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1. INTRODUCTION 

1.1 Purpose and Scope 

This Algorithm Theoretical Basis Document (ATBD) describes and justifies the algorithms 
used for obtaining sea surface temperature (SST) estimates within the ESA SST Climate 
Change Initiative project’s prototype processor, as configured for the version 2 (v2) 
climate data records generated at the end of SST CCI Phase II. 

Relative to the previous ATBD (addressing the mid-Phase reprocessing), this report 
includes the following: 

• Updated quality and cloud thresholds for v2 

• Updated SST-level harmonisation description for AVHRR SSTs 

• Section describing improved uncertainty propagation to L4 and improved L4 
analysis method 

• Updates to information where needed throughout 

1.2 Referenced Documents 

The following is a list of documents with a direct bearing on the content of this report.  
Where referenced in the text, these are identified as RD.n, where 'n' is the number in the 
list below: 

RD.38   Berrisford, P., et al (2009), The ERA-Interim archive, European Centre for 
Medium Range Weather Forecasts, Reading. 

RD.43 Eastwood S., K. R. Larsen, T. Lavergne, E. Nielsen, and R. Tonboe (2010), 
Global Sea Ice Concentration Reprocessing Product User Manual, Met 
Norway/Danish Meteorological Institute, EUMETSAT Ocean and Sea Ice SAF. 

RD.175  CCI Phase 1 (SST), Product Specification Document 

RD.181 Merchant C J, C P Old, O Embury and S N MacCallum (2008), Generalized 
Bayesian Cloud Screening: Algorithm Theoretical Basis version 2.1, School of 
GeoSciences, University of Edinburgh. Available from: 
http://www.geos.ed.ac.uk/gbcs/ATBv2.1c.pdf and via http://www.esa-sst-
cci.org 

RD.184 Embury, O., C. J. Merchant and G. K. Corlett (2012), A Reprocessing for 
Climate of Sea Surface Temperature from the Along-Track Scanning 
Radiometers: Initial validation, accounting for skin and diurnal variability, Rem. 
Sens. Env., pp62 - 78. DOI:10.1016/j.rse.2011.02.028 

RD.185  Embury, O. and C. J. Merchant (2012), A Reprocessing for Climate of Sea 
Surface Temperature from the Along-Track Scanning Radiometers: A New 
Retrieval Scheme, Rem. Sens. Env., pp 47 - 61, DOI: 
10.1016/j.rse.2010.11.020 

RD.186 Embury, O., C. J. Merchant and M. J. Filipiak (2012), A Reprocessing for 
Climate of Sea Surface Temperature from the Along-Track Scanning 
Radiometers: Basis in Radiative Transfer, Rem. Sens. Env., pp32 - 46, DOI: 
10.1016/j.rse.2010.10.016 

http://www.geos.ed.ac.uk/gbcs/ATBv2.1c.pdf
http://www.esa-sst-cci.org/
http://www.esa-sst-cci.org/
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RD.213  Donlon, C.J., M. Martin, J. Stark, J. Roberts-Jones, E. Fiedler and W. Wimmer 
(2012). The Operational Sea Surface Temperature and Sea Ice Analysis 
(OSTIA) system, Remote Sensing of the Environment, 116, 140-158. 

RD.221  Merchant C J, P Le Borgne, A Marsouin and H Roquet (2008), Optimal 
estimation of sea surface temperature from split-window observations, Rem. 
Sens. Env., 112 (5), 2469-2484. doi:10.1016/j.rse.2007.11.011 

RD.222  Gentemann, C. L., P. J. Minnett, and B. Ward (2009), Profiles of ocean 
surface heating (POSH): A new model of upper ocean diurnal warming, J. 
Geophys. Res., 114, C07017, doi:10.1029/2008JC004825. 

RD.226  MacCallum and Merchant (2012), SST CCI Algorithm Selection Report, 
http://www.esa-sst-cci.org  

RD.227  Fairall, C., E. Bradley, J. Godfrey, G. Wick, J. Edson, and G. Young (1996), 
Cool-skin and warm-layer effects on sea surface temperature, J. Geophys. 
Res., 101(C1), 1295-1308. 

RD.231 CLAVR-X installation instructions, 
https://groups.ssec.wisc.edu/users/wstraka/aix-clavr-x-code/installing-clavr-x-
on-your-own-machine 

RD.232  SST_CCI Multi-sensor Match-up Dataset Specification, SST_CCI-REP-UoL-
001 

RD.239 Roberts-Jones, J., Fiedler, E. K. and M. Martin (2012), Daily, global, high-
resolution SST and sea-ice reanalysis for 1985-2007 using the OSTIA system, 
J. Climate, doi:10.1175/JCLI-D-11-00648.1, in press. 

RD.253  Merchant, C. J., & Le Borgne, P. (2004). Retrieval of sea surface temperature 
from space based on modeling of infrared radiative transfer: Capabilities and 
limitations. Journal of Atmospheric and Oceanic Technology, 22(11), 
1734−1746. 

RD.262  Horrocks L. A., Candy B., Nightingale T. J., Saunders R. W., O’Carroll A., and 
Harris A. R., Parameterisations of the ocean skin effect and implications for 
satellite-based measurement of sea surface temperature. J. Geophys. Res., 
Vol. 108(C3), 3096, doi:10.1029/2002JC001503, 2003 

RD.263 Kantha L.H., and Clayson C.A., An improved mixed layer model for 
geophysical applications. J. Geophys. Res. Vol. 99 (C12), 25235–25266, 
1994. 

RD.264  Lisa A. Horrocks, Andrew R. Harris, and Roger W. Saunders, Modelling the 
diurnal thermocline for daytime bulk SST from AATSR, NWP FRTR No. 418, 
UKMO, 2003. 

RD.265  Gentemann, C. L., P. J. Minnett, P. Le Borgne, and C. J. Merchant (2008), 
Multi-satellite measurements of large diurnal warming events, Geophys. Res. 
Lett., 35, L22602, doi:10.1029/2008GL035730. 

RD.266  Mark Filipiak, Diurnal Adjustment Model Selection, 2010 

RD.273 Merchant C J, Algorithm Theoretical Basis Document 0, 2012, SST-CCI-
ATBDv0-UOE-004-Issue 1 (Accept-Signed).pdf 

http://www.esa-sst-cci.org/
https://groups.ssec.wisc.edu/users/wstraka/aix-clavr-x-code/installing-clavr-x-on-your-own-machine
https://groups.ssec.wisc.edu/users/wstraka/aix-clavr-x-code/installing-clavr-x-on-your-own-machine
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RD.274 Killie, M. A., Ø. Godøy, S. Eastwood and T. Lavergne: ATBD for EUMETSAT 
OSI SAF Regional Ice Edge Product, v1.1, 2011. 
http://osisaf.met.no/docs/osisaf_ss2_atbd_ice-edge-reg_v1p1.pdf  

RD.275 Roberts-Jones, J., Fiedler, E. K. and M. Martin (2011), Met Office Technical 
Report 561: Description and assessment of the OSTIA reanalysis, Met Office. 

RD.276 Daley, R. (1991), Atmospheric data analysis. Cambridge University Press. 

RD.278  Hollingsworth, A. and P. Lonnberg (1986). The statistical structure of short-
range forecast errors as determined from radiosonde data. Part 1: The wind 
field. Tellus, 38A, 111-136. 

RD.280  Bell, M.J., A. Hines and M.J. Martin (2003). Variational assimilation evolving 
individual observations and their error estimates. Met Office Ocean 
Applications technical note no. 32. Available from Met Office, Fitzroy Rd, 
Exeter, UK. 

RD.294  Jonah Roberts-Jones, Emma Fiedler, Matthew Martin, Alison McLaren, 
Improvements to the Operational Sea Surface Temperature and Sea Ice 
Analysis (OSTIA) system, UKMO Tech Document SST_CCI_TN_UKMO_002 

RD.295  Merchant, C. J., P. LeBorgne, H. Roquet and G. Legendre, Extended optimal 
estimation techniques for sea surface temperature from the Spinning 
Enhanced Visible and Infra-‐Red Imager (SEVIRI), Rem. Sens. Env., 131, 
287-297, 2013, http://dx.doi.org/10.1016/j.rse.2012.12.019 

RD.296  Merchant, C. J., O. Embury, N. A. Rayner, D. I. Berry, G. Corlett, K. Lean, K. 
L. Veal, E. C. Kent, D. Llewellyn-Jones, J. J. Remedios, and R. Saunders 
(2012), A twenty-year independent record of sea surface temperature for 
climate from Along Track Scanning Radiometers, J. Geophys. Res., 117, 
C12013, doi:10.1029/2012JC008400. 

RD.297  Watts, PD; Allen, MR; Nightingale, TJ, (1996) Wind speed effects on sea 
surface emission and reflection for the Along Track Scanning Radiometer 
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY Volume: 13 
Issue: 1 Pages: 126-141 DOI: 10.1175/1520-
0426(1996)013<0126:WSEOSS>2.0.CO;2 

RD.298  Mittaz J and A Harris, A physical method for the calibration of the AVHRR/3 
thermal IR channels Part II: in orbit comparison of the AVHRR longwave 
thermal IR channels on board MetOp-A with IASI, J Atmosph Oceanic 
Technol, 28, 1072, 10.1175/2011JTECHA1517.1 

RD.300  Stamnes, K., SC. Tsay, W. Wiscombe and K. Jayaweera, Numerically stable 
algorithm for discrete-ordinate-method radiative transfer in multiple scattering 
and emitting layered media, Appl Opt 27 (1988) (12), pp. 2502–2509. 

RD.301  Sea Surface Temperature (SLSTR) Algorithm Theoretical Basis Document, 
SLSTR-ATBD-L2SST-v2.4, August 2012 

RD.302  Chevallier, F., Sampled databases of 60-level atmospheric profiles from the 
ECMWF analyses, SAF Programme: Research Report No. 4, 
EUMETSAT/ECMWF, 2001. 

RD.303  Tobin, D. & L. L. Strow (1994) A Compilation of First-order Line-mixing 
Coefficients for CO2 Q-branches, J. Quant. Spectrosc. Radiat. Transfer, 52, 
281. 

http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=V2mfMPeaac99FGL35ei&page=1&doc=1
http://apps.webofknowledge.com/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=V2mfMPeaac99FGL35ei&page=1&doc=1
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RD.304 Deshler, T., Hervig, M.E., Hofmann, D.J., Rosen, J.M. and Liley, J.B. (2003). 
Thirty years of in situ stratospheric aerosol size distribution measurements 
from Laramie, Wyoming (41N), using balloon-borne instruments. Journal of 
Geophysical Research 108(D5): doi: 10.1029/2002JD002514. issn: 0148-0227 

RD.306 SST CCI Uncertainty Characterisation Report v2, SST_CCI-UCR-UOE-002, 
2013. Available from www.esa-sst-cci.org 

RD.307 Rodgers C D, Inverse Methods for Atmospheric Sounding, World Scientific, 
Singapore, ISBN 981-02-2740-X, 2000. 

RD.308 Bulgin C E, Eastwood S, Embury O, Merchant C J, Donlon C, (2014).  The 
Sea Surface Temperature Climate Change Initiative: Alternative Image 
Classification Algorithms for Sea-Ice Affected Oceans.  Remote Sensing of 
Environment.  ISSB 0034-4257 doi:10.1016/j.rse.2013.11.022. 

RD.309 Hocking J, Rayer P, Saunders R, Matricardi M, Geer A and Brunel P.  RTTOV 
v10 Users Guide.  NWP SAF, The EUMETSAT Network of Satellite 
Application Facilities.  NWPSAF-MO-UD-023.  Version 1.5.  Date 12/01/2011 

RD.310 Thomas S M, Heidinger, A K, Pavolonis M J, Comparison of NOAA’s 
Operational AVHRR-Derived Cloud Amount to Other Satellite-Derived Cloud 
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Cloud-Detection Scheme Derived from CALIPSO and Applied within 
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1.3 Definitions of Terms 

The following terms have been used in this report with the meanings shown. 

Term Definition 

(A)ATSR (Advanced) Along track scanning radiometer 

AOD Aerosol optical depth 

ARB Anomaly Review Board 

ARC ATSR Reprocessing for Climate 

AVHRR Advanced Very High Resolution Radiometer 

ARGO Global array of observational profiling floats 

BT Brightness Temperature 

CCI Climate Change Initiative 

CLAVR-x Clouds from AVHRR Extended 

DJF December, January, February 

ECMWF European Centre for Medium-range Weather Forecasting 

EN3 Quality controlled subsurface temperature and salinity data set [RD.282] 

ERA-40 ECMWF Re-analysis covering 40 years 

FFM Fast Forward Model 

GAC Global Area Coverage 

GADS Global Aerosol Data Set 

GCOS Global Climate Observing System 

HadISST1 UKMO Hadley Centre Sea Ice and Sea Surface Temperature data set 
(version 1) 

JJA June, July, August 

LSD Local Standard Deviation 

LUTS Look-Up Tables 

MAP Maximum a posteriori 

MD Match-up dataset 

ML Maximum Likelihood 

NRT Near Real Time 
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NSIDC National Snow and Ice Data Center 

NOAA National Oceanic and Atmospheric Administration 

NWP Numerical Weather Prediction 

O-B Observation minus Background 

OE Optimal Interpolation 

OPAC the Optical Properties of Aerosols and Clouds dataset 

OSI-SAF Ocean and Sea Ice Satellite Application Facility (EUMETSAT) 

OSTIA Operational Sea Surface Temperature and Sea Ice Analysis 

PDF Probability distribution function 

QC Quality Control 

RMSE Root Mean Square Error 

RTM Radiative Transfer Model 

RTTOV Radiative Transfer for the Television and Infrared Orbiting Satellite 
Operational Vertical Sounder 

SADIST Synthesis of ATSR Data Into Sea-surface Temperature. 

SMMR Scanning multichannel microwave radiometer 

S-O Simulation minus Observation 

SOAR Second Order Auto-Regressive 

SOZ Solar Zenith Angle 

SSM/I  Special Sensor Microwave/Imager 

SST-CCI Sea Surface Temperature Climate Change Initiative 

TCWV Total Column Water Vapour 

TOA Top Of Atmosphere 

VisRTM Visible Radiative Transfer Model 
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2. OVERVIEW OF PROCESSING TO DERIVE SEA SURFACE 
TEMPERATURE 

Deriving sea surface temperature (SST) products from imagery of visible and infra-red 
radiometers comprises the following conceptual steps: 

• Preparatory processing. This includes orbit file reading, validity checks, 
association of auxiliary information to the orbit file being processed (including 
prior fields from numerical weather prediction, where relevant), and any pre-
processing adjustment to the data themselves. 

• Classification to identify valid pixels for SST retrieval. Although sometimes 
referred to as cloud detection, this also involves identifying which image pixels 
are cover only sea, and exclusion of pixels affected by sea ice or excessive 
aerosol. 

• Retrieval of SST (geophysical inversion). Generally, SST is derived as a weighted 
combination of observed brightness temperatures. The weights are either 
extracted appropriately to the context from pre-defined coefficient files, or are 
calculated dynamically given prior information (in the case of optimal estimation). 
Estimation of the retrieval uncertainty at pixel level is also part of this step. The 
prime retrieval is of the radiometric temperature of the ocean, which is taken as 
equivalent to the skin temperature. 

• Estimation of standardized SSTs. This is less common outside of SST CCI. An 
estimate is made, by geophysical modelling of near surface conditions, of SST at 
standard depth and time, given the retrieval skin SST at its observation time. An 
uncertainty in this adjustment is also estimated. 

• Gridding / averaging. This is relevant where L3 products are derived from full 
resolution imagery. Uncertainty estimates from full resolution need to be 
propagated properly to the L3 resolution, and additionally an estimate of the 
sampling uncertainty (arising from incomplete observation of cells) needs to be 
added. 

• Spatially complete interpolation (production of an L4 product). Combination of 
data from multiple sensors to derive a best estimate, including gap-filling by 
interpolation.  

2.1 Algorithm differences relative to v1.1 

Updated radiative transfer simulations, particularly capability to simulate atmospheric 
aerosol in the fast forward model RTTOV v11.3, used to include marine and stratospheric 
volcanic aerosol in cloud detection and optimal estimation steps. 

Bayesian Cloud Detection has replaced CLAVR-x cloud detection for AVHRRs, including 
use of pixel-level noise estimates to help account for “noisy” periods and sensors. 

Prior information on stratospheric volcanic aerosol loadings have been extended to the El 
Chichon period in addition to the Mt Pinatubo period, using HIRS data. 

The quality level assignment algorithm has been updated, and use of quality level in 
atmospheric correction smoothing and regridding steps refined. 

Extension to 1980s AVHRRs including per-pixel noise estimates and improved detection 
and adjustment of solar contamination relative to operational methods, with additional 
AVHRR SST-level harmonisation. 

Improved uncertainty propagation and configuration of L4 processing. 
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3. ALGORITHMS USED IN PREPARATORY PROCESSING 

Preparatory processing algorithms are the steps applied to imagery before geophysical 
algorithms are applied, to handle data issues. 

In this reprocessing, the only preparatory algorithm is shifting of the forward view of ATSR 
sensors to be better collocated with nadir view.  

This reprocessing is using the ESA v3 Level 2 archive for the ATSRs, for which it was 
hoped that no forward shifting would be necessary. However, small shifts appear to be 
required still, and this section presents the shifts are that are applied. 

3.1 Method to estimate offsets 

ATSR forward view offsets are estimated from the ATSR ultra-clear match-up dataset 
(MD), since parallax effects mean that only surface patterns should be used to match 
forward and nadir views.  

From the MD file we select targets which are: 

1. Fully clear according to the Bayesian Dual-Max mask 

2. Have a local standard deviation of nadir-view BT11 > 0.05 for the central 3x3 
pixels 

For all selected targets we calculate the standard deviation of the nadir-forward BT11 
difference using the central 3x3 pixels in the nadir view and all 25 3x3 boxes from the 
forward view: 

 

The forward view offset is estimated as the forward view box with the lowest total 
standard deviation summed over all matches in a year. Offsets are given as across track 
(element / x), along track (line, y) such that: 

• (-2,-2) means the centre-nadir matches with the forward view offset by 2 pixels 
towards lower indices in both directions i.e. elements 0-2 and lines 0-2 

• (0,0) means the centre-nadir matches with the centre of the forward view (no 
offset) i.e. elements 2-4 and lines 2-4 

Forward 
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• (2,2) means the centre-nadir matches with the forward view offset by 2 pixels 
towards higher indices in both directions i.e. elements 4-6 and lines 4-6 

 

3.2 Results 

The offsets in the tables in the following sections are applied as a pre-processing step. 
The results are calculated for each year of each sensor mission. Some variation in the 
best offsets are found, the biggest trend found in the best fit offset across track in the 
case of ATSR-2. Nonetheless, all the offsets are of -1, 0, or 1 pixel, which represents a 
distinct improvement from the situation in the previous reprocessing on L1b v2.0. 

3.2.1 ATSR1 

 

 

 
Year Across track Along track 

1991 -1 0 

1992 0 0 

1993 0 0 

1994 0 0 

1995 0 0 

1996 0 1 

1997 0 0 
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3.2.2 ATSR2 

 

 

 
Year Across track Along track 

1995 -1 0 

1996 -1 0 

1997 -1 0 

1998 -1 0 

1999 0 0 

2000 0 0 

2001 1 1 

2002 0 0 

2003 1 0 
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3.2.3 AATSR 

 

 

 
Year Across track Along track 

2002 0 -1 

2003 0 -1 

2004 0 -1 

2005 0 -1 

2006 0 -1 

2007 0 -1 

2008 0 -1 

2009 1 -1 

2010 0 -1 

2011 1 -1 

2012 1 0 
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4. IDENTIFICATION OF OBSERVATIONS VALID FOR SEA 
SURFACE TEMPERATURE ESTIMATION 

Cloud screening is a fundamental pre-processing step for sea surface temperature (SST) 
retrieval.  Traditionally, threshold based techniques have been used to detect cloud but 
these often fail under difficult circumstances -- for example, in the detection of thin cirrus 
or low-level fog.   

The Bayesian cloud detection algorithms presented here was developed original for 
ATSR instruments, and is now with v2 extended also to AVHRR instruments. The 
posteriori probability of clear sky is calculated, and retrievals are performed for pixels 
where this exceeds 90%. 

4.1 General Overview of Bayesian Classifier 

4.1.1 Applicability of Bayes’ Theorem 

The Bayesian classifier calculates a probability of clear-sky for any given pixel based on 
the satellite observations, prior information about the atmosphere and surface conditions 
and the respective errors in these variables. This is done based on Bayes’ theorem. 

In discussing Bayes’ theorem, notation for conditional probability is used. Thus 𝑃(𝐴|𝐵,𝐶) 
is the probability density for condition or observation 𝐴 given the assumption that 
conditions/observations 𝐵 and 𝐶 are the case. In this notation, cloud detection is the 
calculation of 𝑃(𝑐|𝒚𝑜 ,𝒙𝑏) -- i.e., the probability of the clear-sky condition, given the 
observations 𝒚𝑜 and the prior information we have brought to the problem, 𝒙𝑏. The 
Bayesian classifier calculates the likelihood that a pixel is a clear-sky (𝑃(𝑐|𝒚𝑜 ,𝒙𝑏)) based 
on the satellite observations and prior information. Formally Bayes theorem applied to the 
problem of cloud detection can be written: 

𝑃(𝑐|𝒚𝑜 ,𝒙𝑏) = 𝑃�𝒚𝑜�𝒙𝑏,𝑐�𝑃�𝒙𝑏�𝑐�𝑃(𝑐)
𝑃�𝒚𝑜�𝒙𝑏�𝑃�𝒙𝑏�

       (4-1) 

where: 

𝑐 denotes clear-sky 

𝒚𝑜 is the observation vector 

𝒙𝑏  is the state vector. 

 

The assumption can be made that the background state is independent of the clear-sky 
probability at the satellite pixel scale (1x1 km).  Assuming 𝑃(𝒙𝑏|𝑐) = 𝑃(𝒙𝑏), then equation 
4-1 can be simplified to give: 

 𝑃(𝑐|𝒚𝑜 ,𝒙𝑏) =
𝑃(𝒚𝑜|𝒙𝑏, 𝑐)𝑃(𝑐)

𝑃(𝒚𝑜|𝒙𝑏)  (4-2) 

The probability of the observations given the background state, 𝑃(𝒚𝑜|𝒙𝑏), can be 
expressed as the sum of the probabilities for each possible state (cloud 𝑐̅ and clear 𝑐). 

 𝑃(𝒚𝑜|𝒙𝑏) = 𝑃(𝑐)𝑃(𝒚𝑜|𝒙𝑏, 𝑐) + 𝑃(𝑐̅)𝑃(𝒚𝑜|𝒙𝑏, 𝑐̅) (4-3) 
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This can be rearranged to give the form of the equation used in the clear-sky probability 
calculation. 

