Publications

Click on the following links for publications relating to the Glaciers project.

2023 |2022 |2021 |2020 |2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 |


Publications 2023

110. Berthier, E., Floricioiu, D., Gardner, A.S., Gourmelen, N., Jakob, L., Paul, F., Treichler, D., Wouters, B., Belart, J., Dehecq, A., Dussaillant, I., Hugonnet, R., Kääb, A., Krieger, L., Palsson, F. and Zemp, M. (2023): Measuring glacier mass changes from space - a review. Reports on Progress in Physics. 86, 036801, doi.org/10.1088/1361-6633/acaf8e.

109. Kääb, A. and Girod, L. (2023): Brief communication: Rapid  ∼ 335  ×  106 m3 bed erosion after detachment of the Sedongpu Glacier (Tibet), The Cryosphere, 17, 2533–2541.

108. Kääb, A., Bazilova, V., Leclercq, P.W., Mannerfelt, E.S. and Strozzi, T. (2023): Global clustering of recent glacier ̈surges from radar backscatter data, 2017–2022. J. Glaciol., doi.org/10.1017/ jog.2023.35.

107. Paul, F., Baumann, S., Anderson, B., and Rastner, P. (2023): Deriving a year 2000 glacier inventory for New Zealand from the existing 2016 inventory. Annals of Glaciology, 90.

Publications 2022

106. Hegglin, M. and 37 others (2022): Space-based Earth observations in support of the UNFCCC Paris Agreement. Frontiers in Environmental Science, 10, 941490.

105. Windnagel, A., Hock,R., Maussion, F., Paul, F., Rastner, P., Raup, B.H., and Zemp, M. (2022): Which glaciers are the largest in the world? Journal of Glaciology, 69 (274), 301-310.

104. Gärtner-Roer, I., Nussbaumer, S., Raup, B., Paul, F., Welty, E., Windnagel, A.K., Fetterer, F., Zemp, M. (2022): Democratizing glacier data – maturity of worldwide datasets and future ambitions. Frontiers in Climate, 4, 841103, doi.org/10.3389/fclim.2022.841103.

103. Paul, F., Piermattei L., Treichler D., Gilbert, L., Girod, L., Kääb, A., Libert, L., Nagler, T., Strozzi, T., Wuite, J. (2022): Three different glacier surges at a spot: what satellites observe and what not. The Cryosphere, 16, 2505–2526.

102. Tielidze, L. G., Nosenko, G. A., Khromova, T. E., Paul, F. (2022): Strong acceleration of glacier area loss in the Greater Caucasus over the past two decades. The Cryosphere, 16, 489-504.

Publications 2021

101. Leclercq, P.W., A. Kääb and B. Altena (2021): Brief Communication: Detection of glacier surge activity using cloud computing of Sentinel-1 radar data. The Cryosphere, 15, 4901–4907.

100. Shugar, D.H. and 52 others (2021): A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science, 373 (6552), 300-306; doi.org/10.1126/science.abh4455.

99. Hugonnet R, McNabb R, Berthier E, Menounos B, Nuth C, Girod L, Farinotti D, Huss M, Dussaillant I, Brun F, Kääb A. (2021): Accelerated global glacier mass loss in the early twenty-​first century. Nature, 592, 726-731; doi.org/10.1038/s41586-​021-03436-z.

98. Kääb, A., Jacquemart, M., Gilbert, A., Leinss, S., Girod, L., Huggel, C., Falaschi, D., Ugalde, F., Petrakov, D., Chernomorets, S., Dokukin, M., Paul, F., Gascoin, S., Berthier, E. and Kargel, J. (2021): Sudden large-volume detachments of low-angle mountain glaciers - more frequent than thought. The Cryosphere, 15, 1751–1785; doi.org/10.5194/tc-15-1751-2021.

