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Executive summary

The uncertainty budget, from the actual measurement with multiple sensors to the data product, of
the vegetation parameters jointly retrieved for the CRDP-2 of the CCl+ Vegetation Parameters is
explained in the E3UB document. This is the part describing the retrieval from Top-Of_Canopy (TOC)
reflectances. Sources of uncertainty for LAI, fAPAR, leaf Chlorophyll-A+B concentration (“Cab”),
fAPAR_Cab, and surface albedo are identified, quantified as far as possible, and it is documented
whether the respective source is reflected in the uncertainty estimate provided with the CRDP-2. In
addition, the existence and importance of uncertainty correlations is highlighted, which are available
from the OptiSAIL retrieval system used for CRDP-2.
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1 Introduction

1.1 Scope of this document

This document describes the uncertainty characterization, estimation and/or propagation for each
product in the ECV included in CCl vegetation parameters Climate Data Research Package of cycle 2
(CRDP-2). It can be regarded as complementary to the Product Validation and Intercomparison Report
(VP-CCI_D4.1_PVIR_V2.0). Details of the algorithm are explained in the Algorithm Theoretical Basis
Document and references therein (VP-CCI_D2.1_ATBD_V2.0).

Here, Leaf Area Index (LAI) and fraction Absorbed of Photosynthetically Active Radiation (fAPAR) are
retrieved together with many other parameters from optical sensors using OptiSAIL.

Details on the methodology to determine per-observation uncertainty products, and how they are
presented to users of the CRDP-2, are provided in this document.

1.2 CRDP-2 as a true multi-sensor product

In CRDP-2 reflectance data from multiple sensor combinations is used, selected from SPOT-
4/VEGETATION (VGT1 hereafter), SPOT-5/VEGETATION-2 (VGT2 hereafter), and Proba-
V/VEGETATION (PROBA-V hereafter), METOP-AVHRR, Sentinel-3 OLCI, and VIIRS. The results are
expected to benefit from the multi-sensor approach through higher temporal and spectral sampling.
Wherever orbital and instrumental differences occur, also the higher angular and wavelength
sampling should improve the quality of the retrieval. This is because the radiative transfer model
models the directional and spectral reflectance explicitly as a function of LAl (and other vegetation
parameters).

1.3 Related documents

Internal documents

Reference ID Document

ID1 Climate Change Initiative Extension (CCl+) Phase 2 New

ECVs: Vegetation Parameters — EXPRO+ (ITT)
VP-CCl_D2.1_ATBD V2.0 | Algorithm Theoretical Basis Document: fAPAR and LAI, ESA CCl+
Vegetation Parameters

VP-CCl_D2.1_ATBD-pre- Algorithm Theoretical Basis Document of the pre-processing from L1B
processing V1.0 data to surface reflectance for all input data.

VP-CCl_D4.1_PVIR_V2.0 Product Validation and Intercomparison Report (PVIR) CRDP-2, ESA
CCl+ Vegetation Parameters (upcoming)

VP-CCl_D4.2 PUG_V2.0 Product User Guide (PUG) CRDP-2, ESA CCl+ Vegetation Parameters

(upcoming)
External documents
Reference ID Document
ED-1 C3S ATBD Multi sensor CDR Surface Albedo v2.0
ED-2 Algorithm Theoretical Basis Document Atmospheric correction for

Sentinel-3 OLCI and SLSTR products, Copernicus Global Land
Operations “Vegetation and Energy”



https://datastore.copernicus-climate.eu/documents/satellite-albedo/D1.3.4-v2.0_ATBD_CDR_SA_MULTI_SENSOR_v2.0_PRODUCTS_v1.1.pdf
https://land.copernicus.eu/en/technical-library/algorithm-theoretical-basis-document-atmospheric-correction-version-1-sentinel-3-products/@@download/file
https://land.copernicus.eu/en/technical-library/algorithm-theoretical-basis-document-atmospheric-correction-version-1-sentinel-3-products/@@download/file
https://land.copernicus.eu/en/technical-library/algorithm-theoretical-basis-document-atmospheric-correction-version-1-sentinel-3-products/@@download/file
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Leaf Area Index (LAI) is defined as the total one-sided area of all leaves in the canopy within a defined
region, and is a non-dimensional quantity, although units of [m2/m2] are often quoted, as a reminder
of its meaning [GCOS-200, 2016]. The selected algorithm in the CCl-Vegetation Parameters project
uses a 1-D radiative transfer model, and LAl is uncorrected for potential effects of crown clumping. Its
value can be considered as an effective LAI, notably the LAl-parameter of a turbid-medium model of
the canopy that would let the model have similar optical properties as the true 3-D structured canopy
with true LAl [Pinty et al, 2006]. Additional information about the geometrical structure may be
required for this correction to obtain true LAI [Nilson, 1971], which involves the estimation of the
clumping index, Cl, defined as the ratio between the true and effective LAl [see Fang, 2021 for a review
of methods to estimate Cl].

