Beurzen

Beurzen voor jonge academici voor onderzoek naar aardobservatie, geo-informatie en het klimaat

Het hoofddoel van de "CCI Fellowship programma" is om wetenschappers die een carrière in aardobservatie, geo-informatie of klimaatwetenschap nastreven in een vroeg stadium te betrekken bij ESA onderzoek.

Dit initiatief ondersteunt momenteel jonge wetenschappers, op postdoctoraal niveau, om toonaangevend onderzoek te doen en het wetenschappelijk rendement van ESA-missies en -datasets te maximaliseren. Dit gebeurd door de ontwikkeling van nieuwe methoden, nieuwe producten en nieuwe wetenschappelijke resultaten.

CCI Fellows onderzoeken één of meer van de lange-termijn gegevens die in het kader van het CCI-programma worden gegenereerd.

Details previous CCI Fellowships

Meer details over vorige CCI Fellowships staan hieronder kort beschreven (in het Engels):

2015 Fellowship Cohort

2014 Fellowship Cohort

2015 fellowships

Name: Charles Robert

Title: EXtending the Performance of AerGom to explore New aerosol related Species and to Improve OzoNe retrieval “EXPANSION”

Aerosols and ozone are particularly closely related climate variables. From a retrieval point of view, both affect significantly the extinction of the measured signal in the UV-Vis spectral region, making their distinction difficult in some cases. More fundamental is their link through atmospheric interactions, aerosols playing a crucial role in ozone physico-chemistry and ozone depletion. The algorithm used to produce stratospheric aerosol records in Aerosol_CCI is AerGom, a GOMOS retrieval algorithm optimized for stratospheric aerosols, based on lessons learned from the operational GOPR algorithm. The main output provided by AerGom is aerosol extinction provided over a large spectral range. Ozone is provided as a by-product, together with other ozone depleting gases such as NO2 and NO3. The EXPANSION project will explore, as its primary objective, the possibilities and performances of AerGom in the observation of ozone and ozone depleting trace gases. The aim is to obtain good quality vertical trace gas profiles, while keeping or improving the quality of aerosol extinction data. Cross-ECV consistency between stratospheric ozone and aerosol vertical profiles will be assessed using Ozone_CCI time series. Extending the use of AerGom toward Ozone_CCI scope is also expected to bring about a welcome feedback for further algorithm development in Aerosol_CCI.

Publications:

Vanhellemont, F.; Mateshvili, N.; Blanot, L.; Robert, C. É.; Bingen, C.; Sofieva, V.; Dalaudier, F.; Tétard, C.; Fussen, D.; Dekemper, E.; Kyrölä, E.; Laine, M.; Tamminen, J. & Zehner, C. "AerGOM, an improved algorithm for stratospheric aerosol extinction retrieval from GOMOS observations -- Part 1: Algorithm description" Atmospheric Measurement Techniques, 2016, 9, 4687-4700, DOI: 10.5194/amt-9-4687-2016

Robert, C. É.; Bingen, C.; Vanhellemont, F.; Mateshvili, N.; Dekemper, E.; Tétard, C.; Fussen, D.; Bourassa, A. & Zehner, C. "AerGOM, an improved algorithm for stratospheric aerosol extinction retrieval from GOMOS observations -- Part 2: Intercomparisons" Atmospheric Measurement Techniques, 2016, 9, 4701-4718, DOI:10.5194/amt-9-4701-2016

Bingen, Christine, Robert, Charles,  Stebel, Kerstin,  Brühl, Christoph,  Schallock, Jennifer, Vanhellemont, Filip, Mateshvili, Nina, Höpfner, Michael, Trickl, Thomas, Barnes, John, Jumelet, Julien, Vernier, J, Popp, Thomas, de Leeuw, Gerrit, Pinnock, Simon, 2017, Stratospheric aerosol data records for the climate change initiative: Development, validation and application to chemistry-climate modelling, Remote Sensing of Environment (2017), http://dx.doi.org/10.1016/j.rse.2017.06.002 .

