model (ARFI) determines the relationship between power and 
frequency as a function of the spectral index 𝑘 (or sometimes expressed as 𝑘 = 2𝑑), such that spectral 
power is increasing at low frequencies: 

𝑃(𝑓) = 𝑃! )
"
"!
*
#
. 

 
Figure 2: The estimated value of κ using the ARFI(1, κ) model. The shape of the symbol represents which stochastic model 

has the lowest BIC values (from Bos et al., 2014). 

The dependency of trend uncertainties on the properties and choice of the noise model was made 
clear by Bos et al., 2014 in Figure 1. Here, different noise models (AR(1), AR(5) and GGM (Generalized 
Gauss Markov)) were applied for tide gauge data from the site at Honolulu, resulting in different 
trend uncertainties of 0.12, 0.15 and 0.14 mm/y, respectively. In contrast, the power-law model 
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(ARFI(1, 𝑘)), which does not flatten out at low frequencies resulted in much a larger uncertainty of 
0.33 mm/y. To choose the best-fitting model, commonly the statistics Akaike Information Criteria 
(AIC; Akaike, 1973) and Bayesian Information Criteria (BIC; Schwarz, 1978) are analysed (e.g., Royston 
et al., 2018). These statistics give a measure of model complexity and model fit, and hence penalize 
overly complex models (even in case they have a very good model fit). The model with the lowest 
AIC or BIC criteria is usually selected as the preferred one (Bos et al., 2016). As an example, In the 
case of Honolulu, the GGM model has the best fit according to the BIC criterion. As shown by the 
differences of the spectral properties of the site at Honolulu and Newlyn, a regional analysis is 
required to identify the most appropriate model depending on the site/region. Such regional 
dependencies are also depicted in Figure 2, where different noise models were applied to tide gauge 
data. The spectral properties strongly depend on the region as shown by the spectral index and the 
type of the best-fitting noise model.  
 

 
Figure 3: Power spectral density plots of noise for four long-duration tide gauge time series, with (blue) and without (red) 

climate indices included in the regression: (a) Sydney Fort Denison II, (b) Honolulu, (c) San Francisco and 
(d) Seattle. a1 is the trend coefficient estimate (from Royston et al., 2018). Dotted lines show noise 
model fits for a shorter period of time (1993-2015), with respect to the full time period (1900-2005, solid 
lines). 

 
One important contributor of low-frequency noise are climate modes (e.g., such as ENSO, PDO or 
NAO), which have been shown to explain significant fractions of sea level variability at regional scales 
(Royston et al., 2018, Wang et al., 2020). Due to the relative shortness of current altimetry-based 
records (i.e. ~30 years) these modes can also influence trends themselves, when they estimated over 
the altimetry era (Passaro et al., 2021), and can have a significant impact on trend uncertainties and 
thus also the time of emergence (ToE, Royston et al., 2018). As an example, Figure 3 shows the power 
spectral density plots for the noise from four long duration tide gauge time series from Royston et 
al., 2018. These examples show fits of different noise models depending on time series length and 
depending on whether climate indices were included in the regression analysis or not. As can be seen, 
the spectral properties, as well as the magnitudes of the estimated trends can change, depending on 
whether these climate indices are explicitly included, or not. However, the influence of climate 
modes on coastal sea level variability has so far not been systematically quantified based on a 
comprehensive database of coastal altimetry products. It is currently unclear how their influence will 
affect trends and trend uncertainties in the coastal zone.  
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2. Objectives 

In summary, there is limited knowledge of spectral properties of coastal sea level variations and how 
they differ compared to the open ocean variations, as previous analyses did not yet tackle these issue 
using global-scale coastal altimetry data. Here we aim to overcome these limitations by answering 
the following research questions: 
 
→ How does low-frequency noise influence the formal uncertainties of sea level trends in the 

coastal zone? 

→ What is the time scale of emergence of coastal and open ocean sea level trends, and how do 
coastal and open ocean trends differ from each other? 

→ What fraction of trends and uncertainties are explained by climate modes and how do climate 
modes affect trends and uncertainties? 

Our investigations are organised into four different tasks. First (1) we will prepare the datasets 
including coastal altimetry data, climate indices, tide gauges, and other auxiliary products and set-
up the software to efficiently perform spectral analyses. Secondly (2) we will perform the spectral 
analysis, as well as the trend and uncertainty computation. This step will be repeated (3) under the 
consideration of climate variability in the regression model. Finally (4), we will re-assess differences 
between coastal and open ocean trends, depending on the updated uncertainties and trends, and 
considering the impact of climate variability.  

