

1. Add feedback from biology to physics in global ocean model, constrained by CCI Ocean Colour, and assess impact using other marine ECVs.

2. Impact on air-sea CO₂ flux of including CCI Sea State data in flux parameterisation. [Bonus: impact of cool skin SST!]

 $= \mathbf{H}$

Climate Modelling User Group

- Shortwave solar radiation (light) enters the ocean, heating the surface layers.
- Chlorophyll absorbs and scatters the light so it penetrates less deeply

- UKESM1, like most models, does not include this coupling
- NEMO, the ocean physics component, assumes a constant chlorophyll value of 0.05 mg m⁻³ everywhere, representative of very clear waters
- We test this coupling with NEMO-CICE-MEDUSA and ocean colour data

Climate Modelling User Group

Set of 10-year 1° runs from 2010-2019:

Name	Chlorophyll seen by NEMO	Assimilation	
One-way free	Constant (0.05)	None	Identica
One-way OC DA	Constant (0.05)	Ocean colour	
Two-way free	Varying (MEDUSA)	None	
Two-way OC DA	Varying (MEDUSA)	Ocean colour	

• (Also some 18-month 1/4° runs, and some sensitivity experiments where output from *Two-way OC DA* is used to constrain the light field of NEMO and/or MEDUSA while the biology remains unconstrained by assimilation. These are discussed in D3.1 but not shown today.)

Climate Modelling User Group

CMUG | 24-10-2022 | Slide 4

2010-2019 mean chlorophyll at 0m

Climate Modelling User Group

CMUG | 24-10-2022 | Slide 5

2010-2019 mean temperature at 0m (b) Two-way free minus One-way free

(c) Two-way OC DA minus One-way free

(b) Two-way free minus One-way free

(c) Two-way OC DA minus One-way free

Climate Modelling User Group

Maximum absolute difference from One-way free Temperature (°C) - 20100101-20191231

Max: 4.76°C

Max: 9.43°C

Max: 9.83°C

Climate Modelling User Group

2019 mean Heat content 0-300m

(b) Two-way free *minus* One-way free

(c) Two-way OC DA minus One-way free

(b) Two-way free *minus* One-way free

Climate Modelling User Group CMUG | 24-10-2022 | Slide 8

2010-2019 mean salinity at 0m

(b) Two-way free minus One-way free

(b) Two-way free minus One-way free

(c) Two-way OC DA minus One-way free

Climate Modelling User Group

Climate Modelling User

Similate Floatining o

-0.27 -0.18 -0.09

0.09

0.18 0.27

2010-2019 mean salinity (psu)

(b) One-way free minus observations

Climate Modelling Us

2010-2019 mean phytoplankton carbon

2010-2019 mean vertically integrated primary production

Climate Modelling User Group

- Summary (this part):
 - Implemented feedback in NEMO-CICE-MEDUSA (UKESM1 ocean)
 - Expected impact of (mostly) warming SST and cooling subsurface
 - Much regional variation
 - Including ocean colour assimilation strengthens feedback (in this model)
 - Validation against observations a mixed bag, but note the model was tuned without the feedback
 - Feedback important but model chlorophyll errors appreciable. Climate modellers may also wish to consider use of a satellite climatology

Climate Modelling User Group

- Air-sea CO₂ flux is calculated using:
 - $Flux = k(\Delta CO_2)$
- where k is the transfer velocity and ΔCO_2 the air-sea CO_2 gradient
- Most models parameterise k as a function of wind speed only (Wanninkhof, 2014)
- Observations suggest sea state is important. Deike and Melville (2018) propose a parameterisation of k using significant wave height (H_s) as well as wind speed
- We test this parameterisation, using CCI Sea State data for H_s
- Use L3 daily H_s, defaulting to wind parameterisation where H_s not observed
- Three year run from 2010-2012 at 1/4°

Climate Modelling User Group

-0.09

(a) 20121231 Air-sea CO₂ flux

(b) 201212 Air-sea CO₂ flux

(c) 2012 Air-sea CO₂ flux mmolC m⁻² d⁻¹

0.27
0.18
0.09

Sea state run minus control run

Climate Modelling User Group CMUG | 24-10-2022 | Slide 15

- Air-sea CO₂ flux is calculated using: $Flux = k(\Delta CO_2)$
- where k is the transfer velocity and ΔCO_2 the air-sea CO₂ gradient
- Sea surface pCO₂ is a function of SST. But SST can be defined many ways...
- Typically use model top-box temperature (average over top 1m), but should more accurately use cooler skin SST

https://www.ghrsst.org/ghrsst-data-services/products/

Climate Modelling User Group

 In observations, this has been shown to make a significant difference to ocean carbon uptake:

Article Open Access | Published: 04 September 2020

Revised estimates of ocean-atmosphere CO₂ flux are consistent with ocean carbon inventory

Andrew J. Watson [□], <u>Ute Schuster</u>, <u>Jamie D. Shutler</u>, <u>Thomas Holding</u>, <u>Ian G. C. Ashton</u>, <u>Peter Landschützer</u>, <u>David K. Woolf</u> & <u>Lonneke Goddijn-Murphy</u>

Nature Communications 11, Article number: 4422 (2020) Cite this article

- Probably not as important in models, but this seems never to have been tested
- Test using diurnal skin SST model implemented in NEMO by While et al. (2017)

Climate Modelling User Group CMUG | 24-10-2022 | Slide 17

Skin SST minus SST at depth

(b) 201212 Air-sea CO₂ flux

Skin SST run minus control run

Climate Modelling User Group

CMUG | 24-10-2022 | Slide 19

Mean air-sea CO₂ flux at Sea State observation points

Climate Modelling User Group

- Summary (this part):
 - Air-sea CO₂ flux sensitive to inclusion of sea state data in parameterisation, recommend this is investigated further

- Also a sensitivity to use of skin SST
- Longer runs (outside CMUG, by Andrea Rochner at University of Exeter) suggest global mean flux converges over time, but seasonal (hemispheric) variability remains altered

Climate Modelling User Group

2010-2019 mean temperature at 0m

Relative magnitude of the change in SST associated with uncertainty in model chlorophyll, compared with the overall change introduced by two-way coupling.

|(Two-way DA - Two-way free) - (Two-way free - One-way free)| |(Two-way free - One-way free)|

x 100