Name: Sophie Vandenbussche

Title: MIneral DUst SOurces using vertical profile information retrieved from IASI radiances “MIDUSO”

Airborne mineral dust is a climate active aerosol, with high global burden and an anthropogenic component linked to the land use. The objective of the project is to study mineral dust sources, using for the first time mineral dust daily (morning and evening) almost global 3D atmospheric distribution using data from IASI, the dust profiles being a side product of dust aerosol optical depth generated by Aerosol_cci. This datatset will be used to study Saharan and Asian mineral dust sources: geographic distribution, separation of source, pure transport and deposition areas, long term changes, partial quantification of the emissions, contribution to the diurnal cycle knowledge. To help interpret and to complete the information obtained from this new dataset, we will use land cover information and vegetation index seasonality data (obtained from the land cover CCI project).

Publications:

Vandenbussche, S. and De Mazière, M., 2017, African mineral dust sources: a combined analysis based on 3D dust aerosols distributions, winds and surface parameters, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-809 

Name: Luca Lelli

Title: STatistics of AeRosol and CLouds INTeractions from satellite “STARCLINT”

The goal of the STatistics of AeRosol and CLouds INTeractions from satellite (STARCLINT) project is to obtain a quantitative assessment of the interactions between suspended aerosol particles and clouds.  The long-term observational record enables the assessment of robust statistical relationships between atmospheric particulate and clouds, despite the superimposed modulation of regional to continental and mesoscale meteorology. STARCLINT will make use of the data sets generated within the ESA Aerosol_cci and Cloud_cci activities and, with the addition of complementary datasets, will identify correlations between aerosol particles and cloud in specific regimes across the globe for a time window of 20+ years. The outcome of STARCLINT will be therefore useful not only to the CCI working groups by building a bridge between their respective communities, but also to the climate model user groups by making a step toward an improved knowledge of the hydrological cycle. The work will in addition examine ocean-aerosol, ocean-cloud interactions. 

Publications:

Lelli, L., Weber, M., & Burrows, J. P. (2016). Evaluation of SCIAMACHY ESA/DLR Cloud Parameters Version 5.02 by Comparisons to Ground-Based and Other Satellite Data. Frontiers in Environmental Science, 4, 43. http://doi.org/10.3389/fenvs.2016.00043

Name: Mathias Forkel

Title: CCI data for assessing SOil moisture controls on FIre Emissions “CCI4SOFIE”

The objective of CCI4SOFIE is to improve the understanding of the links between climate and fire and improve estimates of global biomass burning emissions. The ESA CCI datasets of soil moisture, fire, land cover, greenhouse gases and aerosols, ESA DUE GlobEmission, and ESA STSE BIOMASAR biomass data in combination with European and non-European EO datasets of carbon pools and vegetation activity (NDVI, FAPAR) will be used to 1) empirically identify spatial-temporal patterns of soil moisture-vegetation-fire interactions, 2) to constrain and optimize a state-of-the-art dynamic global vegetation-fire model, and to 3) make projections of future soil moisture-vegetation-fire interactions and fire emissions.

Publications:

Forkel, M., Dorigo, W., Lasslop, G., Teubner, I., Chuvieco, E., Thonicke, K. (2016). A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1). Geoscientific Model Development 10, 4443-4476. doi:10.5194/gmd-10-4443-2017

Teubner, I.E., Forkel, M., Jung, M., Liu, Y.Y., Miralles, D.G., Parinussa, R., van der Schalie, R., Vreugdenhil, M., Schwalm, C.R., Tramontana, G., Camps-Valls, G., Dorigo, W.A. (2018). Assessing the relationship between microwave vegetation optical depth and gross primary production. International Journal of Applied Earth Observation and Geoinformation 65, 79–91. doi:10.1016/j.jag.2017.10.006

Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, P.D., Hirschi, M., Ikonen, J., de Jeu, R., Kidd, R., Lahoz, W., Liu, Y.Y., Miralles, D., Mistelbauer, T., Nicolai-Shaw, N., Parinussa, R., Pratola, C., Reimer, C., van der Schalie, R., Seneviratne, S.I., Smolander, T., Lecomte, P. (2017). ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sensing of Environment, 203, 185-215. doi:10.1016/j.rse.2017.07.001

2014 Cohort

Name: Jens Heymann

Title: CARBOn dioxide emissions from FIRES (CARBOFIRES)

The focus of the CARBOFIRES project is the analysis of satellite XCO2 data products to estimate fire CO2 emissions for identified fire events. This involves identifying large fire regions that are consistent with XCO2 variation in time and developing associations between XCO2 observations and fire events and given those to conduct atmospheric inversion methods to determine fire CO2 emissions. 