 𝑃(𝑐|𝒚𝑜 ,𝒙𝑏) = �1 +
𝑃(𝑐̅)𝑃(𝒚𝑜|𝒙𝑏, 𝑐̅)
𝑃(𝑐)𝑃(𝒚𝑜|𝒙𝑏, 𝑐)�

−1

 
(4-4) 

𝑃(𝑐̅) is the prior probability of cloud and is equal to one minus the prior probability of 
clear-sky.   

 𝑃(𝑐̅) = 1 − 𝑃(𝑐) (4-5) 

4.1.2 Overview of flow of Bayesian processing 

Figure 4-1 shows a high level overview of the classification process.  The Bayesian 
classifier for the SST CCI processing takes European Centre for Medium-range Weather 
Forecasting (ECMWF) numerical weather prediction (NWP) reanalysis data as input to 
simulate clear sky brightness temperatures and top of the atmosphere reflectance.  The 
other inputs are ATSR satellite observations and cloudy PDF LUTs.  The Bayesian 
classifier provides the probability of clear-sky as output on a per pixel basis for use in 
conjunction with the SST data. 

Figure 4.2 gives a more detailed overview of the steps involved in the Bayesian 
classification.  The inputs, auxiliary data, calculations and outputs are described in the 
following sections, firstly for ATSR sensors, and then for AVHRR sensors. 
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Figure 4-1. Flow chart showing overview of the classification process. Green 
parallelograms indicate input data, blue squares indicate processing steps. 
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  Figure 4-2.  Bayesian classification steps for calculating clear-sky probability prior to 
SST retrieval.  Blue rectangles denote processing steps, blue diamonds decision 

making steps and green parallelograms data storage. 
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4.1.3 Equations for elements of probability calculation 

The probability of the observations given the background state for either class (cloud or 
clear) is split into a spectral and textural component denoted by subscripts ‘s’ and ‘t’.  
These are assumed to be independent. 

 𝑃(𝒚𝑜|𝒙𝑏, 𝑐) = 𝑃(𝒚𝑠𝑜|𝒙𝑏, 𝑐)𝑃(𝒚𝑡𝑜|𝒙𝑏, 𝑐) (4-6) 

For the cloud class the spectral component of this equation is calculated from a 
probability density function (PDF) look up table as described in section 4.2.1.2.  For clear-
sky this is calculated using the radiative transfer model where the distribution is assumed 
to be Gaussian.  The spectral probability for clear-sky is defined as follows: 

 
𝑃(𝒚𝑠𝑜|𝒙𝑏, 𝑐) =

𝑒�−
1
2∆𝑦

𝑡(𝑯𝑡𝑩𝑯+𝑹)−1∆𝑦�

2𝜋|𝑯𝑡𝑩𝑯 + 𝑹|0.5  
(4-7) 

𝑯𝑡𝑩𝑯 is the error covariance in the background state vector propagated through the fast 
forward model.  The 𝑯 matrix contains the tangent linear of the forward model. 

 𝑯 =
𝜕𝒚𝑠𝑏

𝜕𝒙𝑏  (4-8) 

This expresses the sensitivity of the forward model radiance (brightness temperature or 
reflectance) to changes in the reduced state vector (𝒙𝑏). 

The matrices for the Bayesian calculation depend on the uncertainty in NWP, forward 
modelling and the results of forward modelling. The H matrix is defined as follows for the 
case of three thermal channels. Equivalents for other channel selections follow the same 
construction in an obvious way. 

 

 𝑯 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐵𝑇3.7

𝜕𝑆𝑆𝑇𝑏
𝜕𝐵𝑇10.8

𝜕𝑆𝑆𝑇𝑏
𝜕𝐵𝑇12.0

𝜕𝑆𝑆𝑇𝑏
𝜕𝐵𝑇3.7

𝜕𝑇𝐶𝑊𝑉𝑏
𝜕𝐵𝑇10.8

𝜕𝑇𝐶𝑊𝑉𝑏
𝜕𝐵𝑇12.0

𝜕𝑇𝐶𝑊𝑉𝑏
𝜕𝐵𝑇3.7

𝜕𝒖10𝑏
𝜕𝐵𝑇10.8

𝜕𝒖10𝑏
𝜕𝐵𝑇12.0

𝜕𝒖10𝑏

𝜕𝐵𝑇3.7

𝜕𝐴𝑂𝐷𝑏
𝜕𝐵𝑇10.8

𝜕𝐴𝑂𝐷𝑏
𝜕𝐵𝑇12.0

𝜕𝐴𝑂𝐷𝑏 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

 

 

(4-9) 

 

 

 

Under nighttime conditions the tangent linears with respect to wind speed and aerosol 
optical depth are set to zero. 𝑩 is the background error covariance matrix and contains 
the errors of the components in the reduced state vector.  This can be specified as 
follows: 
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𝑩 =

⎣
⎢
⎢
⎢
⎡(𝜀𝑆𝑆𝑇

𝑏 )2 0.0 0.0 0.0
0.0 (𝜀𝑇𝐶𝑊𝑉

𝑏 )2 0.0 0.0
0.0 0.0 �𝜀𝒖10

𝑏 �2 0.0
0.0 0.0 0.0 (𝜀𝐴𝑂𝐷𝑏 )2⎦

⎥
⎥
⎥
⎤

 

 

(4-10) 

 

 

Matrix 𝑹 is the error covariance matrix of the differences between the model and 
observed values.  The model component, 𝑹𝑚 , can be derived as: 

 
𝑹𝑚 = �

(𝜀𝑖𝑚)2 𝑟2(𝜀𝑖𝑚)(𝜀𝑗𝑚)

𝑟2(𝜀𝑖𝑚)(𝜀𝑗𝑚) �𝜀𝑗𝑚�
2 � (4-11) 

 

 

where the diagonal terms describe the FFM error in the given channel and the off-
diagonal terms the co-variance in that error.  The observational component of this error is 
defined as the ‘noise’ in the observations or noise-equivalent delta brightness 
temperature (NEdT) in the thermal channels.  This is assumed to be diagonal: 

 
                                  𝑹𝑜 = �

(𝜀𝑖𝑜)2 0.0
0.0 �𝜀𝑗𝑜�

2� 
(4-12) 

 

𝑹𝑜 and 𝑹𝑚 are combined to define the R matrix.  We assume that r2 is equal to zero for 
the model error and therefore the off-diagonal terms of this matrix remain as zero. 

 
       𝑹 = 𝑹𝑚 + 𝑹𝑜 = �

(𝜀𝑖𝑚)2 + (𝜀𝑖𝑜)2 𝑟2(𝜀𝑖𝑚)(𝜀𝑗𝑚)

𝑟2(𝜀𝑖𝑚)(𝜀𝑗𝑚) �𝜀𝑗𝑜�
2

+ �𝜀𝑗𝑚�
2�  (4-13) 

For both clear and cloud classes the textural component is the local standard deviation of 
the 10.8 µm channel in the nine surrounding pixels (equation 2.3).  All textural 
probabilities are stored in PDF LUTs. 

4.1.4 Additional steps to account for volcanic stratospheric aerosol 

The eruptions of Mount Pinatubo (and Mount Hudson) in 1991 and of El Chichon injected 
significant amounts of sulfur dioxide gas into the stratosphere. This gas hydrolysed to an 
aerosol of sulfuric acid droplets that then decayed over a period of several years while 
spreading latitudinally. The aerosol has an impact at infrared wavelengths and a 
correction is made to the simulated brightness temperatures to account for this [RD.186] 
during cloud detection.  

Stratospheric aerosol is included in the forward model (RTTOV11.3) by adding a uniform 
later of sulphate aerosol between 20 and 24 km altitude. The aerosol number density for 
the layer is proportional to the infrared aerosol index (section 4.2.1.4). 
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𝑛0 = 32800 × aerosol_index 
(4-14) 

 

This aerosol index, and therefore the adjustment, goes to zero outside of the volcanic 
aerosol periods, and therefore the adjustment is also then zero. 

 

4.1.5 Auxiliary data for cloud detection used for all sensors 

4.1.5.1 Prior probability of clear sky 
The NWP total cloud cover, 𝒕, informs is the basis for the prior probability of clear, which 
is: 

 𝑷(𝒄) = 𝟏 − �
𝟎.𝟓, 𝒕 < 0.5

𝒕,𝟎.𝟓 ≤ 𝒕 < 0.95
𝟎.𝟗𝟓, 𝒕 > 0.95

� 

The truncation of the range is designed to compensate for expected uncertainties in the 
NWP data, such as frontal regions being misplaced, and cloud gaps not being resolved. 

4.1.5.2 Stratospheric Volcanic Aerosol Index 

The aerosol index represents the effective sulphate aerosol number density in the 
stratospheric layer for the two main eruption periods (post-Mount Pinatubo and post-El 
Chichón). The auxiliary data daily zonal (1 degree resolution) fields. These have been 
derived from HIRS observations shown in, using an update of the method of RD.395. The 
method exploits the differential sensitivity to aerosol of the 8.7 um channel of HIRS. To 
create continuous data from the HIRS orbit data, the complete field was estimated using a 
Kalman smoother applied daily to the day’s retrievals plus the value of the field on 
adjacent days advected using ERA-interim stratospheric winds between 20 and 25 km. 

 
 Figure 4-3. Stratospheric AOD calculated from HIRS. Left: El Chichón; Right: Mount 

Pinatubo; Top: IR AOD; Bottom: IR AOD uncertainty 

Given this aerosol index information, stratospheric aerosol is included in the forward 
model simulations (RTTOV) and it applies to both Bayesian Cloud detection and Optimal 
Estimation SST retrievals.  
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4.1.6 Result of Bayesian Cloud Detection 

The cloud detection algorithm outputs a probability of clear-sky for each pixel processed.   
SST retrieval is also done for each pixel so that the user on an application specific basis 
can determine the stringency of the cloud screening. Within the CCI project the SST 
retrieval is applied to pixels with a clear-sky probability greater than 0.1; however pixels 
with clear-sky probability less than 0.9 are considered low quality and not recommended 
for quantitative purposes. 

4.1.7 Assumptions and Limitations 

This section describes the current performance of the Bayesian cloud detection, 
considers assumptions and limitations and future enhancements to the algorithm 

4.1.7.1 Current Performance 

Over the ocean the Bayesian cloud detection performs better than the threshold based 
operational cloud mask. This is evidenced in the reduction of the standard deviation of the 
AATSR satellite minus in-situ SST differences between July 2002 and December 2007 
when using the Bayesian cloud detection compared to SADIST [RD.184]. 

There are known regions and particular cloud types where cloud detection is more 
difficult.  The easiest cloud to detect is that which is ‘bright’ and ‘white’ providing a distinct 
signal at both visible and infrared wavelengths that differs from that of the dark underlying 
ocean surface.  Low-level fog is often dark making it difficult to distinguish at visible 
wavelengths and has a temperature close to the SST.  Thin or semi-transparent ice cirrus 
often has a sub-pixel extent and is also difficult to detect.   

At high latitudes cloud detection is also more difficult in regions of sea-ice.  Newly formed 
sea-ice is close in temperature to the neighbouring open-water pixel and the surface is 
dark.  Over the sea-ice surface, melt ponds can also make it difficult to identify whether 
the surface is water or ice. Sea-ice pixels mistakenly classified as open water, will bias 
the SST retrieval. 

4.1.7.2 Assumptions Made 

Within the Bayesian cloud detection independence is assumed between the infrared and 
visible channel probabilities of clear and cloud observations.  In the context of the 
reduced state vector, TOA reflectance is assumed independent of prior SST.  This 
assumption is made to simplify the forward modelling.  Spectral and textural probabilities 
are also assumed to be independent allowing the extraction of two pieces of information 
from the observations.   

In the 𝑹𝑚 matrix an 𝒓2 value of zero is assumed in the off-diagonal term giving no 
covariance between channels.  In reality there will be a strong error covariance between 
the 10.8 and 12 µm channels (and the 3.7 µm channel at night).  Further research is 
needed to correctly determine the off-diagonal terms of this matrix. 

In the cloud detection scheme the assumption is made that the pixel will either be ‘clear 
over ocean’ or ‘cloud’.  Sea-ice pixels are unlikely to be well represented in the cloudy 
PDFs and therefore are more likely to be misclassified. 
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4.1.8 Future Enhancements 

Using a three-way image classifier could enhance cloud detection at high latitudes.  Each 
pixel would be classified as ‘clear-over-water’, ‘clear-over-ice’ or cloud.  The sea-ice 
surface could be modelled using the FFMs to help distinguish between open-water and 
ice pixels.  Work was undertaken as part of SST CCI in parallel with the high latitude 
extension developed for the AVHRR instruments [RD.308].  This showed particular 
benefits for AATSR where visible channel information were always available during the 
day, but more development is required for a consistent application across all ATSR 
instruments so as not to introduce a bias in the retrieved SSTs.  
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4.2 Clear-sky Detection for Along Track Scanning Radiometers 
(ATSRs) 

This section addresses implementation aspects for Bayesian Cloud Detection specific to 
ATSRs. 

The Along Track Scanning Radiometer (ATSR) instruments make observations at infrared 
and visible wavelengths at two viewing angles: the nadir view between 0-22° and the 
forward view between 52-55°. Both views can be exploited to give additional information 
for cloud detection purposes. ATSR-1 made measurements in spectral bands centred at 
1.6, 3.7, 10.8 and 12 µm, whilst ATSR-2 and AATSR instruments had additional visible 
wavelength channels centred at 0.55, 0.66 and 0.87 µm.  The probability of clear sky is 
calculated by assessing the likelihood that the pixel is clear given the observations, 
background information, cloudy probability density function (PDF) look-up tables (LUTs) 
and simulations of clear-sky conditions.  

4.2.1 Inputs to Bayesian Classifier 

The Bayesian classifier uses a number of inputs including sensor data, numerical weather 
prediction data, radiative transfer model output and cloud.   

4.2.1.1 Sensor Data - Brightness Temperature, Reflectance 

The ATSR observations used in the Bayesian classifier form the observation vector, 𝒚𝑜.  
The subset of channels used in the observation vector is dependent on time of day. 

The channels used in the cloud detection algorithm are present on all ATSR sensors and 
give consistency over the dataset time series.  The cloud detection algorithm is a dual 
view retrieval using data in the channels specified from both the nadir and forward views. 
The observation vector, 𝒚𝑜, is defined under day conditions as, 
 

 

𝒚𝑜 = �

𝑅𝐸1.6
𝐵𝑇10.8
𝐵𝑇12.0

𝐿𝑆𝐷3𝑥3(𝐵𝑇10.8)

� (4-9) 

under night conditions as, 
 

 

𝒚𝑜 = �

𝐵𝑇3.7
𝐵𝑇10.8
𝐵𝑇12.0

𝐿𝑆𝐷3𝑥3(𝐵𝑇10.8)

� (4-10) 

and under twilight conditions as, 
 

 
𝒚𝑜 = �

𝐵𝑇10.8
𝐵𝑇12.0

𝐿𝑆𝐷3𝑥3(𝐵𝑇10.8)
� (4-11) 

where:  

BT  denotes brightness temperature 

LSD  is the local standard deviation over a 3x3 pixel box 
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RE  denotes reflectance  

1.6, 3.7, 10.8, 12.0 subscripts define the ATSR channel.   

The 10.8 and 12 µm brightness temperatures are used under all conditions and the 1.6 
and 3.7 µm channels are alternated on the basis of the solar zenith angle.  Daytime 
conditions are defined by a solar zenith angle less than 87.5 degrees, and nighttime 
conditions by solar zenith angles above 92.5 degrees.  The twilight condition is between 
87.5 and 92.5 degrees where a minimum set of channels is used.  In addition to the 
spectral information, the local standard deviation in the 10.8 µm brightness temperature is 
used as a textural measure in the observational data. 

 

 
𝐿𝑆𝐷𝑖 = �

1
9� � (𝑦𝑖𝑜 − 〈𝑦𝑖𝑜〉)2
9 pixel box

 (4-12) 

where: 

𝒚𝒊𝒐 is the 10.8 µm brightness temperature for a given observation. 

< 𝒚𝒊𝒐 > is the mean 10.8 µm brightness temperature across the 3x3 pixel box. 

 

4.2.1.2 Auxiliary Data and Look-Up Tables 

NWP data from the ECMWF are used in the radiative transfer forward modelling (section 
4.2.1.3) to simulate clear sky brightness temperatures and top of the atmosphere (TOA) 
reflectance.  The full background state vector contains all surface and atmospheric 
variables that can influence the calculated radiance. For the characterisation of the 
uncertainty in the clear-sky simulation results that is needed for the Bayesian calculation, 
only the dominant terms need be considered.  These terms are shown in the reduced 
state vector, 𝒙𝑏, shown below. At nighttime (when only infra-red channels are used), the 
uncertainty with respect to windspeed and aerosol optical depth (AOD) is set to zero.  For 
ATSR-1 during the period of elevated stratospheric aerosol from the eruption of Mt 
Pinatubo, a fifth element describing the stratospheric aerosol is included in the state 
vector. For the rest of the record, the reduced state vector is: 

 

 

𝒙𝑏 = �

𝑆𝑆𝑇𝑏
𝑇𝐶𝑊𝑉𝑏
𝒖10𝑏

𝐴𝑂𝐷𝑏

� (4-13) 

where: 

SST  is sea surface temperature  

TCWV  is total column water vapour 

𝒖10  is the 10 m wind vector  

AOD  is aerosol optical depth. 
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Reflectance/BT distributions given cloud probabilities are stored as empirical PDFs as 
these are difficult to model and cannot be assumed to be Gaussian.  The PDFs are 
generated using the entire ATSR time series of observations initially bootstrapped using 
the operational SADIST cloud mask to identify cloudy pixels.  Subsequently these were 
iterated once using the Bayesian cloud detection scheme as part of the ATSR 
Reprocessing for Climate (ARC) project.  This iteration enabled the inclusion of dual view 
data and refinement of the PDF dimensions. 

The probability density function (PDF) given the background state for each class of 
observation (clear or cloud) is expressed as a ‘spectral’ and ‘textural’ component (outlined 
in section 4.1.3), which are assumed to be independent.  For both cloud and clear 
classes, the textural component is an empirical PDF (captured as a look up table, LUT) 
generated as explained above. This is also the case for the spectral component for the 
cloud class. The clear-sky spectral PDF is calculated using the forward models based on 
the uncertainty of the elements in 𝒙𝑏.  The dimensions, range and binsize of the 
respective PDFs (LUTs) are shown in the tables below.  These are chosen so that the 
resulting PDF is adequately smooth, for which we required that the numbers of 
observations used to build the LUTs was at least three orders of magnitude larger than 
the number of LUT bins. The satellite zenith angle dimension is used to separate the 
nadir and forward view PDFs.  Observations that fall outside the PDF dimensions are 
fixed to the edge of the PDFs for the Bayesian cloud detection. 

For the spectral probability under nighttime conditions a three channel brightness 
temperature PDF is used.  This includes a day/night flag as it is also used in conjunction 
with a visible channel PDF during the day. 

 

Table 4-1. Cloud Nighttime Spectral PDF  

Dimension Unit Upper 
limit 

Lower 
limit 

Bin 
size 

Number of 
bins 

11µm BT – NWP SST K 10.00 -20.00 2.0 15 
11-12µm BT difference K 9.0 -1.00 0.2 50 
3.7-11µm BT 
diff  

K 10.00 -6.00 0.2 80 
NWP SST K 310.00 260.00 2.5 20 
Satellite zenith angle ° 60.00 0.0 30.0 2 
Day/Night ° 180.00 0.0 90.0 2 

 

Figure 4- shows some slices of the spectral PDF described in Table 4-1.  The PDFs are 
three-dimensional in brightness temperature space (11 µm BT–NWP SST, 11–12 µm BT 
and 3.7–11 µm BT).  For visualization purposes the PDFs have been collapsed along one 
of these dimensions and presented for nadir only data for two different NWP SST values.  
The 11–12 µm BT is plotted as a function of 11 µm BT–NWP SST in the top panel, and 
as a function of the 11-3.7 µm BT in the bottom panel.  The PDF shape and orientation 
shifts significantly between the two NWP SSTs in the slices presented indicating the 
importance of constraining the PDF as a function of all the constituent dimensions. 
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Figure 4-5. Example thermal spectral PDFs for two NWP SST values. The top panel 
shows the 10.8 micron BT minus the NWP SST against the 10.8 minus 12 micron 

BT. The lower panel shows the 3.7 minus 10.8 micron BT against the 10.8 minus 12 
micron BT. PDF shapes show significant variation as a function of SST. 

During the day, the observation vector includes both infrared and visible channel data.  
The PDFs for the infrared and visible components are assumed to be independent which 
is justified by the different physical processes determining radiance in the reflectance 
compared to thermal bands.  A reduced thermal spectral PDF based on the 10.8 and 12 
µm channels only is used in conjunction with a visible PDF based on the 1.6 µm channel. 

 

Table 4-2. Daytime two-channel thermal cloudy spectral PDF 

Dimension Unit Upper limit Lower limit Bin size Number of bins 
11µm BT – NWP SST K 10.00 -20.00 1.0 30 

11-12µm BT difference K 9.0 -1.00 0.2 50 

NWP SST K 310.00 260.00 1.0 20 

Satellite zenith angle ° 60.00 0.0 30.0 2 

Day/Night ° 180.00 0.0 90.0 2 
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Table 4-3. Daytime reflectance cloudy spectral PDF 

Dimension Unit Upper 
limit 

Lower 
limit 

Bin size Number of 
bins 

1.6µm reflectance  1.00 0.0 0.01 100 

Solar zenith angle ° 95.00 0.0 2.5 38 

Satellite zenith angle ° 60.00 0.0 30.0 2 

Figure 4-4 shows a graphical representation of the dual view PDF for the 1.6 µm channel.  
The two panels show the dual view data for different solar zenith angles.  As the solar 
zenith angle increases the PDF becomes more spread out with a tendency towards 
higher reflectance in the nadir view.   At lower solar zenith angles the 1.6 µm nadir versus 
forward view PDF is closer to the 1:1 line.  The reflectance peak for relatively dark clouds 
may be the result of partially filled pixels flagged as cloud where some of the darker 
underlying ocean surface is also visible. 

 
Figure . Visible spectral dual view PDFs showing the 1.6 micron nadir versus 

forward view reflectance given cloudy conditions. 

A 10.8 µm textural PDF is a useful tool for cloud detection and is used alongside the 
spectral PDF for all classifications [Table 4-4]. Figure 4-5 shows the textural PDF under 
day and nighttime conditions for the nadir view data.  The cloudy PDF is much broader 
than the clear-sky PDF as cloud surfaces are more heterogeneous than the underlying 
sea surface over a 3x3 pixel [3x3 km] surface area.   

 

Table 4-4. Textural PDF construction. Separate PDFs are generated for clear-sky 
and cloudy conditions. 