Fraction of Absorbed Photosynthetically Active Radiation (fAPAR) is defined as the fraction of
Photosynthetically Active Radiation (PAR; solar radiation reaching the surface in the 400-700 nm
spectral region) that is absorbed by a vegetation canopy [GCOS-200, 2016]. In contrast to LAI, fAPAR
is not only vegetation but also illumination dependent. In the CCl-Vegetation Parameters project we
refer to fAPAR as the white-sky value (i.e. assuming that all the incoming radiation is in the form of
isotropic diffuse radiation). Total fAPAR is used and no differentiation is made between live leaves,
dead foliage and wood.

Chlorophyll-A+B leaf pigment concentration is the amount of Chlorophyll A and B molecules per unit
leaf area, typically measured in ug.cm-2.

Uncertainty is a measure to describe the statistically expected distribution of the deviation from the
true value. Here, it is given as the physical value, which corresponds to the sigma-parameter of a
gaussian distribution.

Correlation of uncertainties describes how uncertainties depend on each other. It is important
information for error propagation. If, for instance, two measurements X and Y have highly correlated
uncertainties, their difference X-Y will have a lower uncertainty than the uncorrelated case. Here,
correlation of uncertainty is computed from the posterior variance-covariance matrix.

Surface albedo describes some of the reflectance properties of the surface. Here, we produce bi-
hemispheric reflectance (BHR) for diffuse illumination with a reference spectrum for spectral
broadband intervals VIS (400--700 nm), NIR (700—2500 nm), and SW (700—2500 nm), as well as
directional-hemispherical reflectances (DHR) for the same spectral broadbands, computed for local
solar noon.
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The methods for computing and propagating uncertainties referred to in this document, all assume
that errors are small and Gaussian. All inversion steps use Bayesian inference by minimising a cost
function (J) with two parts, a prior term, which contains the prior knowledge on the parameters, and
a data term, which measures the misfit with the observations. The posterior parameter values and
their uncertainties are the output of the inversion. The LAl is among the retrieved parameters, but
fAPAR and surface albedo are computed in a diagnostic step following the retrieval using the posterior
model parameters and the illumination geometry. The covariance matrix of the data (input to the
inversion) is part of the data term, while the covariance matrix describing the prior knowledge of the
parameters is part of the prior term. It is the curvature of this cost function at the minimum, which
describes how well the combination of data and prior knowledge constrains the retrieved parameters,
hence how uncertain they are. Therefore, the inverse of the Hessian (H) at this point gives the
posterior covariance matrix (2,05 = H™).

The propagation of uncertainties through diagnostic steps, which do not involve a model inversion,
are done using the covariances and the Jacobians (2, = (dJ/d p)Z;,(d]/d p)T).

For OptiSAIL, Hessian and Jacobian matrices are computed directly from the implementations of the
models by using code generated with automatic differentiation (AD).

When various measurements with their respective uncertainties are combined, it is important to take
their covariance into account. OptiSAIL is equipped to do this, but the typical signature of the TOC
reflectance inter-band covariance still needs to be determined, before this feature can be exploited.
First analyses indicate that it is highly influenced by the Aerosol Optical Depth (AOD). Co-variances of
the atmospheric correction from an operational chain are generally not available, also because of the
high data-volume this would imply. OptiSAIL does however compute the correlation of the posterior
uncertainty between all results. Figure 1 shows an example from 2014-05-16 for the central-European
tile X18Y02 (in PROBA-V nomenclature) of quality-filtered LAI, fAPAR, their uncertainties, and Figure
2 shows their correlation, and the number of per-band-observations of VGT2 and PROBA-V which
were combined to retrieve these values. A cut-off at a maximum of three observations per band per
sensor was applied, hence the maximum of 24 (=2 sensors *4 bands per sensor * 3). The visibility of
some of the swath edges is caused by the quality filtering (different degree of cloud contamination at
the different overpass times; for quality filtering see VP-CCl_D4.2_PUG_V2.0). Note that it is not an
effect of a jump in the value but of the different density of accepted inversions (the locations of
missing values are coloured black in the LAl and fAPAR images in Figure 1).
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LAI_quality-filtered [| S LAI_ERR-qf |