CARBOFIRES Final Report

Publications:

Heymann, J., Reuter, M., Hilker, M., Buchwitz, M., Schneising, O., Bovensmann, H., … Wunch, D. (2015). Consistent satellite XCO2 retrievals from SCIAMACHY and GOSAT using the BESD algorithm. Atmospheric Measurement Techniques, 8(7), 1787–1832. http://doi.org/10.5194/amt-8-2961-2015

Reuter, M., M. Buchwitz, M. Hilker, J. Heymann, H. Bovensmann, J. Burrows, S. Houweling, Y. Liu, R. Nassar, F. Chevallier, P. Ciais, J. Marshall, and M. Reichstein, How much CO2 is taken up by the European terrestrial biosphere? Bull. Amer. Meteor. Soc. doi:10.1175/BAMS-D-15-00310.1, 2017.

Massart, S., A. Agusti-Panareda, J. Heymann, M. Buchwitz, F. Chevallier, M. Reuter, M. Hilker, J. P. Burrows, N. M. Deutscher, D. G. Feist, F. Hase, R. Sussmann, F. Desmet, M. K. Dubey, D. W. T. Griffith, R. Kivi, C. Petri, M. Schneider, V. A. Velazco, Ability of the 4-D-Var analysis of the GOSAT BESD XCO2 retrievals to characterize atmospheric CO2 at large and synoptic scales, Atmos. Chem. Phys., 16, 1653-1671, doi:10.5194/acp-16-1653-2016, 2016.

Buchwitz, M., M. Reuter, O. Schneising, W. Hewson, R.G. Detmers, H. Boesch, O.P. Hasekamp, I. Aben, H. Bovensmann, J.P. Burrows, A. Butz, F. Chevallier, B. Dils, C. Frankenberg, J. Heymann, G. Lichtenberg, M. De Mazière, J. Notholt, R. Parker, T. Warneke, C. Zehner, D.W.T. Griffith, N.M. Deutscher, A. Kuze, H. Suto, D. Wunch, Global satellite observations of column-averaged carbon dioxide and methane: The GHG-CCI XCO2 and XCH4 CRDP3 data set, Remote Sensing of Environment, DOI: 10.1016/j.rse.2016.12.027, http://dx.doi.org/10.1016/j.rse.2016.12.027, in press, pp. 20, 2016.

Heymann, J., M. Reuter, M. Buchwitz, O. Schneising, H. Bovensmann, J. P. Burrows, S. Massart, J. W. Kaiser, and D. Crisp, CO2 emission of Indonesian fires in 2015 estimated from satellite-derived atmospheric CO2 concentrations, Geophys. Res. Lett., 44, doi:10.1002/2016GL072042, 2017.

Name: Adam Povey

Title: The Environmental Response to Aerosols observed in CCI ECVs (ERACE)

This project aims to quantify the impact of aerosol on the radiation budget by post-processing the outputs of the aerosol and cloud_cci projects. Aerosols interact with radiation both directly by reflecting light  and indirectly by altering the properties of clouds.

ERACE Final Report

Publications:

Povey, A. C., & Grainger, R. G. (2015). Known and unknown unknowns: Uncertainty estimation in satellite remote sensing. Atmospheric Measurement Techniques, 8(11), 4699–4718. http://doi.org/10.5194/amt-8-4699-2015

Merchant, C. J., Paul, F., Popp, T., Ablain, M., Bontemps, S., Defourny, P., et al. (2017). Uncertainty information in climate data records from Earth observation. Earth System Science Data Discussions, 1–28. http://doi.org/10.5194/essd-2017-16

Popp, T., de Leeuw, G., Bingen, C., Brühl, C., Capelle, V., Chedin, A., et al. (2016). Development, Production and Evaluation of Aerosol Climate Data Records from European Satellite Observations (Aerosol_cci). Remote Sensing, 8(5), 421. http://doi.org/10.3390/rs8050421.