3. Description of tasks 

3.1. Task 1: Preparation of data and methods 

In this work package, we will prepare the coastal altimetry data and set up the model to perform the 
spectral analysis and trend computation. We will use the 20Hz along-track sea level anomalies (SLAs) 
from the XTRACK-ALES product (version v2.2: https://doi.org/10.17882/74354). This data set is based 
on the missions Jason 1,2 and 3 missions and covers the period from January 2002 to December 2019. 
The data will be re-sampled to monthly averages and we will re-compute virtual stations (as intersects 
of the along-track data with the coastline). We will investigate different criteria of defining data as 
‘coastal’ or ‘open ocean’. These criteria will be based on the distance to coast, correlation-length 
scale and water depth. The correlation length-scale 𝜆 will be derived by fitting an exponential decay 
function 𝑐𝑜𝑟𝑟(𝑑) = 𝑠𝑐𝑎𝑙𝑒 ∗ 𝑒$%/' to the correlations of SLA along a track (computed with respect to 
the average within 0-5 km to the coast) sorted by distance to coast 𝑑. We suggest to apply the 
following selection criteria: 

Selection 𝒅 𝝀 depth 

Coastal 0-5 km  

0-10 km 

Closest point to coast 

0 ≤ 𝑥 < 𝜆 

0 ≤ 𝑥 < 𝜆/2 

0-200m 

0-1000m 

Open ocean 15-17 km, 

100-200 km 

200-300 km 

2𝜆 > 𝑥 > 𝜆   

3𝜆 > 𝑥 > 1.5𝜆   

1500-3000m 

3000-4000m 

 

We anticipate that this systematic analysis will help to find a more objective decision of what should 
be defined as ‘coastal’, or ‘open ocean’. Particularly the analysis of correlation length scales will 
support the interpretation of the cross-shelf coherency of SLAs. 

Next to the altimetry data we will use monthly PSMSL tide gauges (TGs, Holgate et al., 2006) for 
comparison. TG data will be useful to study the importance of time series length for spectral analyses 
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and to determine differences w.r.t. altimetry data. We will also include climate indices, which will 
be taken from different data providers, i.e., they will not be explicitly derived from SST or SLP 
anomalies. Finally, we will integrate the Hector Software (Bos et al., 2016) in a Python framework, 
such that it can be run in parallel to enable efficient analysis of the data. Hector is based on maximum 
likelihood estimation and is capable to estimate different parameters (i.e., trend, offset, annual 
cycle, noise parameters) of a combination of deterministic and stochastic models.  

3.2. Task 2: Spectral analysis, trend and uncertainty computation 

In this task we will perform a spectral analysis of the altimetry and tide gauge time series. We will 
investigate which noise model most adequately fits the spectral properties. For this purpose, we will 
test different noise models: White noise (WN), power law plus white noise (PLWN), AR(1) plus white 
and a Generalized Gauss Markov (GGM) plus white noise model (more detailed descriptions on the 
noise model formulations and associated covariance matrices can be found in Langbein, 2004, Bos et 
al., 2008, and Williams et al., 2008). At every location, we fit the sea level time series to estimate 
offset 𝑎0, trend 𝑎1, the annual and semi-annual cycle (𝑎2, 𝑎3, 𝜙!, 𝜙"!) as well as parameters of the noise 
model: 

𝑆𝐿𝑖 = 𝑎0 + 𝑎1𝑡 + 𝑎2 cos(2𝜋𝑡 + 𝜙!)+	𝑎3cos(4𝜋𝑡 + 𝜙"!) + 𝜖 

The best noise model will be selected according to the AIC and BIC statistics, as done in Bos et al., 
2014 or Royston et al., 2018. We will particularly focus on the spectral index 𝑘	estimated in the PLWN 
model, which defines the dependency of the power of the noise on frequency 𝑃(𝑓) = 𝑃!(𝑓/𝑓!)#. This 
parameter is important for the interpretation of trend uncertainties, which are particularly increased 
by low-frequency noise. As can be seen in Figure 4, for different 𝑘, we obtain different noise 
properties: White noise for 𝑘 = 0, Flicker noise 𝑘 = −1	for and random walk noise for 𝑘 = −2. 

 
Figure 4: One-sided power spectral density for white, flicker and random walk noise. The blue dots are the computed 
periodogram (Welch’s method) while the solid red line is the fitted power-law model (from Bos et al., 2019). 
 
All parameters will be estimated for the different time series (SAT and TG), derived in Task 1 as well 
as the different selection criteria. This dataset will be the first deliverable D1.   