97. How, P., A. Messerli, E. Mätzler, M. Santoro, A. Wiesmann, R. Caduff, K. Langley, M.H. Bojesen, F. Paul, A. Kääb and J.L. Carrivick (2021): Greenland-wide inventory of ice marginal lakes using a multi-method approach. Scientific Reports, 11, 4481; doi.org/10.1038/s41598-021-83509-1.

Publications 2020

96. Altena, B. and Kääb, A. (2020): Ensemble matching of repeat satellite images applied to measure fast-changing ice flow, verified with mountain climber trajectories on Khumbu icefall, Mount Everest. Journal of Glaciology, 66 (260), 905-915.

95. Carturan, L., Rastner, P. and Paul, F. (2020): On the disequilibrium response and climate change vulnerability of the mass balance glaciers in the Alps. Journal of Glaciology. 66 (260), 1034-1050.

94. Goerlich, F., Bolch, T. and Paul, F. (2020): More dynamic than expected: An updated survey of surging glaciers in the Pamir. Earth Syst. Sci. Data, 12, 3161-3176.

93. Haga, O., McNabb, R., Nuth, C., Altena, B., Schellenberger, T. and Kääb, A. (2020). From high friction zone to frontal collapse: Dynamics of an ongoing tidewater glacier surge, Negribreen, Svalbard. Journal of Glaciology, 66 (259), 742-754.

92. Huber, J., McNabb, R. and Zemp, M. (2020). Elevation changes of west-central Greenland glaciers from 1985 to 2012 from remote sensing. Frontiers in Earth Science, 8, 35, doi.org/10.3389/feart.2020.00035

91. Paul, F. (2020): A 60-year chronology of glacier surges in the central Karakoram from the analysis of satellite image time-series. Geomorphology, 352, 106993.

90. Paul, F., Rastner, P., Azzoni, R.S., Diolaiuti, G., Fugazza, D., Le Bris, R., Nemec, J., Rabatel, A., Ramusovic, M., Schwaizer, G., and Smiraglia, C. (2020): Glacier shrinkage in the Alps continues unabated as revealed by a new glacier inventory from Sentinel-2. Earth Systems Science Data, 12(3), 1805-1821.

89. Popp, T., M.I. Hegglin, R. Hollmann, ... F. Paul, ... (2020): Consistency of satellite climate data records for Earth system monitoring. Bulletin American Meteorological Society, 101 (11), E1948-E1971.

88. Werder, M. A., Huss, M., Paul, F., Dehecq, A. and Farinotti, D. (2020): A Bayesian ice thickness estimation model for large-scale applications. Journal of Glaciology, 66 (255), 137-152.

87. Zemp, M., Huss, M., Eckert, N., Thibert, E., Paul, F., Nussbaumer, S.U. and Gärtner-Roer, I. (2020): Brief communication: Ad hoc estimation of glacier contributions to sea-level rise from latest glaciological observations. The Cryosphere, 14, 1043-1050.

Publications 2019

86. Altena, B., Scambos, T., Fahnestock, M., and Kääb, A. (2019): Extracting recent short-term glacier velocity evolution over Southern Alaska from a large collection of Landsat data, The Cryopshere, 13, 795-814.

85. Deschamps-Berger, C., C. Nuth, W. Van Pelt, E. Berthier, J. Kohler & B. Altena (2019): Closing the mass budget of a tidewater glacier, an example of Kronebreen, Svalbard. J. Glaciol., 65(249) 136-148.

84. Falaschi, D., Kääb, A., Paul, F., Tadono, T., Rivera, J.A., and Lenzano, L.E. (2019): Brief communication: Collapse of 4M m3 of ice from a cirque glacier in the Central Andes of Argentina. The Cryosphere, 13, 997-1004.

83. McNabb, R., Nuth, C., Kääb, A. and Girod, L. (2019): Sensitivity of geodetic glacier mass balance estimation to DEM void interpolation. The Cryosphere, 13, 895-910.