Christensen, M. W., Neubauer, D., Poulsen, C. A., Thomas, G. E., McGarragh, G. R., Povey, A. C., Proud, S. R., and Grainger, R. G.: Unveiling aerosol–cloud interactions – Part 1: Cloud contamination in satellite products enhances the aerosol indirect forcing estimate, Atmos. Chem. Phys., 17, 13151-13164, https://doi.org/10.5194/acp-17-13151-2017, 2017.

Name: Tero Mielonen

Title: Does Increasing Temperature Increase Carbonaceous Aerosol Direct Radiative Effect over Boreal Forests? (ITICA)

Aerosol particles are an important regulator of the Earth’s climate. One of the key quantities needed for accurate estimates of anthropogenic radiative forcing is an accurate estimate of radiative effects from natural unperturbed aerosol. The dominant source of natural aerosols over forested regions are biogenic volatile organic compounds (BVOC). In accordance with the expected positive temperature dependence of BVOC emissions, several previous studies have shown that some aerosol properties, such as mass and ability to act as CCN, also correlate positively with temperature at many forested sites. The goal of ITICA is to investigate whether a temperature effect on AOD occurs over the remote boreal forest region (about 50° N to 70° N), with a focus on Eurasia; and if it occurs, to quantify the influence of rising temperatures on the direct radiative effect of aerosols over the boreal forest.

ITICA Final Report

Publications:

Mielonen, T., Hienola, A., Kühn, T., Merikanto, J., Lipponen, A., Bergman, T., … Kokkola, H. (2016). Temperature-dependence of aerosol optical depth over the southeastern US. Atmospheric Chemistry and Physics Discussions, 0, 1–28. http://doi.org/10.5194/acp-2016-625

Name: Martin Hieronmyi

Title: Ocean Colour at low sun and high waves (LowSun-OC)

Reflectance and transmittance properties of the sea surface depend on prevailing wind and wave conditions. Up to now, studies focused on sea surface roughness using the Cox and Munk model, which is based on wind speed-depending wave slope statistics. Wind also affects the underwater light field and resulting water-leaving radiance, and hence ocean colour estimates, particularly at low solar angles and in high latitude. This work aims at a revision of reflectance and transmittance properties of the wind-blown sea surface to account for wave effects on ocean colour estimates. The emphasis of this work is on influences of wave height and sea state on interactions of light with the air-sea interface and consequently to reduce uncertainties related to large zenith angles and high wind speeds in order to extend the usability of satellite data.

LowSun-OC Final Report

Publications:

Xi, H., Hieronymi, M., Röttgers, R., Krasemann, H., & Qiu, Z. (2015). Hyperspectral Differentiation of Phytoplankton Taxonomic Groups: A Comparison between Using Remote Sensing Reflectance and Absorption Spectra. Remote Sensing, 7(11), 14781–14805. http://doi.org/10.3390/rs71114781

Hieronymi, M., Muller, D., & Doerffer, R. (2017). The OLCI Neural Network Swarm (ONNS): A Bio-Geo-Optical Algorithm for Open Ocean and Coastal Waters. Frontiers in Marine Science, 4, 140. http://doi.org/10.3389/fmars.2017.00140

Xi, H., Hieronymi, M., Krasemann, H., & Röttgers, R. (2017). Phytoplankton Group Identification Using Simulated and In situ Hyperspectral Remote Sensing Reflectance. Frontiers in Marine Science, 4, 272. http://doi.org/10.3389/fmars.2017.00272

Name: Omar Bellprat

Title: Verification of high-resolution climate forecasts on Intera-seasonal-to-interannual Timescales with Advanced Satellite datasets of the Climate Change Initiative (VERITAS CCI)

VERITAS_CCI explores the verification of seasonal prediction hindcasts with the newly developed remote sensed observations of the ESA Climate Change Initiative (CCI) and places a special focus on the consideration of observational quality. The seasonal prediction hindcasts evaluate different prospects to improve seasonal forecast skill such as increased horizontal resolution or initialisation of the land surface and sea ice. The CCI observations of sea surface temperature, sea ice and soil moisture are used to judge whether these experiments lead to increased prediction skill but also to evaluate how well the observations agree with the models in order to inform about observational quality and likewise model quality.