e

Figure 1: Quality-filtered (“-qf”) OptiSAIL LAl, LAl uncertainty, fAPAR, fAPAR uncertainty for 2014-05-
16 for the central-European tile X18Y02 (PROBA-V nomenclature; from CRDP-1).
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LAI_fAPAR_correl-qgf [| n_bands_used [1]

Figure 2: Correlation of the Quality-filtered (“-qf”) OptiSAIL LAl uncertainty and fAPAR uncertainty (left)
and the number of bands used (right) for 2014-05-16 for the central-European tile X18Y02 (PROBA-V
nomenclature; from CRDP-1).

3 Input L1B data

Level 1B data from Metop-AVHRR and VIIRS are used and pre-processed to projected surface
reflectance datasets. The input L1B data does not include Top-of-Atmosphere (TOA) reflectance
uncertainties. Therefore, a literature review was performed to add TOA reflectance uncertainties to
the L1B. The details for each sensor are described in the ATBD of the pre-processing [VP-
CCl_D2.1_ATBD-pre-processing].

The SPOT-VEGETATION and PROBA-V surface reflectance data are intermediate products from the
C3S5312b contract. The information on the uncertainties of the L1B data is summarized in [ED-1].
Surface reflectance data from Sentinel-3 OLCI are pre-processed by the Copernicus Global Land
Service (CGLOPS-1). The documentation on how uncertainties from the Level 1 data are used are
described in [ED-2].

4 TOC reflectances

OptiSAIL uses TOC reflectances derived from various optical sensors as input. TOC reflectances are
obtained by applying SMAC (Rahman and Dedieu, 1994), a Simplified Method for the Atmospheric
Correction of satellite measurements in the solar spectrum to the TOA reflectances. The choice of the
SMAC algorithm is supported by the following arguments:
e It is operational and largely used in the land community and already implemented in the
Copernicus Global Land Service and Copernicus Climate Change Service processing lines.
e |tis arobust, generic algorithm; thus, it minimizes the dependence on the sensor which is a
good thing when one wants to build a multi-sensor long time series with limited biases.
e The formulation of the algorithm is analytical and is adapted to an error propagation analysis.

At that point, numerous sources of uncertainty are involved already:
1. Uncertainty of the measurements of the optical sensors
2. Uncertainty due to the aggregation and the geolocation
3. Uncertainties of the ancillary data (ozone, water vapour, surface pressure and Aerosol Optical
Thickness) used in the atmospheric correction. Ancillary data are from the Modern-Era
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Retrospective analysis for Research and Applications, Version 2 (MERRA-2). More information
can be found in https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
4. Uncertainty due to the atmospheric correction model.

For CRDP-2, the TOC reflectances from PROBA-V and SPOT-VEGETATION that were processed in the
frame of the C3S_312b contract for the multi-sensor data are used. The description of this data can
be found in [ED-1]. The sources of uncertainty 1 and 3 are accounted for in the uncertainty budget.
How they are propagated is detailed in Section 3.4.3 of ED-1 while how they are characterized is
presented in section 3.4.4 and Table 19 of ED-1.

The sources of uncertainty 2 and 4 are not accounted for in the uncertainty budget.

The input Sentinel-3 OLCI surface reflectance data from CGLOPS-1 are used also as an input. The
description of the processing can be found in [ED-2]. The sources of uncertainty are the uncertainties
(i) on ancillary data (total column of ozone, total column of water vapour, on aerosol optical thickness
and aerosol model, surface pressure) and (ii) uncertainties on measured Top Of Atmosphere
reflectances.

The pre-processing of Metop-AVHRR and VIIRS is done within the frame of VP CCl. The approach,
including the uncertainty budget is described in detail in [VP-CCI_D2.1_ATBD-pre-processing]. The
uncertainties on TOC reflectances are driven by the uncertainties of (i) ancillary data (aerosol optical
thickness, surface pressure, total column of ozone and water vapour), (ii) the assumption of the
aerosol model and (ii) the uncertainty on the Top of Atmosphere reflectances used as inputs.