82. Nuth, C., A. Gilbert, A. Köhler, R. McNabb, T. Schellenberger, H. Sevestre, C. Weidle, L. Girod, A. Luckman and A. Kääb (2019): Dynamic vulnerability revealed in the collapse of an Arctic tidewater glacier. Scientific Reports, 9, 5541 (doi: 10.1038/s41598-019-41117-0).

81. Paul, F. (2019): Repeat glacier collapses and surges in the Amnye Machen mountain range, Tibet, possibly triggered by a developing rock-slope instability. Remote Sensing, 11(6), 708; doi: 10.3390/rs11060708.

80. Rastner, P., Notarnicola, C., Nicholson, L., Prinz, R., Sailer, R., Schwaizer, G. and Paul, F. (2019): Automated mapping of snow cover on glaciers and calculation of snow line altitudes from multi-temporal Landsat data. Remote Sensing, 11, 1410; doi: 10.3390/rs11121410.

79. Reinthaler, J., Paul, F., Delgado Granados, H., Rivera, A. and Huggel, C. (2019): Fast shrinkage of glaciers on active volcanoes in Latin America. Journal of Glaciology, 65 (252), 542-556.

78. Treichler, D., Kääb, A., Salzmann, N., and Xu, C.-Y. (2019): High Mountain Asia glacier elevation trends 2003–2008, lake volume changes 1990–2015, and their relation to precipitation changes. The Cryosphere, 13, 2977–3005.

77. Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., Barandun, M., Machguth, H., Nussbaumer, S.U., Gärtner-Roer, I., Thomson, L., Paul, F., Maussion, F., Kutuzov, S., and Cogley, J.G. (2019): Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature, 568, 382-386.

Publications 2018

76. Daiyrov M., C. Narama, T. Yamanokuchi, T. Tadono, A. Kääb and J. Ukita T. (2018): Regional geomorphological conditions related to recent changes of glacial lakes in the Issyk-Kul ba-sin, northern Tien Shan. Geosciences, 8(3), Art.no. 99, doi:10.3390/geosciences8030099.

75. Kääb, A., Leinss, S., Gilbert, A., Bühler, Y., Gascoin, S., Evans, S.G., Bartelt, P., Berthier, E., Brun, F., Chao, W., Farinotti, D., Gimbert, F., Guo, W., Huggel, C., Kargel, J.S., Leonard, G.J., Tian, L., Treichler D. and Yao, T. (2018): Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability. Nature Geoscience, 11, 114–120.

74. Lindbäck, K., Kohler, J., Pettersson, R., Nuth, C., Langley, K., Messerli, A., Vallot, D., Matsuoka, K. and Brandt, O. (2018): Subglacial topography, ice thickness, and bathymetry of Kongsfjorden, northwestern Svalbard. Earth Syst. Sci. Data, 10, 1769-1781.

73. Mölg, N., Bolch, T., Rastner, P., Strozzi, T. and Paul, F. (2018): A consistent glacier inventory for the Karakoram and Pamir region derived from Landsat data: Distribution of debris cover and mapping challenges. Earth Systems Science Data, 10, 1807-1827.

72. Narama C., M. Daiyrov, M. Duishonakunov, T. Tadono, H. Sato, A. Kääb, J. Ukita, and K. Abdrakhmatov (2018): Large drainages from short-lived glacial lakes in the Teskey Range, Tien Shan Mountains, Central Asia . Nat. Hazards Earth Syst. Sci., 18, 983-995.

71. Robson, B.A., C. Nuth, P.R. Nielsen, L. Girod, M. Hendrickx and S.O. Dahl (2018): Spatial Variability in Patterns of Glacier Change across the Manaslu Range, Central Himalaya. Front. Earth Sci., 6, 12, doi: 10.3389/feart.2018.00012.

70. Sevestre, H., Benn, D. I., Luckman, A., Nuth, C., Kohler, J., Lindbäck, K. and Pettersson, R. (2018): Tidewater glacier surges initiated at the terminus. Journal of Geophysical Research: Earth Surface, 123, 1035–1051.