VERITAS CCI Final Report

Publications:

Guemas, V., Chevallier, M., Déqué, M., Bellprat, O., & Doblas-Reyes, F. (2016). Impact of sea ice initialization on sea ice and atmosphere prediction skill on seasonal timescales. Geophysical Research Letters, 43(8), 3889–3896. http://doi.org/10.1002/2015GL066626

Bellprat, O., Massonnet, F., Siegert, S., Prodhomme C., Macias-Gomez, D., Guemas, V., Doblas-Reyes, F. 2016: Exploring observational uncertainty for verification of climate predictions. Remote Sensing of the Environment, CCI special issue, https://doi.org/10.1016/j.rse.2017.06.034

Bellprat, O., D. Macias-G.mez, C. Prodhomme, V. Guemas and F.J. Doblas-Reyes (2015). Climate prediction with EC-Earth3: Impact of horizontal resolution and initialisation of landsurface and sea-ice. BSC Technical Memorandum No. 2, 14 pp.

Massonnet, F., Bellprat, O., Guemas, V., and F. Doblas-Reyes, 2016: Utilizing climate models to estimate the quality of global observational data sets. Science, 354, 6311, 452-455, http://doi.org/10.1126/science.aaf6369

Siegert, S., Stephenson, D., Bellprat, O., M.n.goz, M., and F. Doblas-Reyes, 2017: Detecting improvements in forecast correlation skill: Statistical tests and power analysis. Monthly Weather Review, http://dx.doi.org/10.1175/MWR-D-16-0037.1

Prodhomme, C., Batt., L., Massonnet, F., Davini, P., Bellprat, O., Guemas, V., and F. Doblas-Reyes, 2016: Benefits of resolution increase for seasonal forecast quality in ECEarth. Journal of Climate, http://dx.doi.org/10.1175/JCLI-D-16-0117.1

Name: Simon Munier

Title: Surface water and climate variability from a high-resolution GIEMS-SAR merged product (GIEMS-SAR)

Changes in global surface water extent are closely related to changes in the global carbon cycle (CO2 and methane emission). However, the knowledge of the global distribution and dynamics of surface water remains limited. A Global Inundation Extent from Multi-Satellite (GIEMS) dataset of monthly inundation and surface water dynamics at about 25 x 25 km2 resolution has been produced by a multi-sensor analysis covering 1993-2007. In spite of the high value of this dataset for hydrology and climate studies, its low-resolution limits the observations to only 20% of the global inland surface water. The objetcive of this project is to examine if it would be possible to develop a SAR-based downscaling methodology to derive high-resolution surface water extent from the existing GIEMS low-resolution dataset. 

GIEMS-SAR Final Report

Publications:

Munier, S., F. Aires and C. Prigent (2016). GIEMS-SAR: a high resolution monthly dataset to study surface water extent dynamics - application on the Danube Basin. J of Hydrometeorology. (in prep).

Name: Anna Hogg

Title: CryoSat measurement of the Antartic Ice Shelf thickness change (CryoShelf)

Floating ice shelves that fringe the majority of Antarctica's coastline provide a direct link between the ice sheet and the surrounding oceans, and changes in their constitution have been shown to influence the flow of inland ice due to their buttressing effect. This process has become increasingly important over recent decades as Antarctic ice shelves have thinned, retreated, and collapsed. Fluctuations in the surface elevation of the grounded ice sheet over time are developed as an essential climate variable within the ESA Climate Change Initiative and data users prioritised this parameter among the top three of all Earth Observation data sets. This project outlines has the objective to adapt and use the repeat track processor developed as part of the Antarctic and Greenland CCI projects to measure ice shelf thickness change and basal melt rates in Antarctica.