Dimension Unit Upper 
limit 

Lower 
limit 

Bin 
size 

Number of 
bins 

11 µm texture K 2.0 0.0 0.005 400 
Satellite zenith 

l  
° 60.0 0.0 30.0 2 

Day/Night ° 180.0 0.0 90.0 2 
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Figure 4-4. 11 micron textural PDFs dependent upon time of day for cloud and 

clear-sky observations (nadir view only) 

4.2.1.3 Forward model 

A single forward model is used for the cloud detection scheme. RTTOV 11.2 supports 
both channels at infrared wavelengths (3.7, 11, and 12 um) and solar channels (1.6 um). 
Solar corrections are included for the 3.7 um channel, although the current version of the 
processor does not yet use the processor during the day. Tangent linears are calculated 
with respect to elements of the reduced state vector (xb) for the calculated brightness 
temperature or reflectance. 

RTTOV 11.2 is the most recent edition of a fast forward model (FFM) developed at the 
EUMETSAT NWP Satellite Application Facility to calculate atmospheric radiative transfer 
at infrared and visible wavelengths [RD.309].  NWP atmospheric profile and surface 
conditions are used as input and the model is run at the ATSR geolocation tie-points at a 
resolution of 25 x 32 km.  The outputs are then interpolated to the pixel location. 
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4.3 Clear-sky Detection for Advanced Very High Resolution 
Radiometers (AVHRRs) 

This section addresses implementation aspects for Bayesian Cloud Detection specific to 
AVHRRs, published in RD.410. 

The Advanced Very High Resolution Radiometer (AVHRR) instruments make 
observations at visible and infrared wavelengths. AVHRR instruments have a single view, 
with satellite zenith angles ranging between 0-55.4°.  Data are processed at two 
resolutions: Full Resolution Area Coverage (FRAC) and Global Area Coverage (GAC).  
Clear-sky detection is based on the Bayesian classifier described in Section 4.1. 

4.3.1 Inputs to Bayesian Classifier 

The Bayesian classifier uses a number of inputs including sensor data, numerical weather 
prediction data, radiative transfer model simulations and auxiliary PDFs for cloud 
detection. 

4.3.1.1 Sensor Data – Brightness Temperature and Reflectance 

Three different AVHRR instruments (1-3) have been operational during the AVHRR data 
record between 1979-2016, with different numbers of channels available. The wavelength 
bands and channel numbers for the AVHRR instruments are provided below in Table 4-5 
to Table 4-7 [RD.312].   

 
Table 4-5 AVHRR-1 Channel Wave Bands 

Channel number Wave Band (µm) 
1 0.58 – 0.68 

2 0.725 – 1.0 

3 3.55 – 3.93 

4 10.3 – 11.3 

 

Table 4-6 AVHRR-2 Channel Wave Bands 

Channel number Wave Band (µm) 
1 0.58 – 0.68 

2 0.725 – 1.0 

3 3.55 – 3.93 

4 10.3 – 11.3 

5 11.5 – 12.5 
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Table 4-7 AVHRR-3 Channel Wave Bands 

Channel number Wave Band (µm) 
1 0.58 – 0.68 

2 0.725 – 1.0 

3A 1.58 – 1.64 

3B 3.55 – 3.93 

4 10.3 – 11.3 

5 11.5 – 12.5 

 

The instrument type of each member of the AVHRR series is given in Table 4-8. For 
AVHRR-3 instruments, data are only transmitted from either channel 3A or 3B at any 
given time, with the intention to relay channel 3A data during the daytime and channel 3B 
data at night.  For some AVHRR-3 instruments channel 3A information is not consistently 
transmitted during the day and channel 3B data are provided for the entire instrument 
record.  Subsets of the available channels are used in the cloud detection algorithm 
depending on the instrument and time of day. 

 

Table 4-8 AVHRR instrument types 

Instrument Instrument Number 
AVHRR-1 6,8,10 

AVHRR-2 7,9,11,12,14 

AVHRR-3 15,16,17,18,19, Metop-A, Metop-B 

 

FRAC data have a nominal spatial resolution of 1.1 km at nadir.  GAC data are an 
average of the data from four pixels across track, used to represent a footprint of five 
pixels across track by three pixels along track.  GAC data are sampled by averaging four 
pixels along track, missing one pixel and then averaging four more pixels, for every third 
scan line.  They have a nominal resolution of 4 km at nadir. 
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The AVHRR observations used in the Bayesian classifier form the observation vector, 𝒚𝑜.  
For AVHRR-1 instruments the observation vector is defined under day conditions as: 

 

and under night conditions as: 

 

where:  

BT  denotes brightness temperature 

LSD  is the local standard deviation over a 3x3 pixel box 

RE  denotes reflectance  

0.6, 0.8, 3.7, 10.8, 12.0 subscripts define the AVHRR channel.   

 

For AVHRR 2 and 3 instruments the observation vector is defined under daytime 
conditions as: 

 

and under nighttime conditions as: 
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4.3.2 Auxiliary Data and Look-Up Tables 

The background state vector for AVHRR clear-sky detection is the same as that specified 
for the ATSR instruments, and is described in section 4.2.1.2.  

Probability density functions (PDFs) of reflectance and brightness temperature 
distributions under cloud conditions are generated empirically as these are difficult to 
model and cannot be assumed to be Gaussian.  Separate PDFs are generated for 
AVHRR FRAC and AVHRR GAC data due to resolution and calibration differences. 

4.3.2.1 Look-Up Table Specification 

AVHRR FRAC and AVHRR GAC look-up tables both have the same specifications.  We 
define look up tables for spectral and textural components of the observations, which we 
assume to be independent in the Bayesian probability calculation.  We define a single 
channel PDF using the 11 μm channel for use by AVHRR-1 instruments during the day 
(as these do not have a 12 μm channel). 

 

Table 4-9: Single channel thermal spectral PDF specification. 

Dimension Unit Upper 
Limit 

Lower 
Limit 

Bin Size Number 
of Bins 

11 μm BT K 305.0 260.0 1.0 45 

NWP SST K 310.0 260.0 1.0 50 

Path Length - 2.4 1.0 0.35 4 

Day/Night Degrees 180.0 0.0 90.0 2 

 

We define two thermal spectral PDFs that use two channels.  The 11 and 12 μm PDF is 
used by AVHRR-2 and AVHRR-3 instruments, whilst the 3.7 and 11 μm PDF by the 
AVHRR-1 instruments. 

 

Table 4-10: Two channel (11, 12 μm) thermal spectral PDF specification. 

Dimension Unit Upper 
Limit 

Lower 
Limit 

Bin Size Number 
of Bins 

11 μm BT – NWP SST K 10.0 -20.0 1.0 30 

11-12 μm BT K 9.0 -1.0 0.2 50 

NWP SST K 310.0 260.0 1.0 50 

Path Length - 2.4 1.0 0.35 4 

Day/Night Degrees 180.0 0.0 90.0 2 
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Table 4-11: Two channel (3.7, 11 μm) thermal spectral PDF specification. 

Dimension Unit Upper 
Limit 

Lower 
Limit 

Bin Size Number 
of Bins 

11 μm BT – NWP SST K 10.0 -20.0 1.0 30 

3.7-11 μm BT K 10.0 -6.0 0.2 80 

NWP SST K 310.0 260.0 1.0 50 

Path Length - 2.4 1.0 0.35 4 

Day/Night Degrees 180.0 0.0 90.0 2 

 

The three-channel thermal spectral PDF is used when processing AVHRR-2 and AVHRR-
3 data at nighttime. 

 

Table 4-12: Three channel thermal spectral PDF specification. 

Dimension Unit Upper 
Limit 

Lower 
Limit 

Bin Size Number 
of Bins 

11 μm BT – NWP SST K 10.0 -20.0 1.0 30 

11-12 μm BT K 9.0 -1.0 0.2 50 

3.7-11 μm BT K 10.0 -6.0 0.2 80 

NWP SST K 310.0 260.0 2.5 20 

Path Length - 2.4 1.0 0.35 4 

Day/Night Degrees 180.0 0.0 90.0 2 

 

All AVHRR sensors use the two-channel visible PDF using the 0.6 and 0.8 μm reflectance 
during the day.  The 1.6 μm channel is not used in the visible cloud detection as it is 
rarely available throughout the AVHRR data record. 

 

Table 4-13: Two channel visible spectral PDF specification. 

Dimension Unit Upper 
Limit 

Lower 
Limit 

Bin Size Number 
of Bins 

0.6 μm refl - 1.0 0.0 0.01 100 

0.8 μm refl - 1.0 0.0 0.01 100 

Solar Zenith Angle Degrees 95.0 0.0 2.5 38 

Path Length - 2.4 1.0 0.35 4 

 

The 11 μm textural PDF is used day and night for all AVHRR sensors.  For the AVHRR 
GAC PDFs we use the daytime cloudy PDF texture both day and night. 
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Table 4-14: 11 μm textural PDF specification. 

Dimension Unit Upper 
Limit 

Lower 
Limit 

Bin Size Number 
of Bins 

11 μm texture K 2.0 0.0 0.005 400 

Path Length - 2.4 1.0 0.35 4 

Day/Night Degrees 180.0 0.0 90.0 2 

 

4.3.2.2 AVHRR FRAC Look-Up Tables 

AVHRR FRAC probability density functions (PDFs) are initial derived using the 
EUMETSAT operational cloud mask and five years of data (2008-2013) during which this 
masking is known to be consistent.  The PDFs are then iterated for a second time using 
the output of Bayesian cloud detection using the EUMETSAT-based PDFs as auxiliary 
input over the full data record (2006-2016).  

The following figures show slices through some of the PDFs defined in the specification 
above. Figure 4-6 is a slice though the two-channel (10.8 and 12 μm) thermal PDF at a 
path length of 1-1.35 and NWP SST of 2808-281 K.  The figure shows the differences 
between the day and nighttime PDFs.  The distributions are similar, but with the nighttime 
PDF showing larger 10.8 μm – NWP SST differences. 
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Figure 4-5: AVHRR FRAC two channel (10.8 and 12 μm) PDFs for daytime (top) and 

nighttime (bottom) for atmospheric path length of 1-1.35 and NWP SST of 280-281 K. 

 

Figure 4-7 shows slices through the three-channel thermal PDFs for two different NWP 
SST bins (275-277.5 K and 290-292.5 K).  The extent of the PDFs varies with NWP SST, 
with a reduction in the range of 10.8 μm - NWP SST differences at the positive end for 
higher NWP SST bins. 

 

 

 

 
Figure 4-6: AVHRR FRAC three-channel (3.7, 10.8 and 12 μm) PDFs for two different 
NWP SST bins (275-277.5 K and 290-292.5 K).  Atmospheric path length is constant at 1-1.35. 
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Figure 4-8 shows a slice through the two channel visible PDF (0.6 and 0.8 μm) for two 
different atmospheric path lengths (1-1.35 and 2.05-2.4) for a solar zenith angle of 37.5-
40 degrees.  At higher path lengths, the PDF is more compressed with fewer 
observations at high reflectance. 

 

 

 
Figure 4-7: AVHRR FRAC two-channel visible PDFs for the 0.6 and 0.8 μm channels at 

two different path lengths (1-1.35 (top) and 2.05-2.4(bottom)), at a solar zenith angle of 37.5-
40 degrees. 

Figure 4-9 shows the textural PDFs for the 11 μm local standard deviation across 3x3 
pixels for both clear-sky and cloudy observations.  The plots show cloud (left), clear-sky 
(centre) and the ratio between them (right) for both day and night time observations.  
Some digitization is obvious at lower standard deviations, most clearly seen in the ratios 
at values < 0.2. 
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Figure 4-8: AVHRR FRAC 11 μm local standard deviation PDFs for cloud (left), clear-sky 

(centre), and the ratio (right). 

 

4.3.2.3 AVHRR GAC Look-Up Tables  

AVHRR GAC PDFs are generated from Metop-A data using the AATSR look-up tables.  A 
brightness temperature shift is derived using RTTOV 11.3 infrared simulations to make 
the Metop-A GAC data ‘look like’ AATSR data at the point of performing the cloudy PDF 
look-up.  This shift takes the form of a cubic, defined for two atmospheric path lengths 
(1.0 and 1.8) as a function of total column water vapour.  A linear interpolation between 
the two sets of coefficients is implemented dependent on the path length of the given 
observation.  The shifts are channel specific as defined below: 

 

Figure 4-9: Brightness temperature shifts from Metop-A to AATSR. 

Wavelength 
(μm) 

Path 
Length 

a3 a2 a1 a0 

3.7 1.0 -7.13e-07 7.81e-05 -0.0029 0.0495 

10.8 1.0 4.33e-07 -6.37e-05 0.0016 -0.0059 

12.0 1.0 5.53e-07 3.69e-06 -0.014 -0.31 

3.7 1.8 -1.19e-06 0.00013 -0.0044 0.094 

10.8 1.8 7.14e-07 -9.71e-05 0.0025 -0.0094 

12.0 1.8 3.21e-06 -0.00021 -0.0099 -0.47 

AVHRR GAC PDFs generated from Metop-A data are used for cloud detection with GAC 
data from all the AVHRR sensors.   The equator overpass time of the different AVHRR 
sensors is variable according to whether they are morning or afternoon satellites and orbit 
drift over the instrument lifetime.  Figure X below shows the equator overpass time for the 
different AVHRR sensors. 
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Figure 4-10: AVHRR equator overpass times 

Metop-A remains in a stable orbit over its lifetime and as a consequence does not make 
observations at solar zenith angle below ~32.5 degrees (dependent on path length), and 
a consequence, some bins of the visible channel PDF remain unpopulated.  To enable 
these PDFs to be used with other instruments, these unpopulated bins are modified by 
extrapolation from well-populated solar zenith angle bins for each given path length.   

A brightness temperature shift (similar to the one described above in the PDF generation) 
is also required to use Metop-A PDFs with other AVHRR instruments.  These shifts are 
cubic in form and channel dependent as a function of total column water vapour (Table 
4-15 ). The coefficients were obtained using radiative transfer simulation to relate 
expected clear-sky brightness temperatures for other AVHRRs to Metop-A for the 
equivalent channels. Shifts are not required when using the visible channel look-up tables 
or textural PDFs. 

 

Table 4-15: Brightness temperature shifts for all AVHRR sensors to Metop-A for 
cloudy PDF look-up. 

Instrument Wavelength 
(μm) 

Path 
Length 

a3 a2 a1 a0 

NOAA-19 3.7 1.0 2.56e-07 -3.34e-05 0.00016 -0.027 

10.8 1.0 1.29e-07 -2.27e-05 3.57e-05 -0.0011 

12.0 1.0 -1.07e-07 -2.91e-05 0.12 0.21 

3.7 1.8 3.73e-07 -4.76e-05 0.00017 -0.037 

10.8 1.8 3.04e-07 -4.31e-05 0.0057 -0.0064 

12.0 1.8 -2.17e-06 0.00014 0.0073 0.32 

       

NOAA-18 3.7 1.0 -4.61e-07 2.86e-05 -0.0031 0.031 

10.8 1.0 1.047e-07 -2.01e-05 0.00013 -0.00896 

12.0 1.0 -2.13e-07 -2.45e-06 0.0067 0.131 

3.7 1.8 -7.95e-07 5.66e-05 -0.0048 0.058 

10.8 1.8 2.598e-07 -3.9996e-
05 

0.00082 -0.023 

12.0 1.8 -1.61e-06 0.00012 0.0037 0.211 
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Instrument Wavelength 
(μm) 

Path 
Length 

a3 a2 a1 a0 

NOAA-17 3.7 1.0 1.53e-07 -2.42e-05 -0.00034 -0.019 

10.8 1.0 2.38e-08 -6.99e-06 -0.00025 -0.00015 

12.0 1.0 8.3e-08 -1.95e-05 2.45e-05 -0.031 

3.7 1.8 1.88e-07 -3.03e-05 -0.00065 -0.023 

10.8 1.8 1.26e-07 -1.75e-05 -1.25e-05 -0.0028 

12.0 1.8 5.38e-07 -7.44e-05 0.0022 -0.068 

       

NOAA-16 3.7 1.0 3.36e-06 -0.00032 0.013 -0.33 

10.8 1.0 -2.99e-07 1.068e-05 0.00059 0.021 

12.0 1.0 -8.48e-08 -3.52e-05 0.0079 0.11 

3.7 1.8 5.12e-06 -0.00049 0.019 -0.504 

10.8 1.8 -9.81e-07 0.00015 -0.0016 0.06 

12.0 1.8 -9.498e-07 1.71e-05 0.0075 0.16 

       

NOAA-15 3.7 1.0 3.15e-06 -0.000298 0.118 -0.315 

10.8 1.0 -3.11e-08 6.43e-06 -0.0002 -0.0016 

12.0 1.0 8.13e-08 -1.78e-05 -0.00029 -0.031 

3.7 1.8 4.796e-06 -0.00046 0.017 -0.479 

10.8 1.8 -6.8e-08 1.14e-05 -0.00034 -0.0021 

12.0 1.8 5.71e-07 -7.63e-05 0.0019 -0.068 

       

NOAA-14 3.7 1.0 -9.168e-07 7.01e-05 -0.0057 0.0398 

10.8 1.0 3.49e-07 -5.83e-05 0.00104 0.01398 

12.0 1.0 -4.88e-08 -1.29e-05 0.0047 0.0837 

3.7 1.8 -1.67e-06 0.00014 -0.0092 0.085 

10.8 1.8 7.35e-07 -0.0001 0.0022 0.018 

12.0 1.8 -8.87e-07 5.91e-05 0.0029 0.137 

       

NOAA-12 3.7 1.0 -1.09e-06 8.42e-05 -0.007 0.039 

10.8 1.0 -1.795e-07 3.86e-05 0.00068 0.036 

12.0 1.0 6.86e-08 -2.97e-05 0.0038 0.041 

3.7 1.8 -1.98e-06 0.00017 -0.11 0.086 

10.8 1.8 -6.35e-07 8.899e-05 -0.00058 0.0697 

12.0 1.8 -1.84e-07 -2.07e-05 0.0042 0.049 

       

NOAA-11 3.7 1.0 7.52e-07 -7.62e-05 0.0029 -0.062 

10.8 1.0 -.23e-08 -1.69e-05 -0.0003 -0.0069 
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Instrument Wavelength 
(μm) 

Path 
Length 

a3 a2 a1 a0 

12.0 1.0 2.93e-07 -4.56e-05 -0.0011 -0.068 

3.7 1.8 1.15e-06 -0.0012 0.0043 -0.093 

10.8 1.8 2.62e-07 -3.48e-05 4.75e-05 -0.017 

12.0 1.8 1.40e-06 -0.00017 0.0032 -0.14 

       

NOAA-10 3.7 1.0 2.56e-07 -3.31e-05 3.06e-05 -0.039 

10.8 1.0 -1.08e-06 0.00021 -0.0023 0.041 

3.7 1.8 3.15e-07 -4.13e-05 -0.00021 -0.04996 

10.8 1.8 -2.79e-06 0.000401 -0.0076 0.115 

       

NOAA-09 3.7 1.0 9.61e-07 -9.17e-05 0.0039 -0.081 

10.8 1.0 1.91e-07 -3.66e-05 -0.00026 -0.009 

12.0 1.0 3.81e-07 -6.296e-05 -0.00199 -0.118 

3.7 1.8 1.47e-06 -0.00014 0.0057 -0.123 

10.8 1.8 5.37e-07 -7.45e-05 0.0006 -0.025 

12.0 1.8 2.16e-06 -0.00026 0.0048 -0.243 

       

NOAA-08 3.7 1.0 -8.08e-07 5.83e-05 -0.006 0.0069 

10.8 1.0 -6.82e-07 0.00013 -0.0092 0.0299 

3.7 1.8 -1.51e-06 0.00012 -0.0096 0.035 

10.8 1.8 -1.95e-06 0.00028 -0.0046 0.081 

       

NOAA-07 3.7 1.0 4.54e-07 -4.78e-05 0.0016 -0.042 

10.8 1.0 2.85e-08 -1.16e-05 -9.51e-05 -0.003 

12.0 1.0 2.11e-07 -4.55e-05 0.0013 -0.032 

3.7 1.8 6.52e-07 -6.87e-05 0.0022 -0.059 

10.8 1.8 1.58e-07 -2.29e-05 0.00015 -0.00897 

12.0 1.8 8.19e-07 -0.00012 0.0045 -0.083 

       

NOAA-06 3.7 1.0 -2.39e-06 0.00021 -0.013 0.128 

10.8 1.0 -7.47e-07 0.00015 -0.0012 0.031 

3.7 1.8 -4.38e-06 0.0004 -0.021 0.243 

10.8 1.8 -2.17e-06 0.00031 -0.0055 0.09 

Figure 4-12 shows the brightness temperature shifts from all AVHRR sensors to Metop-A 
as given in Table 1.12, as a function of total column water vapour and for the two different 
path lengths.  Shifts for three channels are shown: 3.7 μm (left), 10.8 μm (centre) and 12 
μm (right). 
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Figure 4-11: Brightness temperature shifts for all AVHRR sensors to Metop-A for 

three infrared channels; 3.7, 10.8 and 12 μm. Bars, +/-1 sigma range of simulated 
differences. Lines, fitted transformation function.  

 

The following figures show some slices through the AVHRR GAC PDFs. Figure 4-13 
compares the PDF of the 10.8-12 μm and 10.8 μm – NWP SST differences between day 
and night.  The atmospheric path length bin is 1-1.35 and the NWP SST is 280-281 K.  
The PDFs are consistent between day and night as would be expected for infrared 
wavelengths. 
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Figure 4-12: AVHRR GAC two channel (10.8 and 12 μm) PDFs for daytime (top) and 

nighttime (bottom) for atmospheric path length of 1-1.35 and NWP SST of 280-281 K. 

 

Figure 4-14 shows slices three different slices through the three channel (3.7, 10.8 and 
12 μm) thermal PDFs for two different NWP SSTs (275-277.5 K and 290-292.5 K).  The 
PDF changes shape with variation in the NWP SST. 

 

 

 

 
Figure 4-13: AVHRR GAC three-channel (3.7, 10.8 and 12 μm) PDFs for two different 
NWP SST bins (275-277.5 K and 290-292.5 K).  Atmospheric path length is constant at 1-1.35. 
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Figure 4-15 shows the 0.6 and 0.8 μm visible channel PDFs for two different path lengths 
(1-1.35 and 2.05-2.4).  At longer path lengths, the PDF is compressed, with lower 
maximum reflectance observed. 

 
Figure 4-14: AVHRR GAC two-channel visible PDFs for the 0.6 and 0.8 μm channels at 

two different path lengths (1-1.35 (top) and 2.05-2.4(bottom)), at a solar zenith angle of 30-
32.5 degrees. 

 

Figure 4-16 shows the textural PDFs for cloud (left), clear-sky (centre) and the ratio 
between the two (right).  The daytime PDFs are used at night.  The PDFs show some 
digitization, particularly at low 11 μm  3x3 pixel standard deviations.  The digitization 
effects are less apparent in the ratio above ~0.1. 

 

 
Figure 4-15: AVHRR GAC 11 μm local standard deviation PDFs for cloud (left), clear-sky 

(centre), and the ratio (right). 