69. Winsvold S.H., A. Kääb, C. Nuth, L. Andreassen, W. Van Pelt, T. Schellenberger (2018): Using SAR satellite data time series for regional glacier mapping. The Cryosphere, 12, 867-890.

Publications 2017

68. Rastner, P., Strozzi, T. and Paul, F. (2017): Fusion of multi-source satellite data and DEMs to create a new glacier inventory for Novaya Zemlya. Remote Sensing, 9(11), 1122; doi: 10.3390/rs9111122.

67. Brun, F., E. Berthier, P. Wagnon, A. Kääb and D. Treichler (2017): A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nature Geoscience, 10, 668-673; doi:10.1038/ngeo2999.

66. Girod, L., Nuth, C., Kääb, A., McNabb, R., and Galland, O. (2017): MMASTER: improved ASTER DEMs for elevation change. Remote Sensing, 9 (7), 704; doi:10.3390/rs9070704.

65. Merchant, C.J., F. Paul, et al. (2017): Uncertainty information in climate data records from Earth observation. Earth System Science Data, 9, 511-527; doi.org/10.5194/essd-9-511-2017.

64. Paul, F., T. Strozzi, T. Schellenberger and A. Kääb (2017): The 2015 surge of Hispar Glacier in the Karakoram. Remote Sensing, 9(9), 888; doi: 10.3390/rs9090888.

63. Strozzi, T., F. Paul, A. Wiesmann, T. Schellenberger and A. Kääb (2017): Circum-Arctic changes in the flow of glaciers and ice caps from satellite SAR data between the 1990s and 2017. Remote Sensing, 9(9), 947; doi: 10.3390/rs9090947

62. Altena, B. and A. Kääb (2017): Elevation change and improved velocity retrieval using orthorectified optical satellite data from different orbits. Remote Sensing, 9(3), 300; doi: 10.3390/rs9030300.

61. Farinotti, D., Brinkerhoff, D. J., Clarke, G. K. C., Fürst, J. J., Frey, H., Gantayat, P., Gillet-Chaulet, F., Girard, C., Huss, M., Leclercq, P. W., Linsbauer, A., Machguth, H., Martin, C., Maussion, F., Morlighem, M., Mosbeux, C., Pandit, A., Portmann, A., Rabatel, A., Ramsankaran, R., Reerink, T. J., Sanchez, O., Stentoft, P. A., Singh Kumari, S., van Pelt, W. J. J., Anderson, B., Benham, T., Binder, D., Dowdeswell, J. A., Fischer, A., Helfricht, K., Kutuzov, S., Lavrentiev, I., McNabb, R., Gudmundsson, G. H., Li, H., and Andreassen, L. M.: How accurate are estimates of glacier ice thickness? Results from ITMIX, the Ice Thickness Models Intercomparison eXperiment, The Cryosphere, 11, 949-970, doi: 10.5194/tc-11-949-2017.

60. Girod L., Nuth C., Kääb A., Etzelmüller B., and Kohler J. (2017). Terrain changes from images acquired on opportunistic flights by SfM photogrammetry. The Cryosphere, 11, 827-840, doi:10.5194/tc-11-827-2017.

59. Goerlich, F., T. Bolch, K. Mukherjee and T. Pieczonka (2017): Glacier Mass Loss during the 1960s and 1970s in the Ak-Shirak Range (Kyrgyzstan) from Multiple Stereoscopic Corona and Hexagon Imagery. Remote Sens. 2017, 9(3), 275; doi:10.3390/rs9030275.

58. Huber, J., A. Cook, F. Paul and M. Zemp (2017): A complete glacier inventory of the Antarctic Peninsula based on Landsat 7 images from 2000-2002 and other pre-existing data sets. Earth Systems Science Data, 9, 115-131, doi: 10.5194/essd-9-115-2017.