LAl uncertainty from OptiSAIL is computed from the posterior covariance Matrix of the model
parameters as described in the ATBD [VP-CCI_D2.1_ATBD_V2.0], thus taking into account the
uncertainties reported for the TOC reflectances in the cost function. In contrast to the algorithm used
in CRDP-1, for CRDP-2, the posterior covariance matrix of the previous retrieval at the same location
is used to modify the prior assumptions (see ATBD [VP-CCI_D2.1_ATBD_V2.0] for details). This is
expected to reduce the uncertainties and speed up the retrieval. However, in rare situations where
observations from the extremes of the overlapping time windows are used, this potentially gives more
weight to these observations, thus underestimating uncertainties.

In addition to the TOC reflectance uncertainty, the following sources of uncertainties influence the

retrieval of OptiSAIL LAI:

(a) Correlation of TOC reflectance uncertainties
All bands of a sensor which are using the same observation geometry suffer in a similar way from
algorithmic and parametric uncertainties of the atmospheric correction. Therefore, their
uncertainties are correlated.

(b) TOC reflectance geolocation and spatial sampling
Satellite products with known geolocation issues are avoided. However, especially in higher
latitudes where the product grid is much smaller than 1 km? per pixel, geolocation uncertainties
of the input data are expected to lead to a notable level of noise in the retrieval.

(c) Algorithmic uncertainty of the OptiSAIL simulation models (4SAILH, PROSPECT-D, Ross-Li
BRDF, TARTES, soil model)
The models used for the simulation of the reflectance spectra within OptiSAIL are to a high degree
idealised in order to allow for a minimum of ancillary data and very high computational speed.


https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/
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(a)

(b)

(c)

Therefore, the simulated spectra for a given set of variables can differ from what would be
obtained with more sophisticated models. This also means that the algorithm retrieves merely the
model input variables, including LAI, with their uncertainties. These are not necessarily equal to
the equivalent measurable quantity in the field. This is for example the case with true versus
effective LAl in clumped vegetation.

5.2 Quantification of uncertainty of OptiSAIL LAI

Correlation of TOC reflectance uncertainties
The correlation of the TOC reflectance uncertainties is unknown, but it is expected to be high, up
to or above 0.5, and therefore relevant, especially for neighbouring bands at short wavelengths.

TOC reflectance geolocation and spatial sampling

The effect of this source of uncertainty is unknown but expected to be sensor/platform dependent
and spatially inhomogeneous, with a stronger impact over spatially inhomogeneous surfaces,
mountainous areas, and in higher latitudes.

Algorithmic uncertainty of the OptiSAIL simulation models (4SAILH, PROSPECT-D, Ross-Li

BRDF, TARTES, soil model)

The effect of the algorithmic uncertainties in these models is complex. Algorithmic uncertainties
owing to the model formulation as investigated by Berger et al. (2018) are taken into account by
adding a variance corresponding to 6% of the observed reflectances to account for the model
error of the simulation component of OptiSAIL (aﬁata = arzmc + (0.0673,.)?). The estimate of
Berger et al. (2018) is based on an analysis of the accuracy by which measured reflectance spectral
can be reproduced. They use a threshold value of 0.01 in mean absolute reflectance error in their
analysis. This would be 6 % of a reflectance of 0.17 when expressed in relative terms. Investigation
of cost function residuals justify the current choice of 6 % for the CRDP-1 production setup (Figure

3 and Figure 4). The value may be adapted with increasing refinement of the uncertainty budget.
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Figure 3: In purple: Residuals per sensor and band, contributing to the cost function vector after
retrieval for the central-European tile X18Y03 (in Sentinel-3 nomenclature) for all June 2019 using all
sensors together. Bands and sensor names as indicated in sub-captions. In green: subset of inversions
accepted by a chi-square test. Light blue line: density of the Gaussian distribution which would be
expected if all assumptions were ideally fulfilled.