The prior clear-sky probability is calculated using 1 – Total Cloud Cover (TCC) as 
specified in the ECMWF ERA-Interim data.  This provides a more dynamic specification of 
prior clear-sky probability than a static map including seasonal variability.  Limits are 
placed on the prior clear-sky probabilities of 0.1 and 0.5 where 1 – ECMWF TCC exceeds 
these values.   
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4.3.2.4 Forward Model 

A single forward model is used in the cloud detection scheme, supporting both infrared 
and visible wavelength radiative transfer simulations, a capability of the RTTOV 11.3 
released currently used.  NWP atmospheric profile and surface conditions are used as 
input and the model is run at AVHRR geolocation tie-points.  The outputs are then 
interpolated to the pixel location.  Tangent linears are calculated with respect to the 
elements of the reduced state vector (xb) for the calculated brightness temperature or 
reflectance. 

 

𝒙𝑏 = �

𝑆𝑆𝑇𝑏
𝑇𝐶𝑊𝑉𝑏
𝒖10𝑏

𝐴𝑂𝐷𝑏

� 

 

where: 

SST  is sea surface temperature  

TCWV  is total column water vapour 

𝒖10  is the 10 m wind vector  

AOD  is aerosol optical depth. 

Forward model performance in the visible channels (0.6, 0.8 μm) was assessed using test 
scenes from FRAC data and clear-sky matches from a match up dataset (MMD).  The 
Bayesian cloud detection for the ATSR instruments did not routinely use the short wave 
visible channels and until the release of RTTOV v11, this did not support visible channel 
simulations.  Comparisons were made between the observed and simulated reflectance 
using the MMD.   The visible channel observations use the 2015 CSSP calibration 
coefficients.   It was found that RTTOV consistently underestimated reflectance in the 0.6 
and 0.8 μm channels for all AVHRR sensors in glint free regions (< 0.12 reflectance) as 
shown in Figure 4-17. 
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Figure 4-16 RTTOV 11.3 comparisons to observations in the 0.6 and 0.8 μm for all 
AVHRR sensors using a match-up dataset. Bars, +/- 1 sigma robust standard error 
in mean of observed reflectance in bins of simulated reflectance. Coloured straight 

lines, weighted ordinary least squares best fit to data in bins of low (<0.12) RTM 
reflectance, for individual AVHRRs. Black line: fit applied for all AVHRRs.  

 

The underestimation is consistent across all AVHRR sensors, so a single correction is 
applied to the RTTOV simulation of the 0.6 and 0.8 μm channels for all AVHRR 
instruments.  The corrections are as follows: 

 

 

 

The clear-sky match-ups were also used to determine the diagonal terms of the forward 
model covariance matrix (S) using robust statistics to minimize the influence of any 
undetected cloud in the match-ups.  The off-diagonal terms of this matrix between the 0.6 
and 0.8 μm channels was also calculated using these matches giving a high correlation 
between the two channels of 0.96.  This was tested using regions of sunglint and shallow 
water where the ocean colour at the two different wavelengths may be expected to differ. 
Figure 4-18 below shows an example of a sunglint region, giving the 0.6 μm data, the 0.6 
μm RTTOV simulation. 
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Figure 4-17: Observations (including clear and cloudy areas) and simulations 
(based on clear sky assumption) of the 0.6 um channel in a sunglint region. 

 

Figure 4-19 below shows the corresponding cloud detection (using all channels in the 
observation vector).  The plot on the left uses a high correlation between the visible 
channels in the forward model covariance matrix, S, whilst in the right-hand plot this 
correlation is relaxed to 0.5.  We find that relaxing the off-diagonal correlation term 
significantly improves the cloud detection skill in sunglint regions, particularly where the 
glint is weaker.    

 
Figure 4-18: Cloud detection in a sunglint region assuming high error correlation (r 

= 0.96) between the visible channels (left) and a relaxed correlation (r = 0.5) 
between visible channels (right). The relaxed assumption is seen to be needed to 

avoid the over-masking of the sunglint area. 

 

The forward model covariance matrix used for the 0.6 and 0.8 μm channels for all 
AVHRR sensors is as follows: 
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4.3.2.5 Cloud Detection Performance 

Implementation of the Bayesian cloud detection for the AVHRR instruments was 
undertaken in order to improve the cloud detection skill over the operational cloud 
masking schemes. Performance has been scrutinised in a range of conditions swath data, 
for FRAC and GAC. As a means of assessing the overall performance for SST retrieval, 
we compare validation statistics using two cloud masks. 

Our previous observation was that for some AVHRRs, CLAVR-x was passing too much 
cloud as clear. We expect, therefore, the Bayesian detection to reduce the  number of 
matches, as cloud pixels are eliminated. If the “correct” pixels are being eliminated, 
measures of scatter of the SST retrievals should also reduce, whereas if the additional 
exclusions were effectively random, the spread would stay the same. 

Therefore, in Tables 1.13, 1.14 and 1.15 we show the ratios of the number of matches, of 
the standard deviation (SD) and the robust standard deviation (RSD). Ideally, all these 
ratios should be below 1. 

Typically, we find that Bayesian cloud detection reduces by 15% the total number of 
matches compared to CLAVR-X; at the same time, there is a significant reduction in the 
standard deviation and robust standard deviation, as shown by ratios less than 1. In some 
cases, the robust standard deviation does not show an improvement (ratio ~1), but the 
standard deviation does, showing a reduction in outliers caused by cloud contamination in 
the match-ups, but no improvement in the spread of the majority of data. In other cases, 
the two cloud detection systems seem to be comparable in performance. 

These statistics were compiled using processing earlier than EXP 1.8 with a less good set 
of AVHRR calibrations. Since the Bayesian method depends on the degree of 
discrepancy between simulations and observations and these discrepancies should be 
reduced by improved calibration, the results may be pessimistic relative to the true EXP 
1.8 performance. 
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Table 4-16: N2 daytime retrieval statistics, Bayesian/CLAVR-X for AVHRR GAC 
instruments (N4 for AHVRR-1 instruments). 

Instrument Ratio of matches Ratio of Standard 
Deviation 

Ratio of Robust 
Standard Deviation 

NOAA-19 0.83 0.68 0.85 

NOAA-18 0.85 0.62 0.88 

NOAA-17 0.97 0.99 1.02 

NOAA-16 0.99 0.87 1.008 

NOAA-15 0.93 0.77 0.97 

NOAA-14 0.96 0.93 0.97 

NOAA-12 1.05 0.82 0.995 

NOAA-11 0.84 0.87 0.94 

NOAA-10 0.81 0.72 0.93 

NOAA-09 0.87 0.86 0.91 

NOAA-08 0.73 0.72 0.99 

NOAA-07 0.82 0.83 0.91 

NOAA-06 0.87 0.57 0.85 

 

Table 4-17: N2 nighttime retrieval statistics, Bayesian/CLAVR-X for AVHRR GAC 
instruments (N4 for AHVRR-1 instruments). 

Instrument Ratio of matches Ratio of Standard 
Deviation 

Ratio of Robust 
Standard Deviation 

NOAA-19 0.92 0.68 0.92 

NOAA-18 0.88 0.72 0.96 

NOAA-17 0.85 0.92 0.98 

NOAA-16 0.92 0.96 1.05 

NOAA-15 0.82 0.94 0.98 

NOAA-14 0.96 1.004 1.02 

NOAA-12 1.06 0.99 1.03 

NOAA-11 0.79 0.92 0.95 

NOAA-10 0.72 0.88 0.999 

NOAA-09 0.66 0.78 0.93 

NOAA-08 0.74 0.97 0.97 

NOAA-07 0.43 0.77 0.92 

NOAA-06 0.62 0.63 0.76 
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Table 4-18: N3 nighttime retrieval statistics, Bayesian/CLAVR-X for AVHRR GAC 
instruments (N2 for AHVRR-1 instruments). 

Instrument Ratio of matches Ratio of Standard 
Deviation 

Ratio of Robust 
Standard Deviation 

NOAA-19 0.92 0.67 0.95 

NOAA-18 0.88 0.7 0.98 

NOAA-17 0.85 0.88 0.97 

NOAA-16 0.92 0.88 1.04 

NOAA-15 0.82 0.89 1.007 

NOAA-14 0.96 0.93 1.04 

NOAA-12 1.06 0.86 0.99 

NOAA-11 0.79 0.88 1.004 

NOAA-10 0.72 0.44 0.74 

NOAA-09 0.66 0.71 0.87 

NOAA-08 0.74 0.89 0.80 

NOAA-07 0.43 0.54 0.58 

NOAA-06 0.62 0.36 0.68 

 

 

4.4 Clear-sky Detection for Advanced Very High Resolution 
Radiometers – High Latitudes Extension 

This subsection gives details of the SST-CCI cloud-clearing algorithm extension at high 
latitudes for AVHRR instruments.   The cloud clearing step prior to SST calculation is 
based on Bayesian cloud probability calculation as described in the previous section. 
After the cloud clearing step an additional Bayesian ice and cloud masking step is applied 
under conditions where sea ice might be expected.  

At high latitudes it can be difficult to distinguish between open water that often contains 
strong thermal gradients and sea ice, especially where the surface temperature is close to 
the point of phase change between open water and ice.  The additional clear-over-ice 
class improves the skill of the algorithm to identify open ocean cases required for SST 
retrieval purposes.  It also enables identification of sea-ice surfaces for potential ice 
surface temperature retrieval. 

4.4.1 Algorithm Description 

4.4.1.1 Algorithm Overview 

This chapter describes the AVHRR cloud and ice mask algorithm to be applied in the 
SST-CCI SST retrieval following the SST calculation. It describes an algorithm that 
classifies each AVHRR GAC swath pixel as clear-open-water, ice covered or cloudy. 
These three classes are represented using PDFs. These PDFs are used in a naive 
Bayesian approach to calculate the probability of these three classes, for each pixel. 
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4.4.1.2 Processing Outline 

The cloud and ice masking for the AVHRR retrieval is split in two stages. CLAVR-x 
described in section 4.2, and the high-latitude extension described here. The high latitude 
step can be run either directly after the cloud detection step, or at a later stage, and is run 
on all pixels which have been classified as clear-open-water by the cloud detection step. 
A flow chart for the high latitude extensions is shown below (Figure 4-20). 

 

 
Figure 4-19. Flow chart for high latitude ice and cloud masking. 
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4.4.1.3 High Latitude cloud and ice masking step 

The High Latitude cloud and ice masking shown in the flow chart in Figure 4-8 has been 
developed in the SST-CCI project. It is described in full detail here. 

The High Latitude step is run on all pixels classified as clear-open-water by cloud 
detection. The pixel is checked against a monthly maximum sea ice extent climatology, 
which is described in section 4.4.2.2. If the pixel is outside the area of maximum sea ice 
extent for the relevant month, no further tests are performed on that pixel and the 
estimated SST value is kept. 

For those pixels that fall within the maximum sea ice extent, the time of day is checked 
and a daytime, twilight or nighttime ice and cloud probability calculation test is run.  The 
outputs from these tests are the same; the probability of pixel being clear-open-water, 
cloud covered and ice covered (𝑃𝑜Clear, 𝑃𝑜Cloud,𝑃𝑜Ice). These probabilities are calculated 
using a naive Bayesian approach, as described in more detail in RD.274. 

Finally, if 𝑃𝑜Clear is larger than 0.9, the pixel is regarded as clear of cloud and ice, and the 
SST estimate is kept. If not, it is regarded as cloud covered or ice covered. If 𝑃𝑜Ice is 
larger than 0.5 the pixel is classified as ice, otherwise it is classified as cloud. 

 

4.4.2 Inputs to AVHRR High Latitude Extension 

4.4.2.1 Primary Sensor Data 

The satellite data used are AVHRR-GAC data from the satellites NOAA-12, 14, 15, 16, 
17, 18, 19 and METOP-2, and include satellite and sun geometry data. The channel 
combinations used are as follows: 

𝑟𝑒0.9 𝑟𝑒0.6⁄  ratio between the reflectance in the 0.9 µm and 0.6 µm channels (AVHRR 
channel 2 and AVHRR channel 1) 

𝑟𝑒1.6 𝑟𝑒0.6⁄  ratio between the reflectance in the 1.6 µm and 0.6 µm channels 
(AVHRR channel 3A and AVHRR channel 1). [Not available for AVHRR-1 
and AVHRR-2 sensors, and NOAA 12 and 14]. 

𝑏𝑡3.7 − 𝑏𝑡11 difference in brightness temperature of the 3.7 µm and 11 µm channels, 
(AVHRR channel 3/3B and channel 4) 

𝑏𝑡3.7 − 𝑏𝑡12 difference in brightness temperature of the 3.7 µm and 12 µm channels, 
(AVHRR channel 3/3B and channel 5) 

𝐿𝑆𝐷(𝑏𝑡3.7 − 𝑏𝑡12) local standard deviation in the difference between the 3.7 µm and 
11 µm channels. 

The LSD operator is described in section 2.3.3.1. 

In addition the following satellite geometry data are used: 

• SOZ – solar zenith angle. 
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4.4.2.2 Ancillary Data 

The cloud and ice masking algorithm takes as input monthly maximum sea ice extent 
climatology to define the area across which sea ice detection is attempted. This 
climatology is based on an ocean mask from the National Snow and Ice Data Centre 
(NSIDC), available here: 

http://nsidc.org/data/smmr_ssmi_ancillary/ocean_masks.html. 

This climatology has been produced by NSIDC using the Scanning Multichannel 
Microwave Radiometer (SMMR) and the Special Sensor Microwave/Imager (SSM/I) 
monthly averaged ice concentrations and finding the maximum extent for each month 
between 1979 and 2007. A zone of 350 km has been added to the maximum extent 
NSIDC maps to insure that the masks extend beyond the areas where sea ice is ever 
likely to occur. This climatology is provided at 12.5 km resolution, on a Lambert Azimuthal 
projection in NetCDF3 format. Examples are shown in Figure 4-9. 

 
Figure 4-20. Climatological maximum sea ice extent during March (left) and 
September (right). Lakes without climatology are marked in red. 

 

 

4.4.3 Mathematical Description of AVHRR High Latitude Extension 

This section describes the theoretical parts of the algorithm in more details. 

4.4.3.1 Physical principles and equations 

This section describes the physical and mathematical symbols and formulas used in the 
description of the algorithm. 

Following is a summary of the symbols used to define the algorithm. 

𝑷𝒐Clear 

The probability of a pixel being clear-open-water. 

𝑷𝒐Cloud 

http://nsidc.org/data/smmr_ssmi_ancillary/ocean_masks.html
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The probability of a pixel being cloud covered. 

𝑷𝒐Ice 

The probability of a pixel being covered by ice. 

𝑳𝑺𝑫(𝒙) 

Local standard deviation, defined as the standard deviation of the variable 𝑥 in a 3x3 pixel 
matrix around the data point in question, including the data point itself. In the case where 
the data point is on a swath line edge, LSD is defined as the standard deviation of the 
remaining closest neighbour points around the data point. 

𝒅𝒊𝒔𝒕WTP(𝒙),𝒅𝒊𝒔𝒕WTP(𝒙,𝒚) 

Distance between observation 𝑥 in a certain channel feature (channel value or channel 
combination) and a water tie-point (𝑊𝑇𝑃) of this channel feature.  The water tie-point is 
the mean value for this feature over clear-open-water.  The mean value is found by 
selecting all pixels in the training data set that are classified as clear-open-water and then 
finding the average of those pixels in the given channel feature. This clear-open-water tie-
point might itself depend on another channel feature 𝒚 (such as solar zenith angle or 
𝑏𝑡11 − 𝑏𝑡12). 

𝑵𝒐𝒓𝒎𝒂𝒍𝑫𝒊𝒔𝒕(𝒙,𝑴,𝑺) 

Probability distribution value of x in a normal distribution with mean M and standard 
deviation S, defined as 

𝑁𝑜𝑟𝑚𝑎𝑙𝐷𝑖𝑠𝑡(𝑥,𝑀,𝑆) = 𝑆√2𝜋 ∗ 𝑒�
−𝑝𝑜𝑤((𝑥−𝑀),2.0)
2∗𝑝𝑜𝑤(𝑆,2.0) � 

𝑳𝒐𝒈𝑵𝒐𝒓𝒎𝒂𝒍𝑫𝒊𝒔𝒕(𝒙,𝑴,𝑺) 

Probability distribution value of x in a log normal distribution. In this distribution the natural 
logarithm of the variable has a normal distribution with mean M and standard deviation S. 
The probability distribution function is defined as 

𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙𝐷𝑖𝑠𝑡(𝑥,𝑀, 𝑆) =
1
𝐶 𝑒

−0.5𝑧2 

where 

𝑧 =
(log(𝑥)−𝑀)2

𝑆2  

𝐶 = 𝑥 ∗ 𝑆 ∗ √2𝜋 

𝒑𝒓𝒐𝒃(var|class,𝐱) 

Probability of an observation x from the variable var, given that that surface observed is of 
a given surface class (clear-over-water, sea-ice, or cloud). This probability depends on 
the probability density function chosen for this variable and class. For the high latitude ice 
and cloud algorithm only normal and log-normal distributions are used, and hence this 
probability density function is one of these two functions: 

𝑝𝑟𝑜𝑏𝑁(var|class, x) = NormalDist�x, M(var, class), S(var, class)� 
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𝑝𝑟𝑜𝑏𝐿𝑁(var|class,𝑥) = 𝐿𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙𝐷𝑖𝑠𝑡�𝑥,𝑀(𝑣𝑎𝑟, 𝑐𝑙𝑎𝑠𝑠), 𝑆(𝑣𝑎𝑟, 𝑐𝑙𝑎𝑠𝑠)� 

Bayesian probabilities for Ice, Water and Cloud 

The functions for calculating the Bayesian probabilities of ice, water and cloud depends 
on how many variables are used. The high latitude ice and cloud masking algorithm uses 
two variables, var1 and var2. These two variables are the selected AVHRR channel 
combinations that have been shown to be the best suited for separating ice, water and 
cloud (e.g. 𝑅𝐸1.6, 𝑅𝐸0.6) [RD.318]. As described in SST-CCI RD.274, the probabilities for 
the three classes given observation 𝑥 in 𝑣𝑎𝑟1 and 𝑦 in 𝑣𝑎𝑟2 can then be written as follows: 

𝐵𝑎𝑦𝑒𝑠𝑃𝑟𝑜𝑏Ice(𝑥, 𝑦) = 𝑝𝑟𝑜𝑏(𝑣𝑎𝑟1|𝑖𝑐𝑒,𝑥) ∗
𝑝𝑟𝑜𝑏(𝑣𝑎𝑟2|𝑖𝑐𝑒, 𝑦)

𝑝𝑠𝑢𝑚(𝑥, 𝑦)  

𝐵𝑎𝑦𝑒𝑠𝑃𝑟𝑜𝑏Water(𝑥, 𝑦) = 𝑝𝑟𝑜𝑏(𝑣𝑎𝑟1|𝑤𝑎𝑡𝑒𝑟, 𝑥) ∗
𝑝𝑟𝑜𝑏(𝑣𝑎𝑟2|𝑤𝑎𝑡𝑒𝑟, 𝑦)

𝑝𝑠𝑢𝑚(𝑥, 𝑦)  

𝐵𝑎𝑦𝑒𝑠𝑃𝑟𝑜𝑏Cloud(𝑥,𝑦) = 𝑝𝑟𝑜𝑏(𝑣𝑎𝑟1|𝑐𝑙𝑜𝑢𝑑, 𝑥) ∗
𝑝𝑟𝑜𝑏(𝑣𝑎𝑟2|𝑐𝑙𝑜𝑢𝑑, 𝑦)

𝑝𝑠𝑢𝑚(𝑥,𝑦)  

where 

𝑝sum(𝑥, 𝑦)
= 𝑝𝑟𝑜𝑏(𝑣𝑎𝑟1|𝑖𝑐𝑒, 𝑥) ∗ 𝑝𝑟𝑜𝑏(𝑣𝑎𝑟2|𝑖𝑐𝑒,𝑦) + 𝑝𝑟𝑜𝑏(𝑣𝑎𝑟1|𝑤𝑎𝑡𝑒𝑟, 𝑥)
∗ 𝑝𝑟𝑜𝑏(𝑣𝑎𝑟2|𝑤𝑎𝑡𝑒𝑟, 𝑦) + 𝑝𝑟𝑜𝑏(𝑣𝑎𝑟1|𝑐𝑙𝑜𝑢𝑑, 𝑥) ∗ 𝑝𝑟𝑜𝑏(𝑣𝑎𝑟2|𝑐𝑙𝑜𝑢𝑑, 𝑦) 

4.4.3.2 Calculations 

This section describes the algorithm calculations in detail. 

The high latitude ice and cloud masking extension has three main stages, as described in 
section 4.3.1.3. The first test (maximum ice climatology check) and the last stage 
(probability check) are clearly described in section 4.3.1.3, and no further details are 
provided here. The second test (calculation of probabilities) is more complex and further 
details are provided here. 

The calculation of probabilities for each pixel being covered by ice, cloud or clear-open-
water is split into three functions; one for daytime, one for twilight and one for night time 
conditions. Which function to use is decided by checking the pixel's solar zenith angle 
(SOZ), 

Daytime: 0° <= SOZ <= 70° 

Low sun: 70° < SOZ < 90° 

Night time: SOZ >= 90° 

Daytime probability calculation 

The daytime probability calculation uses the naive Bayesian classifier (described in SST-
CCI RD.274) with two channel combinations as input. The first channel combination is 
𝑅𝐸0.9 𝑅𝐸0.6⁄ . The second depends on which channels are available on the AVHRR 
instrument. If channel 3A (𝑅𝐸1.6) is available, the channel combination 𝑅𝐸1.6 𝑅𝐸0.6⁄  is used. 
If 𝑅𝐸1.6 is not available, the channel combination 𝐵𝑇3.7 − 𝐵𝑇11 is used. 
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The probability of ice, water and cloud is calculated using the functions described in 
section 4.3.3.1, with these two options of input channels: 

𝐵𝑎𝑦𝑒𝑠𝑃𝑟𝑜𝑏Ice �
𝑅𝐸0.9

𝑅𝐸0.6
,
𝑅𝐸1.6

𝑅𝐸0.6
� 

𝐵𝑎𝑦𝑒𝑠𝑃𝑟𝑜𝑏Water �
𝑅𝐸0.9

𝑅𝐸0.6
,
𝑅𝐸1.6

𝑅𝐸0.6
� 

𝐵𝑎𝑦𝑒𝑠𝑃𝑟𝑜𝑏Cloud �
𝑅𝐸0.9

𝑅𝐸0.6
,
𝑅𝐸1.6

𝑅𝐸0.6
� 

or 

𝐵𝑎𝑦𝑒𝑠𝑃𝑟𝑜𝑏Ice �
𝑅𝐸0.9

𝑅𝐸0.6
,𝐵𝑇3.7 − 𝐵𝑇11� 

𝐵𝑎𝑦𝑒𝑠𝑃𝑟𝑜𝑏Water �
𝑅𝐸0.9

𝑅𝐸0.6
,𝐵𝑇3.7 − 𝐵𝑇11� 

𝐵𝑎𝑦𝑒𝑠𝑃𝑟𝑜𝑏Cloud �
𝑅𝐸0.9

𝑅𝐸0.6
,𝐵𝑇3.7 − 𝐵𝑇11� 

These Bayesian probability functions depend on the probability density functions for each 
variable and class. The coefficients for these PDFs are provided in section 4.3.3.3. In 
these Bayesian functions the normal distribution is used for all the variables and classes. 
The PDF coefficients are constant for 𝑅𝐸0.9/𝑅𝐸0.6 and 𝑅𝐸1.6/𝑅𝐸0.6, and vary linearly as a 
function of solar zenith angle for 𝐵𝑇3.7 − 𝐵𝑇11. The linear functions for the mean (M) and 
the standard deviation (S) are defined as: 

M = MA * SOZ + MB 

S = SA * SOZ + SB 

All the coefficients are provided in Table 4-7. 