57. Kääb A., Altena B. and Mascaro J. (2017): Coseismic displacements of the 14 November 2016 Mw 7.8 Kaikoura, New Zealand, earthquake using the Planet optical cubesat constellation. Natural Hazards and Earth System Sciences, 17, 627-639, doi:10.5194/nhess-17-627-2017.

56. Köhler, A., Nuth, C.; Kohler, J., Berthier, E., Weidle, C. and Schweitzer, J. (2016): A 15 year record of frontal glacier ablation rates estimated from seismic data. Geophysical Research Letters. 43(23), 12155-12164 (doi: 10.1002/2016GL070589).

55. Marzeion, B., N. Champollion, W. Haeberli, K. Langley, P. Leclercq and F. Paul (2017): Observation of glacier mass changes on the global scale and its contribution to sea level change. Surveys in Geophysics, 38 (1), 105-130, doi: 10.1007/s10712-016-9394-y.

54. Narama C., M. Daiyrov, T. Tadono, M. Yamamoto, A. Kääb, R. Morita, J. Ukita (2017). Seasonal drainage of supraglacial lakes on debris-covered glaciers in the Tien Shan Mountains, Central Asia. Geomorphology, 286, 133-142, doi: 10.1016/j.geomorph.2017.03.002.

53. Strozzi T., A. Kääb and T. Schellenberger (2017): Frontal destabilization of Stonebreen, Edgeøya, Svalbard. The Cryosphere, 11, 553-566, doi: 10.5194/tc-11-553-2017.

52. Treichler D. and Kääb A. (2017): Snow depth from ICESat laser altimetry - A test study in southern Norway. Remote Sensing of Environment, 191, 389-401, doi: 10.1016/j.rse.2017.01.022.

Publications 2016

51. Kääb, A., Winsvold, S.H., Altena, B., Nuth, C., Nagler, T., Wuite, J. (2016): Glacier Remote Sensing Using Sentinel-2. Part I: Radiometric and Geometric Performance, and Application to Ice Velocity. Remote Sensing, 8(7), 598 (doi:10.3390/rs8070598)

50. Kronenberg, M., Barandun, M., Hoelzle, M., Huss, M., Farinotti, D., Azisov, E., Usubaliev, R., Gafurov, A., Petrakov, D. and Kääb, A.(2016): Mass balance reconstruction for Glacier No. 354, Tien Shan, from 2003- 2014. Annals of Glaciology, 57(71), 92-102.

49. Paul, F., S.H. Winsvold, A. Kääb, T. Nagler and G. Schwaizer (2016): Glacier Remote Sensing Using Sentinel-2. Part II: Mapping Glacier Extents and Surface Facies, and Comparison to Landsat 8. Remote Sens., 8(7), 575 (doi:10.3390/rs8070575).

48. Robson, B.A., D. Hölbling, C. Nuth, T. Strozzi and S.O. Dahl (2016): Decadal scale changes in glacier area in the Hohe Tauern National Park, Austria determined by object-based image analysis. Remote Sensing, 8, 67 (10.3390/rs8010067).

47. Winsvold, S., A. Kääb and C. Nuth (2016): Regional glacier mapping using optical satellite data time series. JSTARS (doi: 10.1109/JSTARS.2016.2527063).

Publications 2015

46. Allison, I., Colgan, W., King, M., Paul, F. (2015): Ice sheets, glaciers and sea level. In: Haeberli, W. and C. Whiteman, eds. Snow and Ice-Related Hazards, Risks, and Disasters, Amsterdam, Netherlands, Elsevier, 714-748.

45. Bolch, T. (2015): Glacier area and mass changes since 1964 in the Ala Archa Valley, Kyrgyz Ala-Too, northern Tien Shan. Лёд и Снег (Ice and Snow) 129(1): 28-39.

44. Holzer, N., S. Vijay, T. Yao, B. Xu, M. Buchroithner and T. Bolch(2015): Four decades of glacier variations at Muztagh Ata (eastern Pamir): a multi-sensor study includ-ing Hexagon KH-9 and Pléiades data. The Cryosphere, 9, 2071-2088.