VGT-2

0.6

0.5

04

0.3

02

0.1

Residuals VGT2 457.50 nm (sim-obs)/sigma
case=all count= 5684320 accepted= 4240061

sample probability density of residuals
accepted solyfions with overall p>1% —
stdnormal

Residuals VGT2 653.75 nm (sim-obs)/sigma
case=all count= 5432495 accepted= 4044883

sample probgpility density of residuals
accepted ions with overall p>1%
stdnormal

-4 -3 2 -1 0 1 2 3 4

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Residuals VGT2 837.50 nm (sim-obs)/sigma
case=all count= 5447957 accepted= 4108571

sample probakility density of residuals
accepted sofillions with overall p>1% m—
stdnormal

Residuals VGT2 1635.00 nm (sim-obs)/sigma
case=all count= 6548654 accepted= 4853862

0.6

sample probability density of residuals
accepted solutions with overall p>1% —
stdnormal

0.5 ¢

04

0.3 |

0.2

0.1 |

METOP-A




CCl+-VEGETATION E3UBv2.0 Page | 20

Residuals METOP A 633.00 nm (sim-obs)/sigma Residuals METOP A 864.00 nm (sim-obs)/sigma
case=all count= 9733211 accepted= 7239342 case=all count= 10057691 accepted= 7501388
0.5 0.7
sample probability density of residuals sample probability density of residuals
0.45 accepted solutj with overall p>1% m—— accepted solglions with overall p>1% —
: stdnormal ——— 0.6 stdnormal ———
0.4
0.35 0.5
03 0.4
0.25
0.2 0.3
0.15 0.2
0.1
0.1
0.05
0 0
-4 -3 2 -1 0 1 2 3 4
Residuals METOP A 1606.50 nm (sim-obs)/sigma
case=all count= 10161781 accepted= 7542882
0.7
sample probability density of residuals
accepted solutions with overall p>1% —
0.6 stdnormal ———
Residuals SNPP VIl 410.57 nm (sim-obs)/sigma Residuals SNPP VIl 443.47 nm (sim-obs)/sigma
case=all count= 12473822 accepted= 8951534 case=all count= 10842378 accepted= 7871701
0.6

sample probalgllity density of residuals

sample probability density of residuals .
accepted sol ns with overall p>1% m— i

accepted solugjons with overall p>1% m—

stdnormal ——— stdnormal ———
0.5
0.4
0.3
0.2
0.1
0
-4 -3 2 -1 0 1 2 3 4

Residuals SNPP VIl 486.19 nm (sim-ohs)/sigma Residuals SNPP VIl 550.47 nm (sim-obs)/sigma

case=all count= 11035645 accepted= 7901118 case=all count= 12321486 accepted= 8844167
0.6 0.8

sample probability density of residuals sample probability density of residuals
accepted sol ns with overall p>1% — accepted solutions with overall p>1% —
stdnormal ——— 0.7 stdnormal ———

0.5
0.6
0.4
0.5

0.3 0.4

0.3
0.2
0.2

0.1
0.1




CCI+-VEGETATION E3UBv2.0 Page | 21

Residuals SNPP VIl 671.25 nm (sim-obs)/sigma Residuals SNPP VIl 745.27 nm (sim-obs)/sigma
case=all count= 11875022 accepted= 8583261 case=all count= 8987324 accepted= 6538678
0.5 0.6
sample probabi density of residuals m— sample probability density of residuals
0.45 accepted solu ith overall p>1% m—— accepted solutions with overall p>1% —
: stdnormal stdnormal
0.5 ¢
0.4
0.35
0.4t
03
0.25 03t
0.2
0.15 02y
0.1
0.1+t
0.05
0 0
- -4 3 2 1 0 1 2 3 4
Residuals SNPP VIl 861.61 nm (sim-obs)/sigma Residuals SNPP VIl 1238.26 nm (sim-obs)/sigma
case=all count= 11992265 accepted= 8635745 case=all count= 12904230 accepted= 9375680
0.6 0.6

sample probability density of residuals
accepted solutions with overall p>1% —

sample probability density of residuals
accepted solutions with overall p>1% m—

stdnormal stdnormal
0.5 0.5 ¢
04 0.4t
0.3 03+t
0.2 0.2 r
0.1 0.1 ¢
0 0
-4 3 2 1 0 1 2 3 a4 -4 3 2 1 0 1 2 3 4
Residuals SNPP VIl 1601.16 nm (sim-obs)/sigma Residuals SNPP VIl 2256.99 nm (sim-obs)/sigma
case=all count= 11407933 accepted= 8245467 case=all count= 11028606 accepted= 7899882
0.6 .
sample probability density of residuals sample probghkility density of residuals s
accepted solutions with overall p>1% — accepted sof@lions with overall p>1% m—
stdnormal stdnormal

Figure 4: As Figure 3, but for all June 2012 using VGT-2. METOP-A, and SNPP-VIIRS.