Low sun probability calculation  

For low sun cases (70<SOZ<90), the same Bayesian functions are used as for day. Only 
normal distributions are used. The only difference is that the PDF coefficients all vary 
linearly as a function of solar zenith angle. All coefficients are provided in Table 4-8. 

Night time probability calculation  

For night time cases (SOZ >= 90) the probability of ice, water and cloud depends on a 
different set of channel combinations: 

𝐵𝑎𝑦𝑒𝑠𝑃𝑟𝑜𝑏𝐼𝑐𝑒�𝑑𝑖𝑠𝑡𝑊𝑇𝑃(𝐵𝑇3.7 − 𝐵𝑇12,𝐵𝑇11 − 𝐵𝑇12), 𝐿𝑆𝐷(𝐵𝑇3.7 − 𝐵𝑇12)� 

𝐵𝑎𝑦𝑒𝑠𝑃𝑟𝑜𝑏𝑊𝑎𝑡𝑒𝑟�𝑑𝑖𝑠𝑡𝑊𝑇𝑃(𝐵𝑇3.7 − 𝐵𝑇12,𝐵𝑇11 − 𝐵𝑇12), 𝐿𝑆𝐷(𝐵𝑇3.7 − 𝐵𝑇12)�  

𝐵𝑎𝑦𝑒𝑠𝑃𝑟𝑜𝑏𝐶𝑙𝑜𝑢𝑑�𝑑𝑖𝑠𝑡𝑊𝑇𝑃(𝐵𝑇3.7 − 𝐵𝑇12,𝐵𝑇11 − 𝐵𝑇12),𝐿𝑆𝐷(𝐵𝑇3.7 − 𝐵𝑇12)� 

The distance to water tie-point, 𝑑𝑖𝑠𝑡𝑊𝑇𝑃, uses the channel combination BT3.7 − BT12. The 
water tiepoints in BT3.7 − BT12 depend linearly on BT11 − BT12 in this way: 
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𝑡𝑝𝑤𝑎𝑡𝑒𝑟 = 𝑡𝑝𝑊𝐴𝐴 ∗ (𝐵𝑇11 − 𝐵𝑇12) + 𝑡𝑝𝑊𝐴𝐵 

A normal distribution is used for the 𝑑𝑖𝑠𝑡𝑊𝑇𝑃, variable. The local standard deviation, 𝐿𝑆𝐷, 
in the channel combination BT3.7 − BT12 uses normal distribution for water and ice, and 
log-normal distribution for clouds. 

All coefficients are provided in Table 4-9. 

4.4.3.3 Look-Up Table Description 

This section describes the look-up tables used by the algorithm. 
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Daytime PDFs 
Table 4-19. Coefficients for daytime cloud, water and ice PDFs, mean (M) and standard deviation (S) values. Coefficients A and B are for the 
linear function which depends on solar zenith angle. 

 
 

  

Feature Satellite MA Cloud MB Cloud SA Cloud SB Cloud MA Water MB Water SA Water SB Water MA Ice MB Ice SA Ice SB Ice
re09/re06 avhrr.12 0.00000 0.85281 0.00000 0.04682 0.00000 0.38893 0.00000 0.07425 0.00000 0.69591 0.00000 0.08343
re09/re06 avhrr.14 0.00000 0.96286 0.00000 0.05668 0.00000 0.46845 0.00000 0.07664 0.00000 0.83564 0.00000 0.10712
re09/re06 avhrr.15 0.00000 0.85934 0.00000 0.04591 0.00000 0.45613 0.00000 0.09711 0.00000 0.71348 0.00000 0.08896
re09/re06 avhrr.16 0.00000 1.00201 0.00000 0.08391 0.00000 0.49379 0.00000 0.05268 0.00000 0.78652 0.00000 0.09502
re09/re06 avhrr.17 0.00000 0.97274 0.00000 0.07145 0.00000 0.49986 0.00000 0.05124 0.00000 0.81967 0.00000 0.10337
re09/re06 avhrr.18 0.00000 0.97274 0.00000 0.07145 0.00000 0.49986 0.00000 0.05124 0.00000 0.81967 0.00000 0.10337
re09/re06 avhrr.19 0.00000 0.97274 0.00000 0.07145 0.00000 0.49986 0.00000 0.05124 0.00000 0.81967 0.00000 0.10337
re09/re06 avhrr.M2 0.00000 0.97274 0.00000 0.07145 0.00000 0.49986 0.00000 0.05124 0.00000 0.81967 0.00000 0.10337
re16/re06 avhrr.17 0.00000 0.72693 0.00000 0.23643 0.00000 0.11614 0.00000 0.06288 0.00000 0.09602 0.00000 0.05110
re16/re06 avhrr.M2 0.00000 0.72313 0.00000 0.23673 0.00000 0.10658 0.00000 0.06581 0.00000 0.08964 0.00000 0.05165
bt37-bt11 avhrr.12 -0.56348 69.35526 0.00000 13.63244 -0.00018 -0.22443 0.00000 0.40911 -0.13988 11.35302 0.00000 1.43857
bt37-bt11 avhrr.14 -0.34541 45.87440 -0.04061 12.95126 -0.00363 -0.00948 -0.00371 0.65188 -0.11360 10.27040 -0.05884 5.66529
bt37-bt11 avhrr.15 -0.25533 48.29366 0.00000 14.09327 -0.00130 0.53671 0.00000 0.58704 -0.09010 8.76945 0.00000 1.31814
bt37-bt11 avhrr.16 -0.38364 60.66684 0.00000 14.71542 0.00880 -0.19203 0.00000 0.56054 -0.09794 8.63588 0.00000 1.17303
bt37-bt11 avhrr.17 -0.31430 44.17989 -0.02694 12.65744 -0.00702 0.28810 -0.00607 0.80616 -0.05909 5.86810 -0.04862 4.85154
bt37-bt11 avhrr.18 -0.31430 44.17989 -0.02694 12.65744 -0.00702 0.28810 -0.00607 0.80616 -0.05909 5.86810 -0.04862 4.85154
bt37-bt11 avhrr.19 -0.31977 44.41623 -0.04062 13.43065 -0.00199 0.20798 -0.00434 0.68304 -0.02195 3.63142 -0.03212 3.76327
bt37-bt11 avhrr.M2 -0.31977 44.41623 -0.04062 13.43065 -0.00199 0.20798 -0.00434 0.68304 -0.02195 3.63142 -0.03212 3.763
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Low sun PDFs 
Table 4-20. Coefficients for low sun cloud, water and ice PDFs, mean (M) and standard deviation (S) values. Coefficients A and B are for the 
linear function which depends on solar zenith angle. 

  

 
 
 
 
  

Feature Satellite MA Cloud MB Cloud SA Cloud SB Cloud MA Water MB Water SA Water SB Water MA Ice MB Ice SA Ice SB Ice
re09/re06 avhrr.12 0.00583 0.45108 0.00453 -0.26367 0.00156 0.26167 0.00081 0.00522 0.00085 0.61656 0.00001 0.08067
re09/re06 avhrr.14 0.00249 0.81170 0.00322 -0.16418 0.00680 -0.02092 -0.00151 0.16632 -0.00176 0.96871 -0.00175 0.23960
re09/re06 avhrr.15 0.00742 0.37190 0.00461 -0.26915 -0.00460 0.78057 -0.00037 0.10901 -0.00215 0.93308 -0.00008 0.09755
re09/re06 avhrr.16 0.00352 0.79392 0.00212 -0.06511 0.00366 0.24588 -0.00193 0.18403 0.00316 0.55905 0.00220 -0.06487
re09/re06 avhrr.17 0.00432 0.69152 0.00261 -0.10628 0.00228 0.36877 -0.00128 0.12892 0.00025 0.78506 -0.00024 0.12318
re09/re06 avhrr.18 0.00554 0.61246 0.00259 -0.10782 0.00422 0.20235 -0.00123 0.13233 -0.00114 0.89733 0.00017 0.10009
re09/re06 avhrr.19 0.00641 0.53107 0.00241 -0.09328 0.00460 0.18173 -0.00189 0.17628 -0.00240 1.04805 0.00151 -0.01988
re09/re06 avhrr.M2 0.00441 0.68548 0.00265 -0.10751 0.00372 0.25285 -0.00213 0.19982 0.00117 0.71995 -0.00034 0.13009
re16/re06 avhrr.17 -0.00035 0.74791 0.00001 0.22789 0.00005 0.11209 -0.00111 0.13291 -0.00013 0.11627 -0.00014 0.05621
re16/re06 avhrr.M2 -0.00097 0.77669 -0.00056 0.27837 0.00121 0.02402 -0.00116 0.13967 0.00013 0.09111 -0.00020 0.06397
bt37-bt11 avhrr.12 -1.00387 100.18210 -0.15530 24.50319 0.00534 -0.61087 0.00872 -0.20153 -0.06709 6.25776 -0.00693 1.92355
bt37-bt11 avhrr.14 -0.81486 78.73564 -0.14252 20.08538 0.01219 -1.11710 0.00240 0.22361 -0.09941 9.27680 -0.02231 3.10805
bt37-bt11 avhrr.15 -1.00285 100.62026 -0.17166 26.10963 -0.02880 2.46204 -0.01085 1.34667 -0.11211 10.30992 -0.01966 2.69413
bt37-bt11 avhrr.16 -1.46363 136.26590 -0.32002 37.11670 -0.02121 1.90920 -0.01203 1.40245 -0.07151 6.78563 -0.01865 2.47865
bt37-bt11 avhrr.17 -0.86394 82.65454 -0.25658 28.73197 -0.01483 0.83486 -0.00069 0.42907 -0.09409 8.31815 -0.04490 4.59092
bt37-bt11 avhrr.18 -0.86394 82.65454 -0.25658 28.73197 -0.01483 0.83486 -0.00069 0.42907 -0.09409 8.31815 -0.04490 4.59092
bt37-bt11 avhrr.19 -0.83436 80.43717 -0.20255 24.76542 -0.02043 1.49843 -0.00797 0.93716 -0.10423 9.39069 -0.04826 4.89320
bt37-bt11 avhrr.M2 -0.83436 80.43717 -0.20255 24.76542 -0.02043 1.49843 -0.00797 0.93716 -0.10423 9.39069 -0.04826 4.89320
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Night time PDFs 
Table 4-21. Coefficients for night time cloud, water and ice PDFs, mean (M) and standard deviation (S) values. The water tie-point coefficients 
are given in TA Water and TB Water. Empty cells mean that the coefficients are not used. Normal distribution mean and standard deviation 
coefficients are provided under LSD(bt37-bt12) and log-normal under ln(LSD(bt37-bt12)). 

 

 
 
 

Satellite M Cloud S Cloud M Water S Water M Ice S Ice TA Water TB Water
avhrr.12 0.000 2.078 0.000 0.323 0.000 0.968 0.874 0.076
avhrr.14 0.000 2.187 0.000 0.295 0.000 0.884 1.067 -0.040
avhrr.15 0.000 2.094 0.000 0.258 0.000 0.774 0.906 0.037
avhrr.16 0.000 2.061 0.000 0.261 0.000 0.783 0.835 -0.018
avhrr.17 0.300 2.066 0.000 0.183 0.000 0.548 0.703 -0.152
avhrr.18 0.100 2.009 0.000 0.164 0.000 0.492 0.904 -0.433
avhrr.19 0.500 2.103 0.000 0.153 0.000 0.460 0.996 -0.397
avhrr.M2 0.100 2.057 0.000 0.144 0.000 0.433 0.767 -0.307
avhrr.12 0.310 0.118 0.920 0.236
avhrr.14 0.190 0.074 0.539 0.148
avhrr.15 0.130 0.054 0.385 0.108
avhrr.16 0.140 0.054 0.375 0.109
avhrr.17 0.130 0.056 0.357 0.113
avhrr.18 0.100 0.056 0.336 0.113
avhrr.19 0.100 0.055 0.316 0.111
avhrr.M2 0.100 0.058 0.340 0.116
avhrr.12 -0.392 0.425
avhrr.14 -0.622 0.588
avhrr.15 -0.711 0.688
avhrr.16 -0.721 0.690
avhrr.17 -0.767 0.716
avhrr.18 -0.795 0.752
avhrr.19 -0.817 0.773
avhrr.M2 -0.817 0.751
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4.4.3.4 Algorithm Output 

The output of the AVHRR cloud and ice mask algorithm is the probability of each pixel 
being clear-open-water, ice covered and cloud covered. Each of these numbers is non-
dimensional, is between 0.0 and 1.0 and together they sum up to 1.0. The three numbers 
are used to mark the respective pixels as clear-open-water, cloud covered or ice covered. 

4.4.4 Assumptions and Limitations 

4.4.4.1 Algorithm Performance 

During the development and tuning of the high latitude ice and cloud masking algorithm, 
some assumptions that might influence the algorithm have been made. These 
assumptions are listed in this section. 

For the PDFs that have been developed, it has been assumed that they are Gaussian 
normal distributions. This is a simplification that holds for a large part of the range of 
observations for the chosen channel combinations, but not for all. Under very low sun 
conditions or at very high satellite zenith angles the observed distributions might deviate 
from Gaussian distributions. Still, in most cases the Gaussian distribution holds and this 
assumption is a good one. 

In some cases, the defined PDFs have shorter overlaps between the classes in one 
variable than is observed. This sometimes happens in the range of observations where it 
is very difficult to separate the classes with the variable in question. This might lead to a 
more certain classification than it should. 

It is assumed that the PDFs do not change with satellite zenith angle. The PDFs have 
been developed using data covering all satellite zenith angles. This will have a small 
impact on textural features such as local standard deviation (LSD), which is smoother at 
higher satellite zenith angles. 

For this algorithm it is assumed that there is no difference in prior probability between ice, 
water and cloud. 

Under twilight conditions, the ability to separate the different classes decreases with 
increasing solar zenith angle, mainly for solar zenith angles between 80° and 90°. So the 
algorithm performance is worse with increasing solar zenith angle during twilight. 

Under night time conditions it is very difficult to discriminate between clouds and ice, due 
to the spectral characteristics of ice and clouds being very similar in the three available 
AVHRR channels. Therefore the night time algorithm cannot be expected to perform well 
in separating clouds and ice, but should work reasonably well in separating clear-open-
water from clouds or ice. 

4.4.4.2 Sensor Performance 

Some assumptions have been made concerning the sensor performance during the 
algorithm development. The assumptions are listed in this section. 

It is assumed that the radiometric data are consistently calibrated over time. It is also 
assumed that the radiometric data do not degrade over time and that the radiometric 
noise is constant. This is necessary for using PDFs that do not vary with time. The check 
on the calibration of the radiometric data must be handled elsewhere in the processing 
chain. 
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4.4.5 Future Enhancements 

A possible enhancement is to introduce different prior probabilities to the three classes: 
ice, water and cloud. The ice and water prior probabilities could for example depend on a 
sea ice concentration product. 

The future switch to ERA-5 is expected to improve the prior state. The overall impact on 
cloud detection is unknown, and effort may be required to adapt thresholds and 
assumptions to maintain a good balance of false alarm rate and hit rate. The prior 
uncertainty of TCWV will also change (and likely not be known initially). Once these 
adaptations have bedded down, the new NWP is likely to bring improvement. 
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5. RETRIEVAL OF SKIN SEA SURFACE TEMPERATURE FROM 
THERMAL INFRARED SENSORS 

5.1 General considerations and setup 

5.1.1 Naming conventions for channel combinations 

SST retrieval is done using difference channel combinations. For day-time observations, 
generally 11 and 12 µm channels are used and for night-time, 3.7, 11 and 12 µm. The 
exception is for AVHRR instruments with no 12 µm channel, for which only night-time 
retrievals using 3.7 and 11 µm are undertaken.  

The SST retrieval and cloud detection steps use a three-character identifier to record 
which combination of IR and Vis/NIR channels used.  

• The first character indicates which view is used, and is either “n” for “nadir” (which 
applies even to off-nadir angles of single view sensors) or “d” for “dual”, which 
applies only to ATSRs and, in future, the oblique swath-width for SLSTR.  

• The second character indicates which IR channels are used, and is a number 
ranging between 2 (the classic split window combination) and 4 (the unusual 3.7-
11 combination). 

• The third character indicates which reflectance channels are used. A two-
character identifier is used when only the thermal IR channels have been 
included. 

The full convention is set out in Table 5-1. 

 

Table 5-1: Retrieval naming conventions for channel combinations 

First part (view) Second part (IR) Third part (Vis/NIR) 

n Nadir 1 11 μm  Not provided: 
No reflectance channels 

d Dual 2 11, 12 μm a 1.6 μm 

  3 3.7, 11, 12 μm b 0.6, 0.8 μm 

  4 3.7, 12 μm c 0.6, 0.8, 1.6 μm 

 

The use of Vis/NIR reflectance channels is expected to have little or no effect on the SST 
retrieval in most cases as these channels are not sensitive to SST. However, they can 
affect add some information on the atmospheric water vapour present. Or if the 3.7 μm 
channel is required during the day, then Vis/NIR could help determine the level of 
reflected solar radiation in the SWIR. These possibilities are not exploited in Phase II 
because the SST benefit is understood to be modest, while adding those channels could 
entail some risk. Thus, during CCI Phase 2 the Vis/NIR channels are used for cloud 
detection only, not the SST retrieval, and the ability to use them has been implemented 
for internal consistency checks, future work on daytime AVHRR/1 retrievals, and future 
work on extended retrievals. Therefore, the final letter code at present indicates what 
reflectance channels are used for cloud detection, but all retrievals are thermal-only. 
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Thus, in v2, the retrieval combinations used are as shown in Table 5-2. 

 
Table 5-2: Channel combinations used in v2 for SST retrieval. 

Sensor Day Night Twilight 

ATSR d2a d3 d2 

AVHRR/2 n2b n3 n2 

AVHRR/3 n2b n3 n2 

5.2 Optimal estimator for AVHRRs 

5.2.1 General formulation for reduced-state vector optimal estimation for 
SST 

Optimal estimation (OE) was first discussed in reference to SST retrieval in Merchant et 
al., 2008 [RD.221] and extended with a smooth-atmosphere assumption in Merchant et 
al., 2012 [RD.295]. 

A variant of smooth-atmosphere OE is used for AVHRR SST retrieval in this 
reprocessing. 

 In the OE methodology, a priori expectations, 𝒙𝑎, about the state of the atmosphere and 
ocean are used as inputs to a forward model, 𝑭, to simulate prior observations, 𝒚𝑎, which 
represent the expected brightness temperatures (BT), i.e. 𝒚𝑎 = 𝑭(𝒙𝑎). The state variables 
𝒙𝑎 are from numerical weather prediction (NWP) data and the forward model  𝑭 is the 
radiative transfer model RTTOV11.3. The sea surface emissivity is taken from the ATSR 
Reprocessing for Climate (ARC) emissivity model and a reflectivity correction based on 
the method of Watts et al. [RD.297] has been applied. The sensitivity of the simulated 
BTs to variations in the state variables, K, is defined using the tangent linears to the 
forward model. These sensitivities are combined with the difference between the 
observed and simulated BTs (𝒚𝑜 − 𝑭(𝒙𝑎)), to optimally modify the prior estimate of the 
state, which includes the SST. The retrieved state variables, 𝒙�, are estimated using: 

              

 𝒙� = 𝒙𝑎 + G�𝒚𝑜 − F(𝒙𝑎)� = 𝒙𝑎 + (𝑲𝑇𝑺𝜀−1𝑲 + 𝑺𝑎−1)−1𝑲𝑇𝑺𝜀−1(𝒚𝑜 + F(𝒙𝑎)) (5-1) 

G is the gain matrix that operates on the observed minus simulated BT difference (this is 
described in detail in RD.307).  .𝑺𝜀 is the error covariance of the model and satellite 
observations of the BTs. These are a combination of the radiometric noise in the 
observations and estimated uncertainty of the forward model. It is assumed that the 
radiometric noise and the forward model errors are uncorrelated between channels. The 
impact of this assumption is discussed in RD.221.  𝑺𝑎 is the error covariance matrix for 
the prior state variables. Using 3.1, the retrieved state is optimal in the sense that it will 
give an unbiased, minimum standard deviation estimate of the state if (i) the prior 
information are unbiased and (ii) the forward model is unbiased [RD.221]. 

It was shown in RD.221 that a reduced state vector based on the leading modes of 
variability can be used in the optimal estimation of the state. The SST and TCWV 
variability are associated with the first two dominant modes of variability in the BTs, so 
these two state variables are used to define the reduced state vector ( 𝒛(𝒙) = �𝑥𝑤�), where 
x represents the SST and w represents the TCWV. (Strictly speaking, windspeed, marine 
AOD and stratospheric AOD also appear in the state vector, but these play a minor role 
and for the present purpose can be neglected.) It should be noted that the full state vector  
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xa is still used to calculate the simulated BTs. Use of the reduced state vector in the OE 
reduces the size of the  𝑺𝑎 error covariance matrix to 2×2. In this case it can be assumed 
that the errors in the state variables are uncorrelated.  

Merchant et al. [RD.295] demonstrate that the uncertainty in the OE retrieved SST is 
reduced if the prior TCWV error variance is constructed so as to account for the 
limitations in the NWP fields used to define the prior state. The prior TCWV error variance 
used in generating the SST CCI data is detailed in Table 5-3. There is a trade-off 
between the SST error variance (the dispersion of uncertainty in the retrieval) and both 
the SST bias and SST sensitivity [RD.295].  

The OE formulation operates on a reduced state vector , which includes only 
SST (𝑥), the average SST of the surrounding n clear-sky pixels and TCWV (𝑤�). For SST 
CCI purposes, only the first retrieved variables are of interest and used in products. The 
assumption is made that the same water vapour loading applies to the target pixel and 
the surrounding clear-sky pixels: this reduces the retrieved SST noise somewhat 
(atmospheric correction smoothing: RD.396). The formulations used in the reduced state-
vector OE for AVHRRs are listed in Table 5-3. 