43. Kääb, A., Treichler D., Nuth C. and Berthier E. (2015): Brief Communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. The Cryosphere, 9, 557- 564. doi:10.5194/tc-9-557-2015

42. Le Bris, R. and F. Paul (2015): Glacier-specific elevation changes in western Alaska. Annals of Glaciology, 56 (70), 184-192.

41. Nuth, C., Hagen, J.O., and Kohler, J. (2015): Ch 4. Glaciers in Geoscience Atlas of Svalbard (ed. Dallmann W.K.). Norsk Polarinstitutt Rapport; 148, Tromsø.

40. Paul, F. and 24 others (2015): The Glaciers Climate Change Initiative: Algorithms for creating glacier area, elevation change and velocity products. Remote Sensing of Environment, 162, 408-426. doi:10.1016/j.rse.2013.07.043

39. Paul, F. (2015): Revealing glacier flow and surge dynamics from animated satellite image sequences: examples from the Karakoram. The Cryosphere, 9, 2201-2214.

38. Paul, F. (2015): Kartierung von Gletschern mit Satellitendaten und das globale Gletscherinventar. In: Lozán, J.L., H. Grassl, D. Kasang, D. Notz, and H. Escher-Vetter (Hrsg.): Warnsignal Klima: Das Eis der Erde (Kap. 4.1), 103-110.

37. PelliCCIotti, F., Stephan, C., Miles, E., Herreid, S., Immerzeel, W., Bolch, T. (2015): Mass-balance changes of the debris-covered glaciers in the Langtang Himal, Nepal, between 1974 and 1999. Journal of Glaciology 61(226): 373-386, doi: 10.3189/2015JoG13J237

36. Pieczonka, T., Bolch, T. (2015): Region-wide glacier mass budgets and area changes for the Central Tien Shan between ~1975 and 1999 using Hexagon KH-9 imagery. Global and Planetary Change, 128, 1-13. 10.1016/j.gloplacha.2014.11.014.

35. Raup, B.H., L.M. Andreassen, T. Bolch and S. Bevan (2015): Remote sensing of glaciers. In: Tedescco, M. (ed.): Remote Sensing of the Cryosphere, John Wiley & Sons, 123-165.

34. Robson, B.A., C. Nuth, S.O. Dahl, D. Hölbling, T. Strozzi and P. R. Nielsen (2015): Automated classification of debris-covered glaciers combining optical, SAR and topo-graphic data in an object-based environment. Remote Sensing of Environment, 170, 372-387.

33. Schellenberger, T., T. Dunse, A. Kääb, J. Kohler, C. H. Reijmer: Surface speed and frontal ablation of Kronebreen and Kongsbreen, NW-Svalbard, from SAR offset tracking. The Cryosphere, 9, 2339-2355.

32. Shangguan, D. H., Bolch, T., Ding, Y. J., Kröhnert, M., Pieczonka, T., Wetzel, H. U., Liu, S. Y. (2015): Mass changes of Southern and Northern Inylchek Glacier, Central Tian Shan, Kyrgyzstan, during ∼1975 and 2007 derived from remote sensing data, The Cryosphere 9: 703-717, doi:10.5194/tc-9-703-2015.

31. Wang, D. and A. Kääb (2015): Modeling glacier elevation change from DEM time series. Remote Sensing, 7(8), 10117-10142.

30. WGMS (2015): Global Glacier Change Bulletin No. 1 (2012–2013). M. Zemp, I. Gärtner-Roer, S. Nussbaumer, F. Hüsler, H. Machguth, N. Mölg, F. Paul and M. Hoelzle (eds.), ICSU(WDS)/IUGG(IACS)/ UNEP/UNESCO/WMO, World Glacier Monitoring Service, Zurich, Switzerland, 230 pp.