3.3. Task 3: Impact of climate variability on trend and trend uncertainty 
estimates 

In this task we will repeat the analyses performed in Task 2 by incorporating climate index time series 
𝐶𝐼$	in the multivariate regression model as follows: 

𝑆𝐿𝑖 = 𝑎0 + 𝑎1𝑡 + 𝑎2 cos(2𝜋𝑡 + 𝜙!)+	𝑎3cos(4𝜋𝑡 + 𝜙"!) +4𝑎4+𝑐𝐶𝐼$

%	

$'(

+ 𝜖 

We will incorporate eight different indices, namely the NAO, EA, PNA, EA, SCA, AO, ENSO and PDO. 
With this analysis we seek to understand how much variance of coastal sea level variability is 
explained by which climate mode, how trends and trend uncertainties are influenced by these modes, 
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and at what frequencies the modes have the largest impact. This analysis will also improve our 
understanding of the causes of interannual to decadal sea level changes along the coastlines. The 
outcome of this Task will be the deliverable D2 and is an analogue to the data provided in D1. 

3.4. Task 4: Re-assessing differences between coastal and offshore trends 

Based on D1 and D2, we will re-assess differences between coastal and open ocean variability and 
trends. Before we can do so, we will first investigate an appropriate approach to select ‘coastal’ and 
‘open ocean’ sea level data. We will consider different parameters to evaluate differences between 
different selection criteria of coastal and open ocean data: Trends, trend uncertainties, spectral 
index, driving-noise (the noise that scales the amplitude of the noise models) and standard-deviation. 
 
In a second step we will re-assess the significance of the differences between coastal and open ocean 

trends. We will compute the significance ratio 𝑆𝐸	 = (𝑡()*+, − 𝑡)-./)(.*/)/F𝜎()*+,0 + 𝜎)-./().*/0 , i.e. the 

ratio of trend differences over the combined error.  If |𝑆𝐸| > 1 trend differences will be   defined as  
significant (when the 95% CI trend uncertainties are considered).  This analysis will be repeated for 
different coastal SL time series selections (as described before) and discussed in light of other 
parameters (depth, distance to coast, correlation length scale, latitude). 
 
Finally, we will compute the time of emergence (ToE) of the coastal and open ocean sea level trends, 
as well as the time scale at which coastal and open ocean sea level trends become not significant 
from each other anymore, hereinafter called time of agreement (ToA). To compute the ToE we will 
investigate two different approaches. The first approach was put forward by Royston et al., 2018, 
who defined the ToE as the time scale at which a trend (of arbitrary magnitude) exceeds the noise 
level of a time series at a particular location. To define this time scale, we will simulate 1,000 
surrogate stochastic noise time series of sufficient length (e.g., 100 years) based on the same noise 
properties as estimated at a particular location. Next, based on the 1,000 samples we will generate 
a distribution of time scales at which a given trend (varied in the range from 0.5-10 mm/y) exceeds 
the simulated noise, as illustrated in Figure 5. A spline function will be applied to fit the dependency 
between ToE and magnitude of trend. This function will be used to determine the ToE for an observed 
trend at every individual location.  
 

 
Figure 5: Figure S1 and S2 modified from the supporting information file from Royston et al., 2018. Figure S1(left): 

Methodology for the Time of Emergence (ToE; a) calculation: One example surrogate noise time series, 
with the ToE for a ±2 mm a-1 trend to emerge from this instance. The ToE is calculated for all 1,000 
surrogate time series giving the distribution of ToE for each location; examples of the different ToE 
distributions obtained with different noise models are given in Figure S2. Figure S2 (right): Example 
histograms of the time of emergence (ToE; a) from 1,000 sample surrogate noise time series, assuming 
white noise, AR(1) noise and the most appropriate noise model, for a given trend of 2 mm a-1: (only a is 
shown here) Brunswick Heads, Australia. The data comprises the epoch 1993—2015 and the most 
appropriate noise model in both data sets is power-law. 
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As an alternative approach we will define the ToE as the time scale at which a given trend exceeds 
the trend uncertainty for a given period of time. For this purpose, we will determine an empirical 
function of the dependency of trend uncertainty on time scale at any given location and noise. This 
dependency will be computed by estimating trend uncertainties based on a 10-member-ensemble of 
synthetically generated noise time series with varying period lengths (i.e., with 5,10,15 years, …).   
 
This relationship between trend uncertainty and time scale will be exploited to compute the ToA, 
i.e. the time scale when coastal and open ocean trends are not significant from each other anymore 
(𝑇𝑜𝐴|	|34|56). In addition, we will also compute the ToA between a local (i.e., coastal sea level) trend 
and the GMSL trend. The outcome of this task will be a dataset (deliverable D3) containing the ToE, 
ToA, as well as the SE at different coastal-open ocean pairs. 
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