The optimal estimator formulated in this way is a maximum a posteriori solution, although 
in order to avoid low SST sensitivity (i.e., heavy dependence on the prior) the assumed 
error covariance on prior SST is larger than is realistic. Heavy dependence on the prior 
would be inappropriate for a climate data record, particularly since the prior comes from a 
number of sources over time (see next section). Inflated SST error variance makes the 
solution approximately equal to a maximum likelihood solution (which is the limit of a MAP 
solution in the limit of infinite assumed prior SST error variance) with respect to SST. At 
the same time, a realistic error variance is assumed for water vapour, retaining the benefit 
of some of the regularisation of the inversion that is a feature of the MAP solution. We 
refer to the OE formulation as “ML-like”, which refers to its properties as far as SST is 
concerned. 
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Table 5-3. Parameters in the SST CCI optimal estimator for AVHRRs 

Aspect of optimal estimator Assumption/configuration 

Reduced state vector 
  

Prior SST, xa ‘ERA Interim’ skin sea surface temperature, adjusted for diurnal cycle 

Error SD in prior, exa Varies between 0.6 and 1.5 K, geographically 

Prior full state vector,  xa 
‘ERA Interim’ surface pressure plus atmospheric profiles of temperature 

and humidity on ECMWF model pressure levels 

Prior TCWV, wa 
The vertical integral of the water vapour absolute humidity from the full 

state vector xa 

Error in prior TCWV, ewa 
𝑤(𝑎𝑒−𝑏𝑤 + 𝑐)      [w in kg m-2] 

a = 0.42; b = 0.05; c = 0.042 

Prior error covariance matrix, 
 

Forward model for simulated 
BTs 

RTTOV11 

Forward model error, εRT 
eRT  sec(θ), where θ is the satellite zenith angle and 

eRT  =  0.15 K for 3.7 µm; 0.16 for 11 µm; 0.17 for 12 µm 

Pixel-level BT noise 
equivalent differential 

temperature / K 

0.06 K at 300 K 
Scaled by Planck function at other temperatures (i.e., assumes constant 

radiance error standard deviation). 

Prior BT covariance matrix. 1 

  

Tangent linear matrix 2, K 

   

1 Here 𝜀𝑥 indicates the channel at wavelength 𝑥 µm. When using fewer channels, the corresponding rows and 
columns are omitted.  εRT depends on channel wavelength and satellite zenith angle. 

2 𝑦𝑥  indicates the channel at wavelength 𝑥 µm. The partial derivatives with respect to 𝑤 require an assumption 
about how water vapour changes at different altitudes are related. The assumption made is that the fractional 
change in absolute humidity is the same for all altitudes. When a particular channel/view is not included in the 
retrieval, the corresponding column of 𝐾 is omitted. 
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The prior SST The SST supplied (see Table 5-4) with ERA-interim NWP is a daily value, 
typically a “foundation” or pre-dawn buoy equivalent SST. As such it is a suitable prior at 
night but can underestimate the true SST during the day, particularly in conditions of low 
wind speed as shown in (left). In order to adjust the prior to the actual observation time 
we use the Morak-Bozzo empirical DV model, this improves the agreement between 
NWP SST and in situ drifters as shown in Figure 5-1(right). The empirical model under-
corrects for very low wind speeds (< 3 ms-1), but it is a significant improvement on the 
uncorrected prior. 

For Bayesian Cloud detection this reduces chance that strong diurnal warming events will 
incorrectly screened as cloud (as they are “too warm”). For the OE SST retrieval the 
adjustment will have a small impact on the OE retrieval which is proportional to 1 minus 
the SST sensitivity, a factor that, using the “ML-like” formulation, is generally less than 
5%. 

 

Table 5-4: Sources of SST and sea-ice concentration used in ERA-interim 

ERA-Interim dates SST and SIC product used 

Start – October 1981 HADISST 

November 1981 HADISST + NCEP 2D-Var 

December 1981 – June 2001 NCEP 2D-Var sea surface temperature (NCEP 2D-
Var) 

July 2001 – December 2001 NOAA Optimum Interpolation Sea Surface 
Temperature v2 (NCEP OISST v2) 

January 2002 – January 2009 NCEP Real-Time Global sea surface temperature 
(NCEP RTG) 

February 2009 – onwards Operational Sea Surface Temperature and Sea-Ice 
Analysis (OSTIA) 

 

 
Figure 5-1: Left: (solid, no crosses) mean difference between in situ drifter SST and 
ERA-interim SST in SST CCI match-up data’; (solid with crosses) as solid lines, but 

for low total cloud cover (tcc < 20%); (dashed lines) standard deviation of 
differences. Right: same as left, but after applying Morak-Bozzo empirical 

adjustment (RD.396). 
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5.2.2 Aerosol capabilities in forward model for OE 

The version of RTTOV (v11.3) now available and used in v2 has capability to represent 
aerosol in thermal calculations, which is an upgrade relative to the previous ATBD. 

5.2.2.1 Marine Aerosol 

Marine aerosol is now included in the RTTOV forward model simulations (affects both 
Bayesian cloud detection, and Optimal Estimation of SST (used for AVHRR instruments).  

The marine aerosol profile uses the OPAC (Hess et al. 1998) “Maritime clean” 
components with the Koepke et al. 1997 wind speed dependence: 

Water soluble: 𝑁0 = 1500 

Sea salt (acc.): 𝑁0 = exp(0.18𝑢 + 1.4) 

Sea salt (coa.): 𝑁0 = exp(0.23𝑢 − 7.8) 

The marine aerosol layer is assumed to be 2 km thick with a 1 km height scaling. Number 
density is given by: 

𝑁(𝑧) = 𝑁0𝑒𝑥𝑝 �−
𝑧
ℎ𝑠
� 

Uncertainty in the aerosol column is taken as 10% 

5.2.2.2 Stratospheric Aerosol 

Stratospheric sulphate aerosol is modelled using the OPAC sulphate component (75% 
H2SO4) in a uniform layer between 20 and 24 km altitude. The OPAC sulphate component 
uses a particle size distribution appropriate for background conditions 𝑟mod N = 0.0695μm. 
While 𝑟mod N did increase by an order of magnitude immediately after the eruption of 
Mount Pinatubo, this primarily affected the total optical depth and did not affect the 
relative impacts at different thermal wavelengths (Embury et al. 2012). 

To check the RTTOV aerosol calculations we derived ARC-style aerosol robustness 
mode from the RTTOV simulations and compared it against the Pinatubo aerosol mode 
calculated in the ARC project. The two modes are compared in Figure 5-2 the two 
calculations show slight differences in the relative impacts when all six ATSR channels 
are considered (three wavelengths and two views) – this is primarily due to differences in 
the 3.7 μm channel, when the comparison is restricted to just the 11 and 12 μm channels 
the ARC and RTTOV calculations produce virtually identical modes. The better 
agreement at longer wavelengths can be explained by the use of a fast forward model 
(RTTOV) which has to use a very crude approximation for scattering, while the ARC 
aerosol calculations used a much slower, but more accurate model (DISORT). 
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Figure 5-2: Stratospheric aerosol delta-BTs calculated for the ARC project and fast 
calculations using RTTOV. Left using all ATSR channels; right using only 11 and 12 

μm 

The sulphate aerosol number density in the stratospheric layer is taken from a lookup 
tables for the two main eruptions (Mount Pinatubo and El Chichón), as describe in 
4.1.5.2. 

5.3 Estimator for ATSR SSTs 

For the ATSR series, retrieval coefficients are used in this reprocessing. These are based 
on the ARC retrieval coefficients, where the full description of ARC SST retrieval process 
is given in RD.184, RD.185 and RD.186. However, the coefficient definition and 
harmonisation process has been repeated in its entirety to account for more up-to-date 
radiative transfer and recommendations of an Anomaly Review Board (ARB) 
recommendation on the calibration of the AATSR 12 µm channel (RD.397). The following 
sections present key points on the calculation of the retrieval coefficients. 
 

5.3.1 Basis in radiative transfer 

With improvements in the spectroscopic data describing water vapour continuum 
absorption, the coefficients used for SST retrieval are routinely calculated using radiative 
transfer modelling of TOA radiances.  Compared with empirical regression methods, this 
approach has the advantage that the retrieval coefficients are independent of in situ 
observations which is beneficial for climate research. Figure 5-2 provides a schematic 
illustration of the process used to generate SST retrieval coefficients using simulated 
data. The calculation of the retrieval coefficients requires the simulation of the clear-sky 
TOA radiances that would be measured by infrared sensors. The forward model used to 
simulate the TOA clear-sky radiance values consists of a radiative transfer model (RTM), 
spectroscopic data, sensor spectral response functions, and a representative set of states 
describing the atmosphere and sea surface on which to perform the simulations. The 
simulated TOA radiance values are compared with observed radiance for clear-sky 
conditions to determine uncertainties and bias. The simulated TOA radiance values and 
the corresponding state SSTs are used to calculate the SST retrieval coefficients. The 
SST retrieval is then applied to the observed TOA radiance values and the retrieved 
SSTs are validated against in situ observations of the SST. 
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Figure 5-3. Schematic of the process for defining and validating coefficients for sea 

surface temperature retrieval using radiative transfer modelling [RD.253]. 

 

5.3.1.1 Clear-sky radiative transfer model  

To achieve the required accuracy in the TOA radiance values, - the Line-By-Line 
Radiative Transfer Model (LBLRTM; http://rtweb.aer.com/) was used.  The effects of 
tropospheric and stratospheric aerosols and gases interacting with radiation must be 
simulated. For the ARC reprocessing, the scattering by aerosol particles with radii 
comparable to the wavelengths of thermal infrared radiation measured by the sensors, 
was calculated using the DISORT scattering model [RD.300].  This was applied to 
channel integrated clear-sky transmittances derived from the line-by-line LBLRTM 
calculations. 

LBLRTM was used as it meets the following criteria [RD.301] for simulation of brightness 
temperatures suitable for determining SST coefficients: 

• It is capable of simulating radiances at a spectral resolution of 0.01 cm-1 or better. 

• It includes CO2 line mixing.  

• It is capable of modelling continuum features for water vapour and nitrogen. 

• It can calculate radiance with the assumption that the Planck function varies 
linearly with altitude and that optical depth varies linearly with path within each 
layer. 

• It can enable linear interpolation for profiles of absorber quantities.  

• Voigt line shapes are used for all molecules as default (Lorentz and Doppler line 
shapes can be selected individually). 

• It includes all trace gases that have an impact of >0.001 K on TOA BTs, for any 
channel e.g. H2O, CO2, O3, N2O, CH4, NH3, HNO3, OCS, H2CO, N2, C2H6, F11, 
F12, F22, F113, F114, CCl4, HNO4. 

• IT uses the HITRAN spectroscopic database. 

http://rtweb.aer.com/
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5.3.1.2 Spectral Emissivity Model 

The spectral emissivity model described in RD.186 was adopted for the calculation of the 
ARC coefficients.  The emissivity model uses an isotropic wave facet model to include the 
wavelength dependence on the refractive index of seawater, temperature, wind 
roughening of the sea surface and incident and emission angles of radiation relative to 
the ocean surface. 

We found the salinity effect on refractive index to be negligible, so this factor is not 
included in this model. The model results have been tabulated and are available in 
RD.320. The emissivity data are presented as a function of wavenumber (600-3350 cm-1), 
view angle (0-85°), temperature (270-310 K), and wind speed (0-25 m s-1 at 12.5m). 

5.3.1.3 Atmospheric Meteorological Profiles for Radiative Transfer 

A representative distribution of simulated TOA BTs is required to calculate the SST 
retrieval coefficients. This requires a representative distribution of atmospheric states – 
i.e. profiles of atmospheric temperature, water vapour and associated surface variables. 
There are two distinct sources of suitable data: (i) measurements in the form of 
radiosondes, and (ii) simulated data from numerical weather prediction (NWP) models. 
For the calculation of the ARC retrieval coefficients [RD.185], NWP data from the 
ECMWF 40-year reanalysis (ERA-40) were used as these give a more representative 
global sample compared with radiosonde data. These were assessed to span all the 
necessary variability, which is the key requirement for this profile set; the potential biases 
known to be present in such a dataset were found not to be critical [RD.185]. ERA-40 
consists of 6-hourly surface and profile data (on 60 pressure levels) covering the years 
1957 to 2001, on a 2.5° horizontal grid. Due to resource restrictions such a large data set 
could not be processed, so basic temporal sampling was applied leaving a subset of data 
covering all times of day for all seasons. These were extracted from the “60L-SD” data set 
[RD.302], used as the starting point for the ARC project database. This subset of the data 
was then filtered to remove: 

• All land or mixed land/ocean profiles 

• All profiles with >95% sea ice 

• All profiles outside RTTOV’s validity range for water vapour  

• All profiles with >95% relative humidity for any layer (such profiles are indicative 
of near-total cloud cover conditions, not representative of clear skies under which 
SST retrievals are possible). 

5.3.1.4 Trace gas profiles 

Trace gases that affect simulated BTs by 1 mK or more were included in the simulations 
for ARC. Some gases have geographic or temporal variations that have a significant 
impact on BTs, whereas for less influential/variable trace gases, global profiles may be 
used. The trace gases used in ARC along with whether annual or latitudinal variations 
were represented are listed in Table 5-3. All the trace gases have secular trends that 
were accounted for.  Details of the trends, annual and latitudinal variations used are given 
in RD.301 and RD.186. 
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Table 5-5. Trace gases included in simulations for coefficients and the aspects of 
variability accounted for in each case. 

Gas Long Term Trend Annual Cycle Latitudinal Variation 

NH4 Y N N 
HNO3 Y Y Y 
N2O Y N Y 
CH4 Y N Y 

CFC 11 Y N Y 
CFC 12 Y N Y 

CO2 Y N N 

5.3.1.5 Aerosol simulations 

Tropospheric aerosol number density was assumed to follow an exponential height 
distribution 

𝑁(𝑧) = 𝑁(0)𝑒�−𝑧 ℎ� �    (5-2)  

where 𝑁(0) is the aerosol concentration at the surface, ℎ is the scale height in kilometres, 
and z is the altitude. The OPAC dataset contains a set of aerosol profiles of this form. 
These aerosol profiles are associated with a range of different geographical locations, 
and differ in terms of the components present and surface concentrations. The Global 
Aerosol Data Set (GADS) was used alongside the optical property dataset (OPAC) to give 
a good representation of the tropospheric aerosol profiles.  

Major volcanic eruptions (Mt. Pinatubo and Mt. Hudson, both in 1991) significantly 
changed the stratospheric aerosol throughout the ATSR-1 mission. Stratospheric 
aerosols produced by major volcanic eruptions need to be simulated in order to ensure 
aerosol robustness of coefficients. In situ measurements of stratospheric aerosol size 
distribution are available for a 30 year period at Laramie, Wyoming [RD.304]. These data 
provided vertical profiles of both the number density and size distribution fitted using a 
bimodal lognormal function. The primary mode represents the more numerous small 
particles, the secondary mode the larger particles which have a greater impact on infra-
red scattering. These data were used to define a background number density and the 
change associated with volcanic aerosols.  The primary mode showed negligible variation 
with time so a single number distribution was derived from the data using equation 3.6, 
where the coefficients based on height are: 

z = 12 – 24 km, N(0) = 2146.9 cm-3, h = 2.85921 km 
z = 24 – 32 km, N(z) = 4 cm-3 

z < 12km or > 32 km, N(z) = 0 cm-3. 

The particle radius was fixed at 0.025 μm. 

The secondary mode was found to vary from year to year, however it was sufficient to 
define a single number density profile which was scaled by year for the background.  

z = 12 – 24 km, N(z) = 0.173 cm-3 
z = 24 – 32 km, N(0) = 4.04370×106 cm-3, h = 1.41467 km 

z < 12km or > 32 km, N(z) = 0 cm-3. 

The scale factors for the stratospheric number density profile by year are [RD.186]: 
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Table 5-6: Scale factors for the stratospheric aerosol number density profile as a 
function of year. 

Year 1991 1992 1993 1994 1995 1996 1997+ 

Scale 1.0 20.0 9.0 4.0 1.5 0.5 0.3 

The particle radius for the secondary mode was constant at 0.35 μm for the background 
level, but during the years affected by volcanic aerosol (1992-1994) the lower level 
aerosol distribution increased linearly with decreasing height. During 1992/1993 the 
particle size increased from 0.35 μm at 24 km to 0.75 μm at 12 km, while during 1994 the 
size increased from 0.35 μm at 24 km to 0.55 μm at 12 km. 

5.3.2 Calculation of retrieval coefficients 

The ARC SST estimate, 𝑥�, is formed from a weighted combination of BTs. 

 𝑥� = 𝑎0 + 𝒂𝑇𝒚    (5-3) 

Here 𝑎0 is the offset coefficient, and 𝒂𝑇 = [𝑎1, … , 𝑎𝑛] is a vector of 𝑛 weighting coefficients 
for the 𝑛 BTs in the observation vector (𝒚). These observations may consist of infrared 
observations at different wavelengths and/or view angles. The superscript T  indicates the 
transpose of the vector. 

The offset and weighting coefficients are found using least squares minimization 
techniques. These minimize the mean square difference between the “true” SST input to 
the RTM and the “retrieved” SST, for the population of atmospheric and surface states 
and associated RTM BTs outlined in section 5.2.1. The weights and offset term are given 
by the formulas: 

  𝒂 = 𝑺𝑦𝑦′−1 �𝑺𝑥𝑦 − 𝑲�𝑲𝑇𝑺𝑦𝑦′−1𝑲�
−1

(𝑲𝑇𝑺𝑦𝑦′−1𝒔𝑥𝑦)�   (5-4) 

    𝑎0 = 𝑥̅ − 𝒂𝑇𝒚�     (5-5) 

where  

 𝑺𝑦𝑦′−1 = 𝑺𝑦𝑦 + 𝑺𝜀  

𝑥 is the “true” SST associated with a given set of simulated BTs (𝒚)  

𝑺𝑦𝑦 is the covariance matrix of observations 

𝑺𝜀 is the covariance matrix for the noise equivalent differential temperature 
[RD.321]  

𝒔𝑥𝑦 is the covariance vector of SST and observations.  

𝑲 is a matrix containing the impacts on BTs of the presence of stratospheric aerosol, 
𝜕𝑦 𝜕𝜎⁄ , where 𝜎 is the stratospheric aerosol optical depth. The over-bars indicate mean 
values are used. The covariance matrix of the observations 𝒔𝑦𝑦 is defined as: 

 𝑺𝑦𝑦 = 𝒚𝒚𝑇����� − 𝒚𝒚����𝑇    (5-6) 

and the covariance vector of SST and the observations, 𝒔𝑥𝑦, is given by: 
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 𝒔𝑥𝑦 = 𝑥𝒚𝑇����� − 𝑥𝒚����𝑇    (5-7) 

Use of the 𝑲 matrix to represent the effects of aerosol ensures the retrieval coefficients 
are robust to the presence of stratospheric aerosol since this formulation forces the 
coefficients to be orthogonal to the effects of the aerosols. 

The coefficients are calculated at predefined values of the following parameters: 

• satellite zenith angle in the nadir view 

• satellite zenith angle in the forward view 

• prior TCWV 

• instrument detector temperature 

• year 

The coefficients applied for a given SST retrieval are found by interpolating the tabulated 
values based on these parameters. Bilinear interpolation is used to interpolate the 
satellite zenith angles, and linear interpolation used for the other parameters. 

5.3.3 Atmospheric correction smoothing for L2P 

The discussion to this point considers the retrieval of SST for a single clear-sky pixel in 
isolation. In fact, since the water vapour of the atmosphere varies smoothly on few-km 
scales, this fact can be used to reduce noise in full resolution SST products, through 
“atmospheric correction smoothing”. Hereafter, the term “atmospheric correction 
smoothing” will be referred to simply as “smoothing” for readability. Always bear in mind 
that it is not the aim to smooth the SST which is being retrieved. Instead, the aim is to 
minimize smoothing of SST, while yet exploiting the longer spatial scales of atmospheric 
variability in order to reduce SST noise. 

Let 𝑥 represent SST, and let the brightness temperatures (BTs) from which SST is to be 
estimated be listed in a column vector 𝐲, such that 𝐲T = [𝑦1 𝑦2 …], where 𝑦𝑖 is the BT 
of the ith thermal channel being used for retrieval. “Atmospheric correction” is the 
difference between the SST and the top of atmosphere brightness temperature. Since we 
have more than one channel, a generalised definition of multi-channel atmospheric 
correction is 

 𝜹 = 𝒙 − 𝐛𝐓𝐲   ;     𝒃𝒊 > 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝒊 (5-8) 

 

The fundamental smoothing assumption is that we have two independent estimates of the 
true atmospheric correction appropriate to a particular pixel in the thermal image. The first 
estimate comes from evaluating the atmospheric correction for the target pixel (that for 
which SST is being retrieved). The second estimate comes from surrounding clear-sky 
pixels from a box centred on the target pixel. The SSTs for these surrounding pixels may 
vary, but the assumption is that the atmospheric correction is essentially the same. 

Since the coefficient-based estimate of SST is  𝑥� = 𝑎0 + 𝐚T𝐲 , the estimated 
atmospheric correction for the target pixel is   

 

 𝜹� = 𝒙� − 𝐛𝐓𝐲 = 𝒂𝟎 + (𝐚 − 𝐛)𝐓𝐲 (5-9) 



  
SST-CCI-Phase-II SST_CCI-ATBD-UOR-203 
SST CCI Algorithm Theoretical Basis Document  Issue 3 

  Page 77 

If we form an average of the BTs of the clear-sky pixels surrounding the target pixel, 𝐲�, 
then the box-mean estimate of clear-sky atmospheric correction (excluding the target 
pixel) is, 𝛿̅ = 𝑎0��� + (𝐚� − 𝐛)T𝐲�, where an overbar indicates an average over surround clear-
sky pixels. If coefficients vary with satellite viewing geometry, the retrieval coefficients for 
surrounding pixels may differ from the target pixel, but over a reasonable box size, this 
will be small; therefore we make the good approximations that 𝐚� = 𝐚 and 𝑎0��� = 𝑎0 
hereafter. 

Combining the target and box estimates of atmospheric correction, we can make a single 
best estimate. Assuming independence of radiometric noise between pixels, the random 
errors in 𝛿̂ and 𝛿̅ are uncorrelated. We can also assume that the noise-related uncertainty 
is constant for all the pixels in the box: this is justifiable for a stable instrument observing 
the relatively narrow range of scene BT across the box. The noise in atmospheric 
correction therefore scales as the square root of the number of pixels contributing to each 
estimate. This number is 1 for the target pixel. Let the number of clear-sky box pixels be 
N. According to the standard result for combining estimates with independent, normally 
distributed errors, the best estimate for the target pixel atmospheric correction is 

 

 𝜹� =
𝟏

𝟏+𝑵�𝑵𝜹� + 𝜹�� 
(5-10) 

 

 

i.e., is a weighted average, the weights being in proportion to the inverse of the error 
variance. This is identical to the estimate of atmospheric correction that would be 
obtained by evaluating it as the mean of all the clear-sky pixels in the box including the 
target pixel, as one would expect. However, separating the target and surrounding pixels 
in this way will make the relationship between non-smoothed and smoothed estimates of 
SST explicit, as will be shown below. 

Let the SST estimate for the target pixel after atmospheric correction smoothing be 𝑥�. The 
objective of the smoothing is that this SST will be less noisy than the single pixel retrieval, 
𝑥�. We can derive 𝑥� by imposing on the smoothed SST the requirement that its 
atmospheric correction be 𝛿 rather than 𝛿̂. This implies, combining the definition of 
atmospheric correction in Equation    and Equation ( 5-12). 

 

𝒙� − 𝐛𝐓𝐲 = 𝟏
𝟏+𝑵�𝑵𝜹� + 𝜹�� =  𝑵

𝟏+𝑵 (𝒂𝟎 + (𝐚 − 𝐛)𝐓𝐲�) + 𝟏
𝟏+𝑵 (𝒂𝟎 + (𝐚 − 𝐛)𝐓𝐲)  

(5-11) 

Re-arranging this to write the smoothed SST estimate as a single-pixel retrieval plus an 
adjustment gives 

 

𝒙� = 𝒂𝟎 + 𝐚𝐓𝐲 − 𝑵
𝟏+𝑵 (𝐚 − 𝐛)𝐓(𝐲 − 𝐲�) = 𝒙� − 𝑵

𝟏+𝑵 (𝐚 − 𝐛)𝐓(𝐲 − 𝐲�)   (5-12 ) 

 

The right hand side comprises the single-pixel retrieval for the target pixel plus a 
correction term. This correction term is proportional to (𝐚 − 𝐛)T(𝐲 − 𝐲�), which equals the 
difference in estimated atmospheric correction between the target and surrounding pixels, 
𝛿̂ − 𝛿̅. Were 𝛿̅ an infinitely precise estimate of atmospheric correction, then this difference 
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would exactly equal the noise error in the single-pixel retrieval, and therefore subtracting 
this difference would correct the noise error in 𝑥�. This is represented by the limit 𝑁 → ∞ in 
Equation ( 5-14). However, it is wrong to infer that this implies that the box should be 
made as large as possible, since too large a box would lead to violation of the conditions 
for validity of smoothing discussed earlier. Instead, N is finite, and varies between 0 (no 
pixels other than the target pixel is clear in box) and an upper limit determined by the box 
size. The scaling in Equation ( 5-14). is always <1, and down-weights the correction term 
according to the number of surrounding pixels: when N is smaller, the additional 
information on atmospheric correction from the surrounding pixels is less precise, and 
therefore the 𝛿̂ − 𝛿̅ correction estimate receives less weight in determining 𝑥�. Thus, a 
generalised form of atmospheric correction smoothing has been derived that has clear 
physical and statistical justification. 

 

Noting that 

 
𝑵

𝟏+𝑵
(𝐲 − 𝐲�) = � 𝑵

𝟏+𝑵
𝐲 − 𝑵

𝟏+𝑵
𝐲� + 𝟏

𝟏+𝑵
𝐲 − 𝟏

𝟏+𝑵
𝐲� = (𝐲 − 〈𝐲〉)   (5-13) 

 

where 〈𝐲〉 is the mean observation vector across all clear-sky pixels in the box, we can 
rewrite Equation ( 5-15) as 

 

𝒙� = 𝒂𝟎 + 𝐚𝐓〈𝐲〉 + 𝐛𝐓(𝐲 − 〈𝐲〉) = 〈𝒙〉 + 𝐛𝐓(𝐲 − 〈𝐲〉)    (5-14) 

 

which expresses the same retrieval as an adjustment term,  𝐛T(𝐲 − 〈𝐲〉), added to the 
box-mean SST, 〈𝑥〉. This version is computationally rather cleaner, and is the form most 
convenient to code in practice. 

The last aspect to be defined is the weighting of channels in the smoothing adjustment, b. 
The sum of elements of b should add to 1 to create a weighted average atmospheric 
correction across the channels. This could be done be (1) preferring a specific channel, 
which gets the full weight of 1, (2) weighting all channels evenly, or (3) weighting 
channels by the inverse of their radiometric noise variance, so that we rely more on low-
noise channels for the smoothing. The first of these options has been used in operational 
centres, but suffers from privileging a single channel arbitrarily. In this reprocessing, the 
third choice is adopted in order to use the channels optimally, and therefore: 

    𝒃𝒊 = 𝟏/𝝈𝒊𝟐

∑ �𝟏/𝝈𝒊𝟐�𝒊
    (5-15) 

 

5.4 Estimates of Uncertainty 

Estimates are generated for four sources of uncertainty [RD.306]: (i) uncertainty due to 
radiometric noise, (ii) uncertainty in retrieval (e.g. insufficient information in the channel to 
derive an SST estimate), (iii) uncertainty due to large scale effects, and (iv) the 
uncertainty in the adjustment for diurnal variability (method described in section 8). 

For optimal estimation, the uncertainty due to radiometric noise and uncertainty in 
retrieval are defined respectively as [RD.307]: 
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   �𝑮 �
𝜺𝟑.𝟕

𝟐 𝟎 ⋯
𝟎 𝜺𝟏𝟏𝟐 ⋯
⋮ ⋮ ⋱

�𝑮𝑻     (5-16) 

and 

   �𝑮��
𝜺𝑹𝑻𝟐 𝟎 ⋯
𝟎 𝜺𝑹𝑻𝟐 ⋯
⋮ ⋮ ⋱

� + 𝑲𝑺𝒂𝑲𝑻�𝑮𝑻   (5-17) 

where G is the gain matrix described in section 3.1.1. (Note: εRT depends on the channel 
wavelength and the satellite zenith angle). 

The radiometric noise is assumed to be independent between pixels in an image; (5-17) 
estimates the SST uncertainty associated with uncorrelated effects. The remainder of the 
retrieval uncertainty is assumed to be partly correlated between pixels with length scales 
that are, at present, not well quantified, and are assumed to reflect the length scales of 
the atmosphere (synoptic length scales), with magnitude obtained from 

     �G��
εRT2 0 ⋯

0 εRT2 ⋯
⋮ ⋮ ⋱

�+ KSaKT�GT   (5-19) 

For the ATSR-series coefficient-based SST, uncertainty due to radiometric noise is 
estimated by the propagation of the noise through the retrieval equation. The uncertainty 
is given by the equation 

    �∑ 𝒂𝒊𝟐𝜺𝒊𝟐𝒊      (5-18) 

where  

i is the channel 

εi is the radiometric noise in channel i 

ai are the corresponding channel retrieval coefficients for channel i  

The above equation applies for the case of no atmospheric correction smoothing, and is 
used for single-pixel retrievals that are then averaged in L3U (smoothing is not used in 
this case). Where atmospheric correction smoothing is applied (for full resolution 
products), the equivalent expression is: 

    �∑
𝜺𝒊
𝟐

𝟏+𝑵�𝒂𝒊𝟐 + 𝑵𝒃𝒊
𝟐�𝒊    (5-19) 

 

For the uncertainty in the retrieval from algorithm effects, the magnitude is estimated from 
the residuals in representative simulations of the retrieval process. It is presently 
assumed that the same correlation length scales apply for the partly correlated effects in 
both coefficient-based and OE retrievals. 

The uncertainty due to large-scale effects is set to be constant (0.1 K) representative of 
regional, seasonally persistent mean differences against validation values [RD.184]. 
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5.5 SST-level harmonisation 

5.5.1 Predictors 

Optimal estimation is needed for AVHRR retrieval, particularly with only two channels, in 
order to constrain biases arising from ambiguous solutions to the atmospheric state. 
However, OE is also a theory that assumes zero mean biases, whereas instrument 
calibration errors and RTM errors ensure that there generally are biases that are not zero 
mean. For this reason, a final step of SST-level harmonisation is required. Having 
optimised all previous steps to remove biases, this harmonisation step addresses the 
residual biases between OE SSTs that remain. 

SST-level harmonisation is derived from MD. For AVHRRs that overlap with reference 
sensors (i.e., ATSR-series instruments) the exploited MD consists of AVHRR-ATSR 
matches. For the ATSR period (and for the Metop-A era after AATSR), harmonisation is 
therefore to ATSR SSTs. Prior to ATSR-1 (1991) this is not possible; and the 1980s 
AVHRRs are not sufficiently stable nor have sufficient overlaps to do sensor-sensor 
harmonisation using current knowledge. Therefore for “the 1980s” the harmonisation MD 
exploits in situ reference data. Independence from in situ observations for the SST CCI 
data is therefore violated for the 1980s in the current version. This is justified because 
users have a stronger requirement for length of record than for independence (RD.385), 
although independence is preferred. 

Thus: Harmonisation is done by fitting difference between AVHRR SST and reference 
SST. 

• For NOAA-12 onwards the reference is ATSR SST retrieval 
• For earlier sensors we use ship data (from even days) to fit the predictors, then 

adjust the constant term to match non-ship data (drifters, bottle, ctd, mbt, xbt) 

The primary predictors are listed in Table 5-7 and are calculated separately for N2 and N3 
OE retrievals using night-time observations. (N2 is needed for day-time retrievals, but for 
consistency with N3, the night-time retrieval, it is better to tune it on night-time data.) 

Among the harmonisation predictors, there are two terms representing the instrument 
temperature: Tinst is the instantaneous temperature of the internal calibration target (ICT); 
Tavg is the average temperature of the ICT over the orbit. Depending on the instrument 
either one or neither of these terms is used, as shown in 5-9. 

For the recent AVHRRs an additional bias was observed in the daytime N2 retrieval. This 
is fitted using the predictors in 5-8. As before there are three instrument temperature 
terms which are used for some instruments. 
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Table 5-7: List of harmonisation predictors 

 Predictor Comment 

1 1 Constant term 

2 TCWV Integrated nadir water vapour path, since SRF uncertainty 
is often manifested as a dependence on TCWV and 
functions of the same. 

3 TCWV sec(θsat) Slant water vapour path 

4 TCWV2 Higher-order water vapour dependence 

5 cos(θsat) 2 Across track dependencies 

6 jd2000 Julian date relative to 2000-01-01 00:00:00. Enables time 
variation in harmonisation. 

7 Tinst - 285 AVHRR internal calibration target temperature, shown to 
have been predictive of BT biases. 

8 Tavg - 285 AVHRR “orbital average” temperature, shown to have 
been predictive of BT biases. 

 
Table 5-8: List of additional daytime predictors 

 Predictor Comment 

1 1  

2 θsol Orientation of platform to Sun 

3 x Across-track position 

4 Tinst - 285 AVHRR “ICT” temperature 

5 Tavg - 285 AVHRR “orbital average” temperature 

6 Tinst - Tavg Difference between “ICT” and “average” 
 

Table 5-9: Predictors used for each instrument. 

Instrument Reference Predictors Additional 
Daytime 
Predictors  

NOAA-07 In situ 1–6, 8 n/a 

NOAA-09 In situ 1–6, 8 n/a 

NOAA-11 In situ 1–6, 8 n/a 

NOAA-12 ATSR1 + ATSR2 1–6, 7 1–3, 6 

NOAA-14 ATSR2 1–6, 7 1–3 

NOAA-15 ATSR2 + AATSR 1–6 1–3 

NOAA-16 AATSR 1–6 1–3 

NOAA-17 AATSR 1–6, 8 1–3, 5 

NOAA-18 AATSR 1–6 1–3 

NOAA-19 AATSR 1–6, 7 1–3, 4 

Metop-A AATSR 1–6, 7 1–3, 4 
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5.5.2 Example results 

Example results are shown for AVHRR on NOAA 11. 

a.  

b.  

c.  

d.  
Fig. 5-4 OE-SST dependencies addressed by SST-level harmonisation. Pre-

harmonisation (a, c) and post-harmonisation (b, d) dependence on satellite zenith 
angle and across track position respectively. Example shown is NOAA-11 against 

ship-based in situ measurements. Harmonisation is done on the N2 night-time data 
(dark red curves) and results for N2 day-time comparisons are in bright red. N3 is 
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the night time algorithm (black). The N2b algorithms are alternative algorithms not 
used in SST CCI processing. 

 

5.5.3 Future enhancements 

The SST-level harmonisation of OE here is effective, but heavily reliant on expert 
judgement. A more systematic approach that integrates more closely with the OE 
framework would be preferable. 

The need for SST-level harmonisation is reduced as AVHRR BT biases are reduced. 
Exploitation of improved level-1 (from the project FIDUCEO) will reduce but may not 
remove the need to harmonise OE SSTs to an external reference.  

Integrated exploitation of AVHRR BTs with HIRS BTs will further reduce systematic 
effects in AVHRR OE SSTs, because (1) differing biases in different sensors will to some 
degree cancel and (2) it will allow additional AVHRRs to be used in at least some 
circumstances (with different error characteristics). This is the focus of IR algorithm 
development proposed for Phase 3. 
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6. GENERATION OF L2P AND L3U PRODUCTS AND 
PROPOGATION OF UNCERTAINTIES 

This section describes the processing chain used to generate L2P and L3U outputs from 
the L1B satellite observations.  The individual steps referred to are described in detail in 
other sections of the document as follows; cloud clearing (section 4), SST retrieval 
(section 5) and SST depth and time adjustments (sections 7 and 8). 

6.1 Generating L2P with Quality Level 

The first step in the processing chain is to cloud screen the input data (section 2).  This is 
done using a Bayesian methodology for both the ATSR and AVHRR instruments, taking 
L1B observations and NWP data as input.  For cloud free scenes the skin SST is 
retrieved using optimal estimation for the AVHRRs and coefficient based retrieval for 
ATSRs.  Skin SST is then adjusted for both time and depth to provide a bulk SST at one 
of the two reference times, 10.30 or 22.30 local times that are used as estimates for the 
daily mean SST (sections 7 and 8).  For AVHRR instruments this per pixel data along with 
the associated uncertainties is output in L2P product format.  Uncertainties associated 
with the SST retrieval are broken down into uncertainty from  

• large scale correlated effects,  

• synoptically correlated effects 

• uncorrelated effects, and  

• time and depth adjustment. 

In addition to uncertainty calculation, a quality level is defined. We treat quality level as a 
concept that is distinct from uncertainty: a highly uncertain SST can have the highest 
quality level if all the conditions for giving a valid SST and valid SST uncertainty are met: 
the quality level reflects the degree of confidence in the validity of the uncertainty 
estimate, not the data uncertainty. 

The quality_level assigned to a pixel will be the lowest level (row of table) which matches 
any of the conditions shown in the table below. The assignments are compatible with 
GHRSST conventions: i.e., a particular level is given if none of the conditions higher up 
any column of the table are met. 

 

Table 6-1: Quality level definitions 

level meaning P(clear) sensitivity χ2 Other 

0 no_data < 0   No data Is 
Land 

  

1 bad_data < 0.5 < 0.5 > 3 T11 < 260 SST < 
271.15 

ice 
detected 

NWP 
missing 

2 worst_quality < 0.8 < 0.9 > 2 θsat > 62    

3 low_quality < 0.9 < 0.95 > 1 87.5 < θsol < 
92.5 

   

4 acceptable_q
uality 

   abs(ASDI) > 
0.2 

   

5 best_quality        
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For instance, any pixel where P(clear) is unavailable (value is less than zero), required 
input BTs are unavailable, or which is over land will be assigned quality level of 0. Next, 
any pixels which have P(clear) < 0.5, calculated SST sensitivity < 0.1 etc. will be assigned 
quality level of 1 and so on. 

Quality level 0 pixels should contain no other data (except land flag in l2p_flags) 

Quality level 2-5 pixels should always contain valid data 

Quality level 1 pixels may contain data in some variables but the data is not suitable for 
use (bad_data). For instance, the SST retrieval may have been attempted, but rejected as 
bad_data due to low sensitivity etc. Or if the retrieved SST is out of range (< 271.15 K) 
then the value will be missing in the output file. 

The processor performs SST retrieval for all pixels with P(clear) > 0.1 

6.1.1.1 Interaction of quality level and L3 Regridding 

When regridding the SST data to the L3 grid, only the highest quality_level data in each 
cell will be used as specified in GDS 2.0r5. 

L3 data is generated from the unsmoothed (single-pixel) SST retrieval. This is done: 

• to simplify the propagation of uncertainties 

• because atmospheric correction smoothing is unnecessary for L3 as regridding to 
lower resolution reduces the uncorrelated uncertainty in a similar way 

6.1.1.2 Interaction of quality level with L2P atmospheric correction smoothing 

When applying atmospheric correction smoothing or the smoothed optimal estimation 
algorithm, only pixels with quality level equal or greater than the central pixel shall be 
considered. 

For instance, a quality_level 5 pixel will only use surrounding pixels of quality_level 5 for 
the smoothing step. Whereas a quality_level 3 pixel may use surrounding pixels of 
quality_level 3 or greater. 

 

6.2 Generating L3U Data from L2P Data 

For the ATSR instruments the data are averaged across 0.05° grid cells and provided as 
L3U products.  Skin and depth SSTs are calculated within each grid cell using data 
classified as clear-sky during the cloud screening process.  Uncertainties are also 
propagated onto the reduced resolution grid with the addition of a sampling uncertainty 
(next subsection) and provided with same components as those described in section 6.1. 

6.3 Sampling uncertainty estimate on the L3U grid 

Sampling uncertainty is introduced in gridded products where the data are not fully 
sampled due to the presence of cloud.  We implement a sampling uncertainty model 
dependent on the percentage of clear-sky pixels in the grid cell and the standard 
deviation of the SST in the observed pixels.  This model is applicable to SST retrieved 
using any instrument or algorithm provided that the uncertainties due to radiometric noise 
are correctly propagated and removed prior to calculation of the sampling uncertainty 
(Bulgin et al, 2015). 
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Sampling uncertainty is calculated for each L3 grid cell using all available clear-sky pixels.  
The standard deviation of SST in the available clear-sky pixels in calculated following 
subtraction of the uncertainty due to radiometric noise in variance space.  

  (6-1) 

 

Sampling uncertainty is modelled using a cubic fit for six bands of SSTstd which range 
between 0.0-0.6 K with a width of 0.1 K (Bulgin et al, 2015).  The sampling uncertainty 
model is shown in Figure 6.3.1.  At present we implement only the curve for 25 pixel 
extracts (5x5 pixels) which represents 0.05° sampling.  The effect of small variations in 
pixel number within a given grid cell on sampling uncertainty is negligible as shown by the 
close similarity between curves for 5x5 and 10x10 pixel areas (Figure 6-1), so this model 
is applicable at all latitudes.   

 

 

Figure 6-1: Modelled sampling uncertainty as a function of the percentage of clear-
sky pixels for six bands of SSTstd. Blue lines show data calculated for 25 pixel 
extracts corresponding to 0.05° at the equator and blue lines show 100 pixel 

extracts corresponding to 0.1° at the equator.  Dashed lines show the raw data and 
solid lines the cubic fit. 

Having calculated the percentage of clear-sky pixels in a given grid cell (clearpercent), a 
cubic fit in the form: 

    (6-2) 
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is found (solid lines in Figure) 

The coefficients for the curves are given in Table 6-2. 

 

Table 6-2: Sampling uncertainty cubic function coefficients.  

SSTstd a b c d 

0.0-0.1 K -1.53x10-7 3.22 x10-5 -2.69 x10-3 9.82 x10-2 

0.1-0.2 K -1.54 x10-7 3.42 x10-5 -3.52 x10-3 0.16 

0.2-0.3 K -2.16 x10-7 4.17 x10-5 -4.28 x10-3 0.23 

0.3-0.4 K -2.48 x10-7 4.49 x10-5 -4.81 x10-3 0.28 

0.4-0.5 K -2.31 x10-7 3.19 x10-5 -3.69 x10-3 0.28 

0.5-0.6 K -4.53 x10-7 6.73 x10-5 -5.51 x10-3 0.33 

 

6.4 Other Data Provided in the L2P and L3U Files 

The L2P and L3U files also contain flags to assign each pixel or grid cell as land/ocean or 
sea ice and to record how many channels were used in the SST retrieval.  If a pixel or 
grid cell crosses a boundary then both of the applicable conditions will be flagged. 
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7. MODEL OF SKIN-SUBSKIN DIFFERENCE IN SEA SURFACE 
TEMPERATURE 

7.1 Background 

The upper few millimetres of the ocean is referred to as the skin layer.  This is cooler than 
the sub-skin layer immediately below due to latent and sensible heat exchanges with the 
atmosphere and surface emission of infrared radiation.  The sub-skin layer exhibits a 
diurnal variation in temperature and depth, governed by absorption of solar radiation and 
wind driven mixing. The deeper mixed layer of the ocean lies below this and is largely 
unaffected by surface processes.  The temperature of this layer is often referred to as the 
bulk sea surface temperature, and is best characterised by SSTs at named depths below 
the surface.  

Space-borne infrared instruments measure the temperature of the upper few microns of 
the sea surface whilst in-situ data from buoys or ships are typically a measure of the bulk 
SST. Depth adjustment of the retrieved SST is necessary to meet user requirements of 
consistency between satellite and in-situ data records.  The SST at a target depth is 
calculated from the skin SST in a two-step process, first adjusting for the cooler skin layer 
and then for the warm sub-skin layer. This section describes the algorithm used to 
calculate the sub-skin SST from the skin SST and section 6 details the adjustment from 
the sub-skin temperature to the bulk SST.   

7.2 Model Setup 

The temperature difference (ΔT) between the skin and sub-skin SST is described by the 
following relationship [RD.319]. 

 
   ∆𝑻 =  𝛌𝑸ʋ

𝒌𝒖∗
     (7-1) 

where 

ΔTc temperature difference across the skin to sub-skin layer (K) 

Q total cooling at the ocean-atmosphere interface (W m-2) 

Δ thickness of the cool skin layer (m) 

K thermal conductivity of water (Wm-1  K-1) 

This can be parameterised under shear and buoyancy driven conditions denoted by 
subscripts (s) and (b) respectively [RD.227]. 

 

∆𝑇𝑐𝑠 = 𝜆𝑄𝑣
𝑘𝑢∗𝑤

     (7-2) 

∆𝑇𝑐𝑏 = � 𝑣
𝐴3𝑔𝛼𝜌𝑐𝑝𝑘2

�
1/4

𝑄/𝑄𝑏
1/4   (7-3) 
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where  

λ empirical coefficient 

v kinematic viscosity of water (m2 s-1) 

ρ density of sea water (kg m-2)  

u*w friction velocity in the ocean for turbulence generated by convection (m s-1) 

A  empirical constant 

g gravitational acceleration (m s-2) 

α thermal expansion coefficient for water (K-1) 

cp specific heat capacity of water (J kg-1 K-1) 

 

The Fairall model combines the shear and convective effects to define λ used in the 
calculation of the thickness of the cool skin layer (δ). This gives an expression for the skin 
depth that is valid both at low-wind speeds (when convective effects dominate) and at 
higher wind speeds (when shear dominates).  In the Fairall model, λ is given by equation 
7.4 where λ0 and A are pre-determined coefficients, set to 6.0 and 0.23 respectively 
[RD.227].   