29. Zemp, M., H. Frey, I. Gärtner-Roer, S.U. Nussbaumer, M. Hoelzle, F. Paul, W. Haeberli, et al. (2015): Historically unprecedented global glacier changes in the early 21st century. Journal of Glaciology, 61 (228),745-762.

Publications 2014

28. Bolch, T. (2015): Glacier area and mass changes since 1964 in the Ala Archa Valley, Kyrgyz Ala-Too, northern Tien Shan. Лёд и Снег (Ice and Snow) 129(1): 28-39. doi: 10.15356/2076-6734-2015-1-28-39

27. Frey, H., Machguth, H., Huss, M., Huggel, C., Bajracharya, S., Bolch, T., Kulkarni, A., Linsbauer, A., Salzmann, N., and Stoffel, M. (2014): Ice volume estimates for the Himalaya–Karakoram region: evaluating different methods, The Cryosphere 8: 2313-2333.

26. Kargel, J.S., Leonard, G.J., Bishop, M.P., Kääb, A., Raup, B.H. (Eds.) (2014): Global Land Ice Measurements from Space. Springer Praxis Books, 876 pp. (link: http://link.springer.com/book/10.1007%2F978-3-540-79818-7)

25. Neckel, N., Kropacek, J., Bolch, T., Hochschild, V. (2014): Glacier elevation changes on the Tibetan Plateau between 2003 – 2009 derived from ICESat measurements Environmental Research Letters 9: 014009 (7pp), doi:10.1088/1748-9326/9/1/014009.

24. Paul, F. and Mölg, N. (2014): Hasty retreat of glaciers in northern Patagonia from 1985 to 2011. Journal of Glaciology, 60 (224), 1033-1043. doi:10.3189/2014JoG14J104

23. Pfeffer, W.T., A.A. Arendt, A. Bliss, T. Bolch, J.G. Cogley, A.S. Gardner, J.-O. Hagen, R. Hock, G. Kaser, C. Kienholz, E.S. Miles, G. Moholdt, N. Mölg, F. Paul, V. Radic, P. Rastner, B.H. Raup, J. Rich, M.J. Sharp and the Randolph Consortium (2014): The Randolph Glacier Inventory: a globally complete inventory of glaciers. Journal of Glaciology 60(211): 537-552. doi: 10.3189/2014JoG13J176.

22. Rastner, P., Bolch, T., Notarnicola, C., Paul, F. (2014): A comparison of pixel- and object based glacier classification with optical satellite images. IEEE Journal of Selected Topics of Applied Earth Observation, 7(3): 853-862, doi: 10.1109/JSTARS.2013.2274668.

Publications 2013

21. Bhambri, R., Bolch, T., Kawishwar, P., Dobhal, D.P., Srivastava, D., Pratap, B. (2012): Heterogeneity in glacier response in the Shyok valley, northeast Karakoram. The Cryosphere 7: 1384-1398.

20. Bolch, T., Sandberg Sørensen, L., Simonssen, S.B., Mölg, N., Machguth, H., Rastner, P., Paul, F. (2013): Mass loss of Greenland’s glaciers and ice caps 2003-2008 revealed from ICESat laser altimetry data. Geophysical Research Letters 40, doi: 10.1029/2012GL054710.