5.3 End-to-end uncertainty budget in OptiSAIL LAI

Uncertainties, as far as they are known and quantifiable, are propagated through the whole processing
chain for every single retrieved grid cell and are part of the product. See the validation report for
comparisons with other products and measurements.

Figure 5 shows the propagated uncertainty as presented in the product as scatter plot against the
estimated LAl value for the same date and tile as in the introductory example.

Note that the reported uncertainty is the uncertainty for the retrieved model parameter of LAI.
Uncertainties due to model representation errors are not included in this budget.
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Figure 5: Scatter plot of OptiSAIL LAl uncertainty over the estimated quality-filtered LAl value from
2014-05-16 for the central-European tile X18Y02 (in PROBA-V nomenclature, from CRDP-1).

OptiSAIL retrieves LAl and fAPAR together. Therefore, the treatment of uncertainties is very similar
except for the final step. fAPAR is computed from the retrieved parameters of the model by doing a
hyper-spectral simulation. For its uncertainty, the full posterior covariance matrix of the parameters
is propagated to fAPAR, using the Jacobian of the model (see ATBD for formulas). Similar
considerations as for LAl apply (see OptiSAIL LAl section 5 above).

Figure 6 shows the propagated uncertainty as presented in the product as scatter plot against the
estimated fAPAR value for the same date and tile as in the introductory example.
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Figure 6: Scatter plot of OptiSAIL fAPAR uncertainty over the estimated quality-filtered fAPAR value
from 2014-05-16 for the central-European tile X18Y02 (in PROBA-V nomenclature; from CRDP-1).

Chlorophyll-A+B is one of the leaf pigments, whose effect on the leaf optical properties is simulated
with PROSPECT-D inside the OptiSAIL retrieval system as mass per leaf area. It is retrieved together
with the other model parameters, and its uncertainty budget is computed similar to the one of LAI.
Cab uncertainty has a strong anticorrelation with LAI (see Figure 8). Not so much for low LAI, because
the lower the LAI, the more the spectrum in the visible range is dominated by soil rather than the leaf
absorption spectrum and Cab becomes less well determined. But for medium and higher LAI, a canopy
with lower LAl and higher Cab can to some extent (at least in the visible part the spectrum) have a
similar reflectance signature as a canopy with higher LAl and lower Cab. This can be exploited when
computing the canopy chlorophyll content (CCC) as the product of the two (CCC=LAI*Cab), where the
anticorrelation leads to a reduction of the uncertainty (compared to the uncorrelated case) in the
error propagation. Note that for low LAI, Cab is not well determined and is retrieved as a value near
the prior of 60 ug.cm™ with an uncertainty near the Cab prior uncertainty of 25 ug.cm?, as shown in
Figure 7.
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Figure 7: Scatter plot of OptiSAIL Cab uncertainty over the estimated quality-filtered Cab value from
2014-05-16 for the central-European tile X18Y02 (in PROBA-V nomenclature; from CRDP-1; units on
both axes are ug.m-2).
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Figure 8: Scatter plot of Cab-LAl uncertainty correlation over the estimated quality-filtered LAl value
from 2014-05-16 for the central-European tile X18Y02 (in PROBA-V nomenclature; from CRDP-1; both
axes dimensionless). The horizontal striping is an artefact introduced by lossy data compression.

The uncertainty budget of fAPAR_Cab produced by the OptiSAIL algorithm, is technically very similar
to that of OptiSAIL fAPAR, with the exception that the focus on the absorption by Chlorophyll A+B is
expected to make this quantity more useful for the users interested in plant photosynthesis. This could
be interpreted as a reduction of algorithmic uncertainty, as compared to total vegetation fAPAR.

OptiSAIL simulates surface albedo from the retrieved parameters, similar to the computation of fAPAR
(cf. Section 6).

In OptiSAIL, surface albedo (bi-hemispherical and directional-hemispherical at local solar noon for the
spectral broadbands VIS, NIR, SW) is computed from the retrieved parameters of the model by a
hyper-spectral simulation. For its uncertainty, the full posterior covariance matrix of the parameters
is propagated to surface albedo, using the Jacobian of the model (see ATBD for formulas). For
algorithmic uncertainties, the same considerations as detailed for LAl and fAPAR below apply.
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