  𝛌 = 𝛌𝟎 �𝟏 + �𝝀𝟎
𝟒𝑨𝟑𝑸𝒈𝜶𝝆𝒄𝒑𝒗𝒃

𝒖∗𝒂𝟒 �𝝆𝒂 𝝆� �
𝟐
𝒌𝟐
�
𝟑 𝟒⁄

�
−𝟏 𝟑⁄

    (7-4) 

 

We drive the Fairall model with ERA-Interim numerical weather prediction (NWP) data, 
available globally at 6 hour time intervals from 1979 [RD.38]. A weakness of the approach 
is that any trend in NWP wind speed bias will introduce an artefact in the depth-adjusted 
SST record (both here, and in the subskin to depth adjustment). On the other hand, this 
approach also allows larger trend artefacts related to the diurnal cycle and satellite 
overpass times to be reduced. NWP re-analysis data are the only usable source of data 
that are relatively consistent across the required period since 1981.  

Over a wind speed range of 0-10 m s-1 the Fairall model has been shown to give the best 
estimate of the skin to sub-skin temperature difference [RD.262].  In RD.266 the optimal 
parameterisations of A and λ were considered and an alternative proposed set of 
coefficients (A = 0.15, λ = 4.1) [RD.266] derived, which are used for EXP 1.8.  

 

7.3 Forcing Data for the Skin to Sub-Skin Model 

The NWP data used is ERA-Interim, which has a resolution of 0.75° latitude and 
longitude. The model implementation follows that of the UK Met Office [RD.262] and is 
designed to use 6-hourly fields, using 3-hourly forecast fields coincident with the 6-hourly 
analysis fields. Table 7-1 lists the fields used to force the skin-to-sub-skin SST model. 
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Table 7-1. NWP inputs to the Fairall-Kantha-Clayson model.  ERA-Interim codes are 
provided in brackets, acronyms ‘an’ and ‘fc’ refer to analysis and forecast fields 

respectively. 

ERA-Interim Field and Code Fairall Kantha-Clayson Field 

SST (34, an) SST (Fairall, and to initialise KC) 

10m E wind (165, an) 10m wind speed (to initialise KC) 

10m N wind (166, an) 10m wind speed (to initialise KC) 

Sensible heat flux (146, fc) Non-solar heat flux 

Latent heat flux (147, fc) Non-solar heat flux and latent heat flux 

Net surface thermal radiation (177, fc) Non-solar heat flux 

Net surface solar radiation (176, fc) Solar heat flux 

E turbulent stress (180, fc) Wind mixing energy (friction velocity) 

N turbulent stress (181, fc) Wind mixing energy (friction velocity) 

7.4 Uncertainty estimate 

It is necessary to estimate the uncertainty in the skin model when forced by the ERA-
interim NWP. The data used above (Figure 7-2). consist of a double difference between 
day and night, skin minus sub-skin SSTs; in each case, this double difference removes 
the satellite SST minus buoy bias (which is the same for the day and night).  The 
uncertainty estimate therefore includes variance in both the satellite and buoy 
measurements and variance in the cool skin temperature.  The random uncertainty in the 
buoy measurements is estimated as 0.04 K [RD.266].  For group three, defined in section 
5.2, where all 81 pixels in the match-up were classified as clear–sky, the model minus 
observation variance is defined below [RD.266].  The time window was reduced to ±1 h to 
reduce the variation due to changes in the slope of the mean difference. 

𝜎model-obs,day-night
2 ≈ 0.045 𝐾2    (7-5) 

 The estimated variance due to instrument and buoy noise and is 

 𝜎AATSR+buoy,day-night
2 ≈ 0.014 𝐾2   (7-6) 

 implying a total uncertainty of  

𝜎skin-0.2m,day-night
2 ≈ 0.031 𝐾2   (7-7) 

which is approximately 4 times larger than the model variance [RD.266]. 

 

7.4.1 Model for Residual Bias and Uncertainty 

The skin minus sub-skin SST differences between day and nighttime observations in 
Figure 5.2 indicate that the residual bias can be assumed to be zero.  The residual 
variance (σ2) within ±6 h of the adjustment time can be approximated using a linear fit 
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σ2 = b [t − t0]     (7-8) 

 where 

 t       observation time 

 t0      adjustment time 

 b      constant 

  

 b is defined with respect to the adjustment and observation times: 

b = 0.0040 for:    t0 = 10:30,     04:30 < t < 10:30 

b = 0.0012 for:    t0 = 10:30,     10:30 < t < 16:30 

b = 0.0012 for:    t0 = 22:30,     16:30 < t < 22:30 

b = 0.0009 for:    t0 = 22:30,     22:30 < t < 04:30 

 

7.4.2 Temporal and spatial correlations 

The temporal and spatial correlation of the skin SSTs will be dependent on the 
meteorological situation.  The cool skin is an instantaneous effect of solar insolation and 
wind speed, independent of their history, and therefore the correlation scales are likely to 
be smaller than those for the sub-skin layer (section 8.4.1).  The correlation time is in the 
region of 6 hours with a correlation distance compatible with the NWP grid resolution of 
0.75° [RD.266]. 
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8. MODEL OF SUBSKIN-DEPTH DIFFERENCE AND TIME-
ADJUSTMENT DIFFERENCE  

8.1 Background 

As described in Section 5.1, to derive bulk SST from satellite observations of skin SST 
two corrections have to be applied: first an adjustment from the cool skin to the warmer 
sub-skin layer and second an adjustment from the sub-skin layer to the bulk SST. This 
second step requires an estimation of the stratification of the near-surface ocean between 
the sub-skin and the target depth, as the sub-skin layer exhibits a depth dependent 
diurnal cycle in SST.  The CCI project generates SST retrievals from a number of satellite 
instruments, making observations at different local times.  In order to compare these 
observations with one another and with historical in-situ observations of SST a time 
adjustment is also applied.  Both depth and time adjustments will be described in this 
section. 

8.2 The Model 

8.2.1 Model Choice 

The Kantha-Clayson model is used to make the sub-skin to bulk SST correction. This is 
coupled with the Fairall model for skin to sub-skin temperature conversion described in 
Section 5.  The Kantha-Clayson model describes turbulence in geophysical boundary 
layers on the basis of second order closure models. It includes shear instability mixing in 
the stratified ocean, below the sub-skin layer, and diffusive heat transfer [RD.263, 
RD.262].  As with the Fairall model, it uses NWP data to describe local ocean-atmosphere 
conditions. 

8.2.2 Model Setup for Sub-Skin to Bulk SST Adjustment 

The Kantha-Clayson warm layer model is implemented using code provided by the UK 
Met Office.  The model vertical resolution decreases with depth: from two centimetres at 
the surface to sixty centimetres at a depth of ten metres, and is run at a temporal 
resolution of ten minutes.  In the UK Met Office implementation, the evolution of 
temperature (T) over time (t) for a single layer is defined as 

 

   𝑻
𝒕

= 𝟏
𝒛

  𝒗
𝝈𝒑

+ 𝑲𝑯  𝑻
𝒛

+ 𝑸
𝝆𝑪𝒑

    (8-1) 

where 

z       layer depth 

v       molecular viscosity 

σp     molecular Prandtl number 

KH      turbulent diffusion 

Q      heat source 

ρ       layer density 

Cp       specific heat capacity of seawater 
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The molecular mixing terms defined in the model (𝐾HB and 𝐾MB) were modified to 
represent the diurnal thermocline rather than the entire oceanic mixed layer [RD.262].    
Background salinity is set at 35 PSU and modified by evaporation although no 
precipitation is included in the model [RD.262, RD.266].  ERA-Interim NWP fields are 
used as input at a 6 hourly temporal resolution.  At each time step, the sub-skin to depth 
temperature differences are output for depths of 0.2, 1.0 and 1.5 metres. 

8.2.3 Model Setup for Time Adjustment 

As the Kantha-Clayson model needs a few hours to stabilise, it is initialised from a start 
time 17 hours earlier than the first dawn prior to the reference time: 12 hours for the 
adjustment period and a further 5 hours for the model initialisation. This gives a maximum 
lead time of 24 plus 17 hours prior to the SST adjustment time as the model has to be 
initialised just before dawn. The first stage of the implementation is to produce the fields in 
the second column of Table 7-1 at a six hour temporal resolution. 

The input fluxes are then interpolated to the model temporal resolution of ten minutes.  
Non-solar fluxes and fields are interpolated using Lanczos re-sampling, over a period of 
12 hours (i.e. two 6-hour NWP model time-steps).  The UK Met Office method [RD.264] is 
used to interpolate the solar flux.  The equivalent peak insolation is calculated from the six 
hourly fluxes, linearly interpolated in time, and used to derive the solar flux.   

8.2.4 Model Parameter values 

The parameters recommended for the Kantha-Clayson model set-up are described in 
detail in RD.266. 

8.3 Model Performance and Criteria for Time Adjustment 

Model performance is assessed using data from the Multi-Match-up Database (MMD) 
[RD.266].  For each match-up a time series of buoy measurements is available.  
Assuming two or more measurements, a dataset of temperature differences between the 
reference and adjustment times is constructed, using each measurement in turn as the 
reference time.  Similarly, the same set of differences is calculated from the model time 
series and using the model minus measurement differences.  The results are binned into 
ten minute time steps corresponding with the model output.  For each match-up the time 
range for inclusion of satellite observations or in-situ measurements is ±12 h around the 
reference time. 

The mean diurnal cycle of temperature differences are shown in Fig 8.1, compared 
against buoy data.  The model follows the measured diurnal cycle very closely with a lead 
of approximately 1.5 h, giving a residual difference of about 1/5 of the observed diurnal 
cycle.  The phase shift may be due to errors with the NWP fields of their interpolation; it is 
not clear what physical effect would give a phase lead in the Kantha-Clayson model 
[RD.266].  
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Figure 8-1. Plots show the mean  change in SST difference away from the adjusted 
times (10.30 for the top panel, 22.30 for the bottom panel). Specifically, we plot 
T0.2m (reference time) − T0.2m (adjustment-time).  Black +, drifting buoy 
measurements; pale grey x, Kantha-Clayson model; grey ◊, model−buoy.  The lines 
through the points show the fit to diurnal and semi-diurnal harmonics (section 6.4).  
Dotted lines are ±6h from the adjustment time. 
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Satellite observations are adjusted to the standard observation times of 10.30 and 22.30 
when the sub-skin temperature is closest to the mean daily temperature.  The ATSR 
instruments most closely match these observation times and currently provide the most 
accurate SST retrievals.  Figure 6.2 shows the variance between the time-adjusted SST 
and reference SST for buoy and model measurements at both 10.30 and 22.30, using 
data from the MMD.  One option for choosing the reference time against which to adjust 
the observation is to pick the condition under which the variances are approximately 
equal.  Figure 8-2 shows that this would result in more observations being corrected to 
22.30 than 10.30.  The observations are therefore adjusted by choosing the closest 
reference time.  This has the advantage over assigning ‘day’ and ‘night’ conditions of 
achieving a maximum time difference between the observation and reference time of six 
hours.   

 

 
Figure 8-2. Variance of T0.2m(reference time) − T0.2m(adjusted-time).  Black +, drifting 
buoy measurements; pale grey x, Kantha-Clayson model; grey ◊, model−buoy.  The 
lines through the points are linear fits constrained to zero at 10.30 (top panel) and 

22:30 (bottom panel).  Dotted lines are ±6h from 10.30 and 22:30.  Buoy and 
model−buoy have the estimated combined buoy random noise and discretisation 

error (variance=0.042) subtracted. The curves for the measurements and the 
difference have been reduced by the estimated variance for the buoy temperature 

differences of 0.0016 K2. 
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8.4 Quantification of Uncertainty 

The residual bias shown in Figure 8.1 can be fitted to a combination of diurnal and semi-
diurnal harmonics: 

  𝑒 = 𝑎0(𝑡0) + 𝑎1 cos �2𝜋(𝑡−𝜑1)
24

�+ 𝑎2 cos �2𝜋(𝑡−𝜑2)
24

�   (8-1) 

where 

𝑎1 = 0.022 

𝑎2 = 0.0043 

𝜑1 = 9.5 

𝜑2 = 11.6 

𝑎0(10.30) = −0.025 

𝑎0(22.30) = 0.017 

 

These functions are plotted in Figure 8-2 and the fit is excellent within ±6 h of the 
reference times.  The residual variance can be approximated within ±6 h of the reference 
time by a linear fit: 

 

  σ2 = b [t − t0]       (8-2) 

where 

t       observation time 

t0      adjustment time 

b      constant 

 

b is defined with respect to the adjustment and observation times: 

b = 0.0042 for:     t0 = 10:30,     04:30 < t < 10:30 

b = 0.0054 for:     t0 = 10:30,     10:30 < t < 16:30 

b = 0.0030 for:     t0 = 22:30,     16:30 < t < 22:30 

b = 0.0020 for:     t0 = 22:30,     22:30 < t < 04:30 
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8.4.1 Temporal and spatial correlations 

The temporal and spatial correlation of time and depth adjusted SSTs are dependent on 
the meteorological situation.  At small scales, correlation times can be less than an hour 
[RD.222] and correlation distances can be less than 25 km [RD.265]. 

An estimate of the correlation time for the residual error can be made from the variance 
curves (Figure 8.2). The errors appear to be correlated to about 6 h for the 10:30 
adjustments and 8 h for 22:30 adjustments.  Variance curves calculated for other 
reference times have a similar shape and scale with a correlation time near 6 h. 

The in-situ information in a match-up is at a single point, so there is no information from 
which to estimate the spatial correlation.  This is assumed to be similar to NWP grid scale 
at 0.75°. 

 

𝐵𝑇𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝐵𝑇𝑐ℎ𝑎𝑛𝑛𝑒𝑙 + ( 𝑎𝑒𝑟𝑜𝑠𝑜𝑙_𝑚𝑜𝑑𝑒𝑐ℎ𝑎𝑛𝑛𝑒𝑙  ×  𝑎𝑒𝑟𝑜𝑠𝑜𝑙_𝑖𝑛𝑑𝑒𝑥𝑐ℎ𝑎𝑛𝑛𝑒𝑙) (4-2) 

 

8.5 Skin and diurnal models: limitations and future enhancements 

The diurnal and skin models work well and are well-justified, but are implemented in non-
maintainable legacy code from the UK Met Office [RD.266]. Moreover, Wick et al. 
[RD.398] have demonstrated scientific improvements in the low-wind regime for use in K-
C models of this sort, which are not included in this code base. Therefore, it is desirable 
to use to the more recent and maintainable code base of Mittaz et al. [RD.399].   

Users [RD.400] have a clear preference for adjustment of the instantaneous depth SST to 
a daily mean rather than a reference time. The diurnal cycle of SST is such that the 
reference times chosen give a reasonable estimate of the daily mean on average 
[RD.396], but future work will develop a technique to estimate the daily mean and the 
adjustment uncertainty directly. 
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9. QUALITY LEVEL ATTRIBUTION 

Quality indication. A confidence level on a scale 0 to 5 is provided for each SST as a 
quality indicator, following GHRSST conventions. Five (QL = 5) indicates the highest 
confidence. Levels 4 and 5 should be used for climate applications where absolute 
accuracy of SST is important. Some users may find lower quality level data useful, e.g., 
where SST front locations are detectable in the SST fields, which requires only relative, 
not absolute, accuracy.  

The quality indicator represents the confidence we have that the SST uncertainty 
estimate for a given SST is valid. SSTs with relatively high uncertainty can still therefore 
be flagged as good quality, provided there is nothing to indicate that the assumptions 
made in estimating the uncertainty are compromised. The most significant quality factors 
are undetected cloud and coarse-mode aerosol (primarily desert dust): the uncertainty 
estimates for SST are valid under clear-sky, low-aerosol conditions, and therefore the 
quality levels 4 and 5 are attributed only for high clear-sky probability and acceptable 
desert dust indexi. (The desert dust index is only available to check for the ATSR series 
sensors, since it relies on having dual-view observations.)  

In the case of optimally estimated SSTs, the goodness-of-fit of posteriori simulated and 
observed brightness temperatures is calculated, using a χ2 statistic. Large values of χ2 
indicate that the inter-relationships of the brightness temperatures are not as expected for 
a clear-sky observation given the background information. The quality levels of pixels with 
large χ2 are therefore downgraded.  

In order to maximise the use of this dataset for assessing in situ based SST estimates 
and for model testing, it is important for the SSTs to have high sensitivity to true SST 
variations (which means minimal dependence on the prior SST information). For this 
reason, SSTs with low sensitivity are downgraded.  

The thresholds and logic for quality level assignment are shown in Figure 3. Note that, 
because the desert dust indicator is only available for the ATSR series, AVHRR SSTs are 
not expected to have quality level equal to 4. 
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Fig. 9-1. Flowchart for quality indication in “Quality Levels”. Quantities tested for 
QL are: SST grossly out of range; Pclear (the result of the Bayesian cloud detection 

calculation); SST sensitivity (“sens”), which estimates the fractional change in 
retrieved SST for a unit change in true SST; and the goodness of fit (in the case of 
OE retrievals) after retrieval (𝝌𝟐). The Pclear threshold for QL 5, namely 0.9, applies 
for the case of ATSR-series instruments and AVHRR night-time; for AVHRR day-

time the value is 0.99.  
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10. L4 ANALYSIS 

The SST CCI L4 analysis system is the Operational Sea Surface Temperature and Sea 
Ice Analysis (OSTIA) system. It was developed at the Met Office where it is run in near-
real time (NRT) daily [RD.213]. OSTIA uses satellite and in-situ SST data, together with 
sea ice concentration data, to produce a global gridded SST and sea ice analysis on a 
0.05° grid with no data gaps (known as a ‘Level 4’ data product). OSTIA reanalysis 
systems have been developed largely based on the near real time (NRT) system and 
have been used to produce a SST reanalysis for the period 1985 to 2007 (OSTIA 
reanalysis v1.0) [RD.239].  This reanalysis system was used in the first phase of the CCI 
SST project to produce the Level 4 product using satellite data only [RD.175]. The 
analysis process in OSTIA is not described in detail here; instead the reader is referred to 
OSTIA publications [RD.213, RD.239] and upgrade descriptions for OSTIA work under 
SST CCI in a previous ATBD release [RD.387]. 

10.1 Background 

Since 2018, the operational OSTIA analysis has been a variational assimilation scheme, 
called NEMOVAR. Under SST CCI, this change has included introduction of flow-
dependent background error correlation length scales. This provides upgraded feature 
resolution compared to previous analyses.  

A full description for publication is in preparation [RD.407]. To generate a spatially 
complete L4 analysis involves gap-filling relative to the input satellite data (which because 
of swath and cloud limitations are never spatially complete for a given day). Gap-filling 
algorithms tend to have the side effect of smoothing results, even where observations are 
plentiful and spatially contiguous, the degree of smoothing being heavily influenced by 
length-scale parameters 

Briefly, the principle of variational assimilation for solving this problem is to minimise a 
cost function 

𝐽(𝛿𝑥) = 1
2𝛿𝑥

T𝐵−1𝛿𝑥+ 
1
2

(𝑑−𝐻𝛿𝑥)T𝑅−1(𝑑−𝐻𝛿𝑥)  

Where 𝑥 describes the system state (the field of SST), 𝛿𝑥 is the change of ocean state for 
the present day’s analysis relative to the background (which is an estimate of the current 
day’s SSTs from persisting anomalies from the previous day’s analysis), 𝐵 is the error 
covariance matrix estimate representing how wrong the background can be as an 
estimate for today, 𝑅 is an error covariance matrix for observations, d contains the 
differences between the observations and the background and H is the linearised 
observation operator which interpolates the analysis grid to the observation locations; 
therefore 𝑑 − 𝐻𝛿𝑥 is the difference between observed SSTs (at their particular times and 
places) and the corresponding expected SSTs given a particular solution for 𝛿𝑥. The 
minimisation is therefore a compromise between the prior expectations for the SST field 
given the previous day’s result and the new SST observations, weighted according to 
their respective degree of uncertainty. 𝐵 is too large a matrix to store and invert and is 
therefore parameterised.  

The core of the improvements to OSTIA in this phase II work is the improvement in the 
parameterisation of 𝐵. The concept of flow-dependent length-scale formulation is to make 
a length-scale (smoothing) parameter within the 𝐵 parameterisation shorter (less 
smoothing on medium and long scales) where possible and useful – essentially, in 
situations where there are data and where the background (prior field from previous 
analysis) suggests that SST gradients are strong. (Smoothing is not detrimental where 
SST gradients are weak or zero.) 
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10.2 Algorithm concept 

This is actually done by adjusting the weighting between a long and short length scale in 
the assimilation scheme: increasing the weighting given to the short length scale better 
preserves features. This is illustrated below. 

 

 
Fig. 10-1. Control over long versus short error correlation length scales in 

variational assimilation. The correlation as a function of separation distance is 
shown, modelled as a linear combination (solid line) of Gaussian functions (dashed 

line). The relative weight of the Gaussian functions is changed using a flow-
dependent parameterisation. This is an innovation introduced for the v2 SST CCI 

analysis that improves the feature resolution of the analysis product. 

The parameterisation takes as input the total SST gradient in the previous day’s analysis, 
e.g. Fig 10-2. Where the total gradient is less than 20 mK km-1, the long length scale is 
highly weighted and where the total gradient exceeds 50 mK km-1, the short length scale 
is highly weighted. For intermediate gradients the linear interpolation of these extremes is 
applied. 

 
Fig. 10-2. Example field of total SST gradient in the new OSTIA analysis system, in 

mK km-1. The relative weight of the long-scale Gaussian shown in Fig 10-1 is 
reduced wherever the gradient exceeds 20 mK km-1, and takes a minimum value for 

locations where the gradient exceeds 50 mK km-1. 

In this way, 𝐵 is adapted to the local flow conditions (i.e., the strengths of SST gradients).  
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10.3 Example results 

The standard deviation between the new OSTIA analysis and VIIRS SST measurements 
is a measure of the relative uncertainty in different versions of the analysis. Using a 
configuration in which the flow dependence is introduced and a short length scale of 15 
km is adopted, this measure is improved in all basins (SD reduces, Fig 10-3). 

 
Fig. 10-3. Standard deviations between selected night-time satellite observations 
and the NEMOVAR and OI OSTIA analyses, for basis as labelled. Squares are the 
OSTIA system as used in the previous SST CCI analysis, and the red stars are the 

system now used for v2. Other symbols refer to other configurations tried 
experimentally.  

In terms of the SST fields produced, the impact is best seen looking, again, at SST 
gradients. The improved feature resolution is shown in figure 10-4 by the presence of 
stronger gradients, associated with mesoscale variability that was in the former system 
suppressed by greater smoothing. 

a.  
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b.  
 

Fig 10-4. Total SST gradient from two analysis versions. (a) The configuration for 
SST CCI v1, (b) the configuration for SST CCI v2. The plots show the Jan-Mar 2017 
averaged horizontal SST gradients in mK km-1 for the Gulf Stream region (axes are 

labelled with longitudes and latitudes).  

 

10.4 Future enhancements 

Given the performance of the L4 analysis illustrated above, further improvement of the 
SST aspect of the analysis system is not foreseen under SST CCI funding towards v3. 
Work will be done to manually inspect and improve sea ice concentration data (sourced 
from the sea ice CCI). Moreover, any progress in the analysis system made through other 
funding and having reached maturity will be made available to SST CCI v3 by agreement. 
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