The latest global products including uncertainties are provided via the CCI Open Data Portal

How is Sea Level measured

Past variations can be reconstructed from several indicators, but the very first measurements of sea level were made by monitoring tides in the 18th century. Although we now have a relatively dense network of tide gauges, only 20 stations (mostly along the coasts of Europe and North America) collected data throughout the 20th century. On the basis of their measurements, sea level is estimated to have risen by 10 to 20 centimetres since 1900.

Today, satellite altimetry, autonomous floats (Argo floats since 2005) and gravimetric data (GRACE satellite) enable the measurement of mean sea level variations, or some of their components. Ocean models are also used to understand and quantify those phenomena.

With the satellite altimetry missions, the global mean sea level (GMSL) has been calculated on a continual basis since January 1993. 'Verification' phases, during which the satellites follow each other in close succession (Topex/Poseidon-Jason-1, Jason-1-Jason-2, Jason-2-Jason-3, and then Jason-3-Sentinel-6), help to link up these different missions by precisely determining any bias between them. Envisat, ERS-1 and ERS-2 are also used, after being adjusted on these reference missions, in order to compute Mean Sea Level at high latitudes (higher than 66°N and S), and also to improve spatial resolution by combining all these missions together. In addition, permanent monitoring of quality during the missions and studies of the necessary corrections of altimetry data regularly add to our understanding and knowledge.

Why Sea Level varies

There are several possible components which may take their part in the mean rise in sea level: an increase in the temperature of the water, which dilates as it warms, the thawing of mountain glaciers and polar ice caps in Greeland and Antarctica, as well as melting permafrost. Changes to the amount of rainfall and evaporation also play a part, as well as runoff and inland water reserves, mainly owing to human activity such as dam construction and irrigation.


Different altimeter sea level products have been produced and distributed within the Sea Level Climate Change Initiative (SL_CCI) project. Access to the ECV Products and further details are provided via the CCI Open Data Portal. The users are invited to contact the team for any question on the products:

The different products available are listed below:

The regional XTRACK/ALES altimeter along-track multi-mission high frequency sea level anomalies

The global sea level ECV product is a multi-satellite merged product that consists in a database of different elements that can be referenced with the following DOI: 10.5270/esa-sea_level_cci-1993_2015-v_2.0-201612. The v2.0 dataset covers the period Jan. 1993 to Dec. 2015 and includes:

A CLS/PML improved sea level Arctic product (maps of sea level anomalies) based on the Envisat and SARAL/AltiKa missions. Contact for access to this dataset. (not available in the Open Data Portal, ODP).

A DTU/TUM gridded sea level product at high latitudes (Arctic and Antarctic) has been produced based on ERS-1 & 2, Envisat and CryoSat-2 missions. Contact for access to this dataset. (not available in the Open Data Portal, ODP).

The altimeter SL_cci sea level anomalies (v2.0 global ECV product) have been produced with the use of the Dynamic Atmospheric Correction (DAC) forced by the ERA-Interim reanalysis. The associated 6-hourly global grids are available for the users. Contact for access to this dataset. (not available in the Open Data Portal, ODP)


The Product User Guides (PUG) related to the global sea level ECV product and the XTRACK/ALES regional coastal product can be found in the “Key Documents” section. The description of the different products and their validation can be found in the technical documents listed in this section, in the references listed below and in peer-reviewed articles of the SL_cci team listed here.

Terms and conditions & Acknowledgement

The Sea Level CCI datasets may be used by any user for any purpose ("CC-BY" licence).

Users of the Sea Level CCI datasets are invited to cite the relevant DOI (as mentioned in the above table) and cite the relevant articles (see table below)

Legeais, J.-F., Ablain, M., Zawadzki, L., Zuo, H., Johannessen, J. A., Scharffenberg, M. G., Fenoglio-Marc, L., Fernandes, M. J., Andersen, O. B., Rudenko, S., Cipollini, P., Quartly, G. D., Passaro, M., Cazenave, A., and Benveniste, J.: An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative, Earth Syst. Sci. Data, 10, 281-301,, 2018.

Quartly, G. D., Legeais, J.-F., Ablain, M., Zawadzki, L., Fernandes, M. J., Rudenko, S., Carrère, L., García, P. N., Cipollini, P., Andersen, O. B., Poisson, J.-C., Mbajon Njiche, S., Cazenave, A., and Benveniste, J.: A new phase in the production of quality-controlled sea level data, Earth Syst. Sci. Data, 9, 557-572,, 2017.

Birol F., N. Fuller, F. Lyard, M. Cancet, F. Niño, C. Delebecque, S. Fleury, F. Toublanc, A. Melet and M. Saraceno, F. Leger, 2017. Coastal applications from nadir altimetry: example of the X-TRACK regional products. Advances in Space Research,

Passaro, M., A., N., Zulfikar, 2018. Improving the precision of sea level data from satellite altimetry with high-frequency and regional sea state bias corrections, Remote Sensing of Environment, 218, 245-254,

The Climate Change Initiative Coastal Sea Level Team., Coastal sea level anomalies and associated trends from Jason satellite altimetry over 2002–2018. Sci Data 7, 357 (2020).