  1. Gardelle, J., Berthier, E., Arnaud, Y., Kääb, A.: Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011, The Cryosphere 7, 1263-1286.
  2. Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A., Wahr, J., Berthier, E., Pfeffer, T. W., Kaser, G., Hock, R., Ligtenberg, S. R. M., Bolch, T., Sharp, M.J., Hagen, J. O., van den Broeke, M. R., Paul, F.: (2013): A reconciled estimate of glacier contributions to sea-level rise: 2003 to 2009. Science 340: 852–857.
  3. Hollmann, R., Merchant, C., Saunders, R., Downy, C., Buchwitz, M., Cazenave, A., Chuvieco, E., Defourny, P., de Leeuw, G., Forsberg, R., Holzer-Popp, T., Paul, F., Sandven, S., Sathyendranath, S., van Roozendael, M., Wagner, W. (2013): The ESA Climate Change Initiative: satellite data records for essential climate variables. Bulletin of the American Meteorological Society, 94(10): 1541-1552.
  4. Nuth, C., Kohler, J., König, M., von Deschwanden, A., Hagen, J. O., Kääb, A., Moholdt, G., and Pettersson, R. (2013): Decadal changes from a multi-temporal glacier inventory of Svalbard, The Cryosphere, 7, 1603-1621, doi:10.5194/tc-7-1603-2013.
  5. Pieczonka, T., Bolch, T., Wei, J., Liu, S. (2013): Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery. Remote Sensing of Environment 130, 233-244.
  6. Paul, F., Barrand, N., Berthier, E., Bolch, T., Casey, K., Frey, H., Joshi, S.P., Konovalov, V., Le Bris, R., Mölg, N., Nosenko, G., Nuth, C., Pope, A., Racoviteanu, A., Rastner, P., Raup, B., Scharrer, K., Steffen, S., Winsvold, S. (2013): On the accuracy of glacier outlines derived from remote sensing data. Annals of Glaciology54(63), 171-182.

Publications 2012

  1. Arendt, A. et al. (2012): Randolph Glacier Inventory [v2.0]: A data set of Global Glacier Outlines, Boulder, Colorado, Digital Media.
  2. Andreassen, L.M., Winsvold, S.H., Paul, F., Hausberg, J.E. (2012): Inventory of Norwegian Glaciers. Norwegian Water Resources and Energy Directorate, Rapport 38-2012, 240 pp.
  3. Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, G., Frey, H., Kargel, J.S., Fujita, K., Scheel, M., Bajracharya, S., Stoffel, M. (2012): The state and fate of Himalayan glaciers. SCIENCE 336(6079), 310–314.
  4. Debella-Gilo, M.; Kääb, A. (2012) Measurement of Surface Displacement and Deformation of Mass Movements Using Least Squares Matching of Repeat High Resolution Satellite and Aerial Images. Remote Sensing 4(1), 43-67.
  5. Debella-Gilo M.; Kääb, A. (2012): Locally adaptive template sizes for matching repeat images of Earth surface mass movements. ISPRS J. Photogramm. Remote Sens. 69, 10-28.
  6. Heid, T., Kääb, A. (2012): Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery. Remote Sensing of Environment 118, 339-355.
  7. Heid T., Kääb A. (2012): Repeat optical satellite images reveal widespread and long term decrease in land-terminating glacier speeds. The Cryosphere 6, 467-478.
  8. Kääb A. , Berthier, E., Nuth, C., Gardelle, J., Arnaud. Y. (2012): Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488(7412), 495-498.
  9. Leclercq, P.W., Weidick, A., Paul, F., Bolch. T., Citterio, M., Oerlemans, J. (2012): Historical glacier length changes in West Greenland. The Cryosphere 6, 1339-1343.
  10. Nuth, C.; Schuler, T.; Kohler, J.; Altena, B.; Hagen, J. (2012): Estimating the long-term calving flux of Kronebreen, Svalbard, from geodetic elevation changes and mass-balance modelling. Journal of Glaciology 58(207), 119-133.
  11. Paul, F., Bolch, T., Kääb, A., Nagler, T., Shepherd, A., Strozzi, T.(2012): Satellite-based glacier monitoring in the ESA Project Glaciers_CCI. Proceedings of the IGARSS Conference, 23.-27.7.2012, Munich, Germany: 3222-3225.
  12. Rastner, P., Bolch, T., Mölg, N., Machguth, H., Paul, F. (2012): The first complete glacier inventory for the whole of Greenland. The Cryosphere 6, 1483-1495.
  13. Shepherd, A., & et al. (2012). A reconciled estimate of ice-sheet mass balance. Science, 338, 1183–1189.