Publications:

Hogg, A. E., Shepherd, A., Cornford, S. L., Briggs, K. H., Gourmelen, N., Graham, J. A., … Wuite, J. (2017). Increased ice flow in Western Palmer Land linked to ocean melting. Geophysical Research Letters, 44(9), 4159–4167. http://doi.org/10.1002/2016GL072110

Hogg, A. E., & Gudmundsson, G. H. (2017). Impacts of the Larsen-C Ice Shelf calving event. Nature Climate Change, 7(8), 540–542. http://doi.org/10.1038/nclimate3359

Gourmelen, N., Goldberg, D. N., Snow, K., Henley, S. F., Bingham, R. G., Kimura, S., et al., (2017). Channelized melting drives thinning under a rapidly melting Antarctic ice shelf. Geophysical Research Letters, 44. https://doi.org/10.1002/2017GL074929

Name: Marie-Fanny Racault

Title: Climate Impact on Marine Ecosystem State (CLIMARECOS)

The ocean plays a major role in the climate system, absorbing, between 1971 and 2010, approximately 30% of the carbon dioxide (CO2) emitted to the atmosphere by human activities. This CO2 sink is part of a very active, natural carbon cycle, through which phytoplankton in the surface layer of the ocean fix CO2 into organic matter, some of which subsequently sinks below the mixed layer. Through this process, phytoplankton help to modulate the increase in atmospheric CO2 that results from the burning of fossil fuels. Thus, phytoplankton are key players in the planetary carbon cycle, and it is therefore important to understand phytoplankton dynamics, which in turn depend on the underlying physical forcing (light, temperature, and winds). This project examines the influence of climate variability (as indicated by El Niño Southern Oscillation ENSO) and what can be learnt about potential impact of climate change on the marine ecosystem by studying its response to ENSO.

CLIMARECOS Final Report

Publications:

Meyssignac B, Piecuch CG, Merchant CJ, Racault M-F, Palanisamy H, MacIntosh C, Sathyendranath S, Brewin R (2016) Causes of the Regional Variability in Observed Sea Level, Sea Surface Temperature and Ocean Colour Over the Period 1993–2011. Surveys in Geophysics,doi:10.1007/s10712-016-9383-1.

Racault M-F, Sathyendranath S, Menin N, Platt T (2016) Phenological Responses to ENSO in the Global Oceans. Surveys in Geophysics, doi:10.1007/s10712-016-9391-1;

Gittings JA, Raitsos DE, Racault M-F, Brewin RJW, Pradhan Y, Sathyendranath S, Platt T (2016) Seasonal phytoplankton blooms in the Gulf of Aden revealed by remote sensing. Remote Sensing of Environment doi:10.1016/j.rse.2016.10.043.

Racault M-F, Sathyendranath S, Brewin RJW, Raitsos DE, Jackson T and Platt T (2017) Impact of El Niño Variability on Oceanic Phytoplankton. Front. Mar. Sci. 4:133. doi: 10.3389/fmars.2017.00133

Name: Robert Parker

Title: ExpLoring thE Global cArbon CyclE through atmospheric GreenHouse Gas variability’(ELEGANCE-GHG)

This project focuses on assessing the year to year variations in the regional carbon exchange caused by both climatic drivers (e.g. temperature and precipitation) and disturbances (such as biomass burning, deforestation or a major El Nino event).  This will be achieved by examining temporal and spatial anomalies in satellite-derived atmospheric CO2 and CH4 measurements and linking such anomalies to temporal variations in plant phenology, wetland extent, land-use change and fire activity along with the associated physical drivers such as land surface temperature (LST) and precipitation. 

ELEGANCE Final Report

Parker, R. J., Boesch, H., Byckling, K., Webb, A. J., Palmer, P. I., Feng, L., … Velazco, V. (2015). Assessing 5 years of GOSAT Proxy XCH4 data and associated uncertainties. Atmospheric Measurement Techniques Discussions, 8(6), 5937–5972. http://doi.org/10.5194/amtd-8-5937-2015

Parker, R. J., Boesch, H., Wooster, M. J., Moore, D. P., Webb, A. J., Gaveau, D., & Murdiyarso, D. (2016). Atmospheric CH4 and CO2 enhancements and biomass burning emission ratios derived from satellite observations of the 2015 Indonesian fire plumes. Atmospheric Chemistry and Physics, 16(15), 10111–10131. http://doi.org/10.5194/acp-16-10